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Abstract. Combinatorial optimization over continuous and integer
variables was proposed recently as a useful tool for solving complex opti-
mal control problems for linear hybrid dynamical systems formulated in
discrete-time. Current approaches are based on mixed-integer linear or
quadratic programming (MIP), which provides the solution after solving
a sequence of relaxed standard linear (or quadratic) programs (LP, QP).
An MIP formulation has the drawback of requiring conversion of the
discrete/logic part of the hybrid problem into mixed-integer inequalities.
Although this operation can be done automatically, most of the original
discrete structure of the problem is lost during the conversion. Moreover,
the efficiency of the MIP solver mainly relies upon the tightness of the
continuous LP/QP relaxations. In this paper we attempt to overcome
such difficulties by combining MIP and techniques for solving constraint
satisfaction problems into a “hybrid” solver, taking advantage of SAT
solvers for dealing efficiently with satisfiability of logic constraints. We
detail how to model the hybrid dynamics so that the optimal control
problem can be solved by the hybrid MIP+SAT solver, and show that
the achieved performance is superior to the one achieved by commercial
MIP solvers.

1 Introduction

Over the last few years we have witnessed a growing interest in the study of dy-
namical processes of a mixed continuous and discrete nature, denoted as hybrid
systems, both in academia and in industry. Hybrid systems are characterized by
the interaction of continuous models governed by differential or difference equa-
tions, and of logic rules, automata, and other discrete components (switches, se-
lectors, etc.). Hybrid systems can switch between many operating modes where
each mode is governed by its own characteristic continuous dynamical laws. Mode
transitions may be triggered internally (variables crossing specific thresholds),
or externally (discrete commands directly given to the system). The interest
in hybrid systems is mainly motivated by the large variety of practical situa-
tions where physical processes interact with digital controllers, as for instance
in embedded control systems.

Despite the fact that the first paper on hybrid systems appeared in the six-
ties [1], only in very recent years several modelling frameworks for hybrid systems
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have been proposed, we refer the interested reader to [2, 3] and the references
therein. Several authors focused on the problem of solving optimal control prob-
lems for hybrid systems. For continuous-time hybrid systems, most of the litera-
ture either studied necessary conditions for a trajectory to be optimal, or focused
on the computation of optimal/suboptimal solutions by means of dynamic pro-
gramming or the maximum principle [4, 5, 6].

The hybrid optimal control problem becomes less complex when the dynamics
is expressed in discrete-time, as the main source of complexity becomes the
combinatorial (yet finite) number of possible switching sequences. In particular,
in [7, 8, 9] the authors have solved optimal control problems for discrete-time
hybrid systems by transforming the hybrid model into a set of linear equalities
and inequalities involving both real and (0-1) variables, so that the optimal
control problem can be solved by a mixed-integer programming (MIP) solver.

An MIP solver provides the solution after solving a sequence of relaxed stan-
dard linear (or quadratic) programs (LP, QP). A potential drawback of MIP is
(1) the need for converting the discrete/logic part of the hybrid problem into
mixed-integer inequalities, therefore losing most of the original discrete struc-
ture, and (2) the fact that its efficiency mainly relies upon the tightness of the
continuous LP/QP relaxations.

Such a drawback is not suffered by techniques for solving constraint satis-
faction problems (CSP), i.e., the problem of determining whether a set of con-
straints over discrete variables can be satisfied. Under the class of CSP solvers
we mention constraint logic programming (CLP) [10] and SAT solvers [11], the
latter specialized for the satisfiability of Boolean formulas.

While CSP methods are superior to MIP approaches for determining if a
given problem has a feasible (integer) solution, the main drawback is their in-
efficiency for solving optimization, as they do not have the ability of MIP ap-
proaches to solve continuous relaxations (e.g., linear programming relaxations)
of the problem in order to get upper and lower bounds to the optimum value.

For this reason, it seems extremely interesting to integrate the two ap-
proaches into one single solver. Some efforts have been done in this direc-
tion [12, 13, 14, 15, 16], showing that such mixed methods have a tremendous
performance in solving mathematical programs with continuous (quantitative)
and discrete (logical/symbolic) components, compared to MIP or CSP individu-
ally. Such successful results have stimulated also industrial interest: ILOG Inc.,
which is on of the worldwide leaders in software for combinatorial optimization,
is currently distributing OPL (Optimization Programming Language), a mod-
eling and programming language which allows the formulation and solution of
optimization problems, using both MIP and CSP techniques, combining to some
extent the advantages of both approaches.

At the light of the benefits and drawbacks of the previous work in [7,8,9] for
solving control and stability/safety analysis problems for hybrid systems using
MIP techniques, in this paper we follow a different route that uses a combined
approach of MIP and CSP techniques. In particular, we focus on combinations
of convex programming (e.g., linear, quadratic, etc.) for optimization over real
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Fig. 1. Discrete-time hybrid system

variables, and of SAT-solvers for determining the satisfiability of Boolean for-
mulas.

We build up a new modeling approach directly tailored to the use of a “hy-
brid” MIP+SAT solver for solving optimal control problems, and show its com-
putational advantages over pure MIP methods. A preliminary work in this di-
rection appeared in [17], where generic constraint logic programming (CLP) was
used for handling the discrete part of the problem.

The paper is organized as follows. Discrete-time hybrid models are introduced
in Section 2. In Section 3 the optimal control problem is formulated and in Sec-
tion 4 it is reformulated in a suitable way for the combined MIP-CSP approach.
Section 5 introduces the new solution algorithm and an example showing the
benefits of this technique, compared to pure MIP approaches [7, 9] is shown in
section 6.

2 Discrete-Time Hybrid Systems

Following the ideas of [9], a hybrid system can be modeled as the interconnec-
tion of an automaton (AUT) and a switched affine system (SAS) through an
event generator (EG) and a mode selector (MS) (see Figure 1). The automa-
ton describes the logic dynamics of the hybrid system, the SAS describes the
continuous dynamics, the EG and MS describe the interactions between these
dynamics.

2.1 Automaton

The discrete dynamics of a hybrid system can be modeled as an automaton
(or finite state machine). We will only refer to “synchronous automata”, where
transitions are clocked and synchronous with the sampling time of the continuous
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dynamical equations. The adjective “synchronous” will be omitted for brevity.
The automaton evolves according to the logic state update function

xl(k + 1) = fl(xl(k), ul(k), e(k)), (1a)

where k ∈ Z
+ is the time index, xl ∈ Xl ⊆ {0, 1}nl is the logic state, ul ∈ Ul ⊆

{0, 1}ml is the exogenous logic input, e ∈ E ⊆ {0, 1}ne is the endogenous input
coming from the EG defined below in Section 2.3, and fl : Xl×Ul×E → Xl is a
deterministic Boolean function. An automaton can be represented as a directed
graph (as in Figure 2, for instance). An automaton may also have a logic output

yl(k) = gl(xl(k), ul(k), e(k)), (1b)

where yl ∈ Yl ⊆ {0, 1}pl , and gl : Xl × Ul × E → Yl is also a Boolean function.
In the sequel, with a slight abuse of notation, we will refer to the codomain of
Boolean functions both as {0, 1} and as {FALSE,TRUE}. In the context of Boolean
functions and formulas, the equal sign (=) should be interpreted as an if-and-
only-if condition (←→).

2.2 Switched Affine System

The continuous dynamics can be modeled by a switched affine system (SAS). A
SAS is a collection of affine systems:

xc(k + 1) = Ai(k)xc(k) + Bi(k)uc(k) + fi(k) (2a)
yc(k) = Ci(k)xc(k) + Di(k)uc(k) + gi(k), (2b)

where xc ∈ Xc ⊆ R
nc is the continuous state vector, uc ∈ Uc ⊆ R

mc is the ex-
ogenous continuous input vector, yc ∈ Yc ⊆ R

pc is the continuous output vector,
i(k) ∈ I �

{[
1 0 · · · 0

]T
, · · · , [0 · · · 0 1

]T
}
⊆ {0, 1}sSAS is operating, |I| = s

is the number of elements of I, and {Ai, Bi, fi, Ci, Di, gi}i∈I is a collection of
matrices of opportune dimensions. The mode i(k) is generated by the mode se-
lector, as described below in Section 2.4. A SAS of the form (2) preserves the
value of the state when a switch occurs. However, resets can be modeled in the
present discrete-time setting as detailed in [9].

2.3 Event Generator

An event generator is a mathematical object that generates a logic signal ac-
cording to the satisfaction of a linear affine constraint:

[ej(k) = 1]←→ [aT
j xc(k) + bT

j uc(k) ≤ cj ], (3)

where the subscript j denotes the jth component of the vector, and aj ∈ R
nc ,

bj ∈ R
mc , cj ∈ R define a linear guard (i.e., an hyperplane) in the space of

continuous states and inputs.
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2.4 Mode Selector

The dynamic mode i(k) of the SAS, that we will also call the active mode, is
selected through a mode selector

i(k) = fMS(xl(k), ul(k), i(k − 1)), (4)

where fMS : Xl × Ul × I → I is a Boolean function of the logic state xl(k), of
the logic input ul(k), and of the active mode i(k − 1) at the previous sampling
instant. We say that a mode switch occurs at step k if i(k) �= i(k − 1). Note
that contrarily to continuous time hybrid models, where switches can occur at
any time, in our discrete-time setting a mode switch can only occur at sampling
instants.

3 Optimal Control

A finite-time optimal control problem for the class of hybrid systems introduced
in the previous section can be formulated as follows:

min
{x(k+1),u(k)}T −1

k=0

T−1∑
k=0

�k(x(k + 1)− rx(k + 1), u(k)− ru(k)) (5a)

s.t. dynamics (1), (2), (3), (4) (5b)

hD(x(0), {x(k + 1), u(k), e(k), i(k)}T−1
0 ) ≤ 0 (5c)

hA(x(0), {x(k + 1), u(k), e(k), i(k)}T−1
0 ) ≤ 0 (5d)

where T is the control horizon, �k : R
n×m → R is a nonnegative convex function,

n = nc + nl, m = mc + ml, rx ∈ R
n, ru ∈ R

m are given reference trajectories to
be tracked by the state and input vectors, respectively.

The constraints of the optimal control problem can be classified in three
different categories:

Dynamical constraints (5b) . These constraints represent the discrete-time
hybrid system dynamics. They may also include other constraints such as
saturation constraints on continuous input variables, that are embodied in
the variable domain Uc.

Design constraints (5c) . These are artificial constraints imposed by the de-
signer to fulfill the required specifications. Examples of such constraints may
be state limits

xmin(k) ≤ xc(k) ≤ xmax(k), k = 1, . . . , T,

where xmin(k), xmax(k) are bounds that the designer wants to impose on
continuous states.

Ancillary constraints (5d). These constraints provide an a priori additional
and auxiliary information for determining the optimal solution. They do not
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change the solution itself, rather help the solver by restricting the set of fea-
sible combinations, and therefore the size of the decision tree in a branch a
bound strategy. For example, one may pre-compute all possible mode tran-
sitions of the SAS dynamics using reachability analysis, and impose reacha-
bility constraints of the form [δh(k) = 1] → [δj(k + 1) = 0] (or equivalently
δh(k) + δj(k + 1) ≤ 1) for all k = 0, . . . , T − 2 whenever a transition from
the hth mode to the jth mode is not possible.

4 Problem Reformulation

Problem (5) can be solved via MILP when the costs �k are convex piecewise linear
functions, for instance �k(x, u) = ‖Qxx‖∞ + ‖Quu‖∞, where Qx, Qu are full-
rank matrices and ‖·‖∞ denotes the infinity-norm (‖Qx‖∞ = maxj=1,... ,n |Qjx|,
where Qj is the j-th row of Q) [8], or via MIQP (mixed integer quadratic
programming) when �k(x, u) = x′Qxx + u′Quu, where Qx, Qu are positive
(semi)definite matrices [7].

Following a different route, in this paper we wish to solve problem (5) by
using MIP and SAT techniques in a combined approach, taking advantage of
SAT for dealing with the purely logic part of the problem. In order to do this,
we need to reformulate the problem in a suitable way.
The automaton and mode selector parts of the hybrid system are described as
a set of Boolean constraints so they do not require transformations. The event
generator (2.3) can be equivalently expressed, by adopting the so-called “big-M”
technique, as

(aT
j xc(k) + bT

j uc(k)− cj) ≤Mj(1− ej(k)), (6a)

(aT
j xc(k) + bT

j uc(k)− cj) > mjej(k), (6b)

where j = 1, . . . , ne, Mj , mj are upper and lower bounds, respectively, on
aT

j xc(k) + bT
j uc(k)− cj , and ej(k) ∈ {0, 1}. From a computational viewpoint, it

may be convenient to have a set of inequalities without strict inequalities. In this
case we will follow the common practice [18] of replacing the strict inequality
(6) as

(aT
j xc(k) + bT

j uc(k)− cj) ≥ ε + (mj − ε)ej(k), (6c)

where ε is a small positive scalar, e.g., the machine precision, although the equiv-
alence does not hold for 0 < (aT

j xc(k) + bT
j uc(k)− cj) < ε (i.e., for the numbers

in the interval (0, ε) that cannot be represented in the machine). The continuous
state update equation of the SAS dynamics (2) can be equivalently written as
the combination of linear terms and if-then-else rules:

wi(k) =
{

Aixc(k) + Biuc(k) + fi if (δi = 1)
0 otherwise (7a)

xc(k + 1) =
s∑

i=1

wi(k) (7b)
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where wi(k) ∈ R
nc , i = 1, . . . , s. The output yc of the SAS dynamics admits a

similar transformation. The SAS representation (7) can be translated into a set
of constraints by also using the big-M technique [18]:

−M j
i δi(k) + wi(k) ≤ 0, (8a)

mj
i δi(k)− wi(k) ≤ 0, (8b)

mj
i (1− δi(k)) + wi(k) ≤ Aj

ixc(k) + Bj
i uc(k) + f j

i , (8c)

−M j
i (1− δi(k))− wi(k) ≤ −Aj

ixc(k)−Bj
i uc(k)− f j

i , (8d)

where M j
i , mj

i are upper and lower bounds on Aj
ixc(k) + Bj

i uc(k) + f j
i , δi(k) ∈

{0, 1}, wi(k) ∈ R
nc , xc ∈ R

n
c , u ∈ R

m
c , j denotes the jth component or row,

j = 1, . . . , nc, i = 1, . . . , s, and k is the time index. Note that the vector of
(0-1) variables i(k) = [δ1(k) . . . δs(k)]′ ∈ {0, 1}s is subject to the exclusive or
condition

δ1(k)⊕ δ2(k)⊕ . . .⊕ δs(k) = TRUE. (9)

By using the transformations into mixed integer inequalities described earlier,
problem (5) can be cast as the mixed-integer convex program

min
{x(k + 1), u(k),

w(k), δ(k)}
k = 0, . . . , T − 1

T−1∑
k=0

�k(x(k + 1)− rx(k + 1), u(k)− ru(k)) (10a)

s.t. Axc(k) ≤ b, xc(k + 1) =
s∑

i=1

wi(k) (10b)

M1xc(k)+ M2uc(k)+M3w(k)≤M4e(k)+M5δ(k)+M6 (10c)
g(xl(k + 1), xl(k), ul(k), e(k), δ(k)) = TRUE (10d)

w(k) = [w1(k) . . . ws(k)]′, wi(k) ∈ R
nc , δ(k) ∈ {0, 1}s,

where {xc(k + 1), uc(k), w(k)}T−1
k=0 are the continuous optimization variables,

{xl(k + 1), ul(k), δ(k), e(k)}T−1
k=0 are the binary optimization variables, xc(0),

xl(0) is a given initial state, constraints (10b), (10c) represent the EG and
SAS parts (6a), (6c), (7b), (8), and the purely continuous or mixed constraints
from (5c), (5d), while (10d) represents the automaton (1a), the mode selector (4),
possible purely Boolean constraints from (5c), (5d), as well as the exclusive or
condition (9). Matrices Mi, i = 1 . . . 6, are obtained by the big-M representa-
tions (6) and (8).



A SAT-Based Hybrid Solver for Optimal Control of Hybrid Systems 133

Problem (10) belongs to the following general class of mixed logical/convex
problems:

min
z,ν,µ

f(z) (11a)

s.t. gc(xc(0), z) ≤ 0, hc(xc(0), z) = 0 (Continuous constraints)
(11b)

gm(xc(0), xl(0), z, µ) ≤ 0, hm(xc(0), xl(0), z, µ) = 0 (Mixed constraints)
(11c)

gL(xl(0), ν, µ) = TRUE (Logic constraints)
(11d)

z ∈ R
nz , ν ∈ {0, 1}nν , µ ∈ {0, 1}nµ

where gc : R
nz → R

qgc , gm : R
nz+nµ → R

qgm are convex functions, hc :
R

nz → R
qhc , hm : R

nz+nµ → R
qhm are affine functions, and gL : {0, 1}nν×nµ →

{0, 1}nCP is a Boolean function. In the hybrid optimal control problem at hand, z
collects all the continuous variables (xc(k+1), uc(k), k = 0, . . . , T −1), the aux-
iliary variables needed for expressing the SAS dynamics, possibly slack variables
for upper bounding the cost function in (10a) [8], µ collects the integer variables
that appear in mixed constraints (e(k), δi(k), k = 0, . . . , T−1, i = 1, . . . , s), and
ν collects the integer variables such as xl(k), ul(k) that only appear in logic con-
straints. Note that in general if the objective function in the the form f(z, µ) we
could consider the new objective function ε, ε ∈ R, and an additional constraint
f(z, µ) ≤ ε which is a mixed convex constraint that could be included in (11c).

5 SAT-Based Branch and Bound

5.1 Constraint Satisfaction and Optimization

CSP and optimization are similar enough to make their combination possible,
and yet different enough to make it profitable. Optimization is primarily as-
sociated with mathematics and engineering, while CSP was developed (more
recently) in the computer science and artificial intelligence communities. The
two fields evolved more or less independently until a few years ago. Yet they
have much in common and are applied to solve similar problems. Most impor-
tantly for the purposes of this paper, they have complementary strengths, and
the last few years have seen growing efforts to combine them [13,12,19,14,20].

The recent interaction between CSP and optimization promises to affect both
fields. In the following subsections we illustrate an approach for merging them
into a single problem-solving technology, in particular by combining convex op-
timization and satisfiability of Boolean formulas (SAT).

Convex Optimization. Convex optimization is very popular in engineering,
economics, and other application domains for solving nontrivial decision prob-
lems. Convex optimization includes linear, quadratic, and semidefinite program-
ming, for which several extremely efficient commercial and public domain solvers
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are nowadays available. An excellent reference to convex optimization is the book
by Boyd and Vandenberghe [21].

SAT Problems. An instance of a satisfiability (SAT) problem is a Boolean
formula that has three components:

– A set of n variables: x1, x2, . . . , xn.
– A set of literals. A literal is a variable (Q = x) or a negation of a variable

(Q = ¬x).
– A set of m distinct clauses: C1, C2, . . . , Cm. Each clause consists of only

literals combined by just logical or (∨) connectives.

The goal of the satisfiability problem is to determine whether there exists an
assignment of truth values to variables that makes the following Conjunctive
Normal Form (CNF ) formula satisfiable:

C1 ∧ C2 ∧ . . . ∧ Cm,

where ∧ is a logical and connective. For a survey on SAT problems and related
solvers the reader is referred to [11].

5.2 A SAT-Based “Hybrid” Algorithm

The basic ingredients for an integrated approach are (1) a solver for convex
problems obtained from relaxations over continuous variables of mixed integer
convex programming problems, and (2) a SAT solver for testing the satisfiability
of Boolean formulas. The relaxed model is used to obtain a solution that satisfies
the constraint sets (11b) and (11c) and optimizes the objective function (11a).
The optimal solution of the relaxation may fix some of the (0-1) variables to
either 0 or 1. If all the (0-1) variables in the relaxed problem have been assigned
(0-1) values, the solution of the relaxation is also a feasible solution of the mixed
integer problem. More often, however, some of the (0-1) variables have fractional
parts, so that further “branching” and solution of further relaxations is necessary.
To accelerate the search of feasible solutions one may use the fixed (0-1) variables
to “infer” new information on the other (0-1) variables by solving a SAT problem
obtained by constraint (11d). In particular, when an integer solution of µ is found
from convex programming, a SAT problem then verifies whether this solution
can be completed with an assignment of ν that satisfies (11d).

The basic branch&bound (B&B) strategy for solving mixed integer problems
can be extended to the present “hybrid” setting where both convex optimization
and SAT solvers are used. In a B&B algorithm, the current best integer solution
is updated whenever an integer solution with an even better value of the objective
function is found. In the hybrid algorithm at hand an additional SAT problem
is solved to ensure that the integer solution obtained for the relaxed problem is
feasible for the constraints (11d) and to find an assignment for the other logic
variables ν that appear in (11d). It is only in this case that the current best
integer solution is updated.
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The B&B method requires the solution of a series of convex subproblems
obtained by branching on integer variables. Here, the non-integer variable to
branch on is chosen by selecting the variable with the largest fractional part
(i.e., the one closest to 0.5), and two new convex subproblems are formed with
that variable fixed at 0 and at 1, respectively. When an integer feasible solution
of the relaxed problem is obtained, a satisfiability problem is solved to complete
the solution. The value of the objective function for an integer feasible solution
of the whole problem is an upper bound (UB) of the objective function, which
may be used to rule out branches where the optimum value attained by the
relaxation is larger than the current upper bound.

Let P denote the set of convex and SAT subproblems to be solved. The
proposed SAT-based B&B method can be summarized as follows:

1. Initialization. UB =∞, P = {(p0, SAT 0)}. The convex subproblem p0 is
generated by using (11a),(11b), (11c) along with the relaxation µ ∈ [0, 1]nµ ,
and the SAT subproblem SAT 0 is generated by using (11d).

2. Node selection. If P = ∅ then go to 7.; otherwise select and remove a
(p, SAT ) problem from the set P ; The criterion for selecting a problem is
called node selection rule.

3. Logic inference. Solve problem SAT . If it is infeasible go to step 2.
4. Convex reasoning. Solve the convex problem p, and:

4.1. If the problem is infeasible or the optimal value of the objective function
is greater than UB then go to step 2.

4.2. If the solution is not integer feasible then go to step 6.
5. Bounding. Let µ∗ ∈ {0, 1}nµ be the integer part of the optimal solution

found at step 4.; to extend this partial solution, solve the SAT problem
finding ν such that g(ν, µ∗) =TRUE. If the SAT problem is feasible then
update UB; otherwise add to the LP problems of the set P the “no-good”
cut [12] ∑

i∈T ∗
µi −

∑
j∈F ∗

µj ≤ B∗ − 1,

where T ∗ = {i|µ∗
i = 1}, F ∗ = {j|µ∗

j = 0}, and B∗ = |T ∗|. Go to step 2.
6. Branching. Among all variables that have fractional values, select the one

closest to 0.5. Let µi be the selected non-integer variable, and generate two
subproblems (p ∪ {µi = 0}, SAT&{¬µ}), (p ∪ {µi = 1}, SAT&{µ}) and
add them to set P ; go to step 2.

7. Termination. If UB = ∞, then the problem is infeasible. Otherwise, the
optimal solution is the current value UB.

Remark 1. At each node of the search tree the algorithm executes a three-step
procedure: logic inference, solution of the convex relaxation, and branching. The
first step and the attempted completion of the solution do not occur in MIP ap-
proaches but they are introduced here by the distinction of mixed (0-1) variables
µ and pure (0-1) variables ν. The logic inference and the attempted completion
steps do not change the correctness and the termination of the algorithm but
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h1
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h3

δc2 ∧ ¬δc1

¬δc2

¬δc1 ∧ ¬δc2

δc2 ∧ ¬δc1

δvc2 ∨ δc1

δc2 ∧ ¬δvc2 ∧ ¬δc1 δc1 ∨ δvc1 ∨ δvc2

δc1 ∨ δvc1

¬δc1 ∧ ¬δc2

OFF

READY TO HEAT

HEAT

Fig. 2. Automaton regulating the heater

they improve the performance of the algorithm because of the efficiency of the
SAT solver in finding a feasible integer solution.

6 Numerical Results

In this section we show on an example of hybrid optimal control problem that
the hybrid solution technique described in the previous sections has a better
performance compared to commercial MIP solvers.

6.1 Hybrid Model

Consider a room with two bodies with temperatures T1, T2 and let Tamb be the
room temperature (this example is an extension of the example reported in [22]).
The room is equipped with a heater, close to body 1, delivering thermal power
uhot and an air conditioning system, close to body 2, draining thermal power
ucold. These are turned on/off according to some rules dictated by the closeness
of the two bodies to each device. We want guarantee that the bodies are not
cold or hot.

The discrete-time continuous dynamics of each body is described by the
difference equation

Ti(k + 1)− Ti(k)
Ts

= −αi(Ti(k)− Tamb) + ki(uhot(k)− ucold(k)) + cue(k),

(12)

where i = 1, 2, αi, ki, c are suitable constants, Ts is the sampling time, and ue(k)
is an exogenous input that can be used to deliver or drain thermal power manu-
ally (e.g. by opening a window or by changing the water flow from a centralized
heating system).

The automaton part of the system is described by the two automata rep-
resented in Figures 2 and 3, where δci,δvci,γhi and γvhi, for i = 1, 2, are logic
variables defined as follows
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¬γh1

¬γh1 ∧ ¬γh2
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γvh1 ∧ ¬γvh1 ∧ ¬γh2 (γh2 ∨ γvh1) ∧ ¬γvh2
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¬γh1 ∧ ¬γh2
γvh2

¬γvh2

γvh2

OFF

READY TO COOL

COOL DOWN

REFRIGERATE

Fig. 3. Air conditioning system automaton

[δvci(k) = 1]←→ [Ti(k) ≤ Tvci], (13a)
[δci(k) = 1]←→ [Ti(k) ≤ Tci], (13b)
[γhi(k) = 1]←→ [Ti(k) ≥ Thi], (13c)

[γvhi(k) = 1]←→ [Ti(k) ≥ Tvhi], (13d)

and where Tvci ≤ Tci ≤ Thi ≤ Tvhi are constant thresholds. The automaton for
the heater (Figure 2) sets the heater in the “ready to heat” state if body 2 is
cold, and will go in “heat” state if body 2 is very cold. If body 1 is cold or very
cold the heater is turned on immediately. The automaton of the air conditioning
(A/C) system (Figure 3) sets the air conditioning system in the “ready to cool”
state if body 1 is hot, unless body 2 is cold, in other words, the A/C system is
turned on only when body 1 is very hot. However, the draining thermal power
is half of the full power. The A/C system is set to the maximum power if the
body 2 is very hot but it is immediately switched to half power as soon as body
2 is only hot (due to energy consumptions of the A/C system).

The heater delivers thermal power and the A/C system drains thermal power
according to the following rules:

uhot =
{

uH if h3 = 1
0 otherwise ucold =





uC if ac4 = 1
uC

2 if ac3 = 1
0 otherwise

. (14)

By following the notation of (1), we have xl = [h1 h2 h3 ac1 ac2 ac3 ac4]′ ∈
{0, 1}7, ul = ∅ and e(k) = [δvc1 δvc2 δc1 δc2 γh1 γh2 γvh1 γvh2]′ ∈ {0, 1}8.
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The system has six modes: (uhot, ucold) ∈ {(0, 0), (uH , 0), (0, uC), (0, uC/2),
(uH , uC), (uH , uC/2)}. The mode selector function is defined as follows

i(k) =




¬h3(k) ∧ ¬ac4(k) ∧ ¬ac3(k)
h3(k) ∧ ¬ac4(k) ∧ ¬ac3(k)
¬h3(k) ∧ ac4(k) ∧ ¬ac3(k)
¬h3(k) ∧ ¬ac4(k) ∧ ac3(k)
h3(k) ∧ ac4(k) ∧ ¬ac3(k)
h3(k) ∧ ¬ac4(k) ∧ ac3(k)



∈ {0, 1}6,

which only depends on logic states.
The SAS dynamics (12), i.e., the continuous part of the hybrid system, is

translated into a set of inequalities using (8), which provides the set of constraints

Axc(k) + Buc(k) + Cw(k) ≤ Dδ(k) + E, (15)

where xc = [T1 T2]′, uc = ue, w(k) ∈ R
3 contains the auxiliary continuous

variables needed to represent the conditions uhot = uH , ucold = uC , ucold =
uC/2, and δ(k) = [h3(k) ac3(k) ac4(k)] ∈ {0, 1}3. Constraints (15) are obtained
by employing the HYSDEL compiler [9].

Finally, the event generator is represented by (13a) and (13b). These are
translated by HYSDEL into a set of linear inequalities using (6):

G′
xxc(k) + G′

uuc(k) + D′e(k) ≤ E′, (16)

where e(k) = [δvc1 δvc2 δc1 δc2 γh1 γh2 γvh1 γvh2]′ ∈ {0, 1}8.

6.2 Optimal Control Problem

The goal is to design an optimal control profile for the continuous input ue that
minimizes

∑T
k=0 |Ti(k)−Tamb| subject to the hybrid dynamics and the following

additional constraints:

– Continuous constraints on temperatures to avoid that they assume unac-
ceptable values

−10 ≤ T1(k) ≤ 50 −10 ≤ T2(k) ≤ 50. (17a)

These constraints may be interpreted as dynamical constraints due to phys-
ical limitations of the bodies.

– A continuous constraint on exogenous input to avoid excessive variations:

−10 ≤ ue(k) ≤ 10. (18)

This constraint may be interpreted as a design constraint of the form (5c).

The above dynamics and constraints are also modeled in HYSDEL [9] to
obtain an MLD model of the hybrid system in order to compare the performance
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achieved by the hybrid solver with the one obtained by employing a pure MILP
approach.

The optimal control problem is defined over horizon of T steps as:

min
{x,u,z,δ,εT }

T−1∑
k=0

εT (k) (19a)

s.t. εT (k)

[
1
...
1

]
≥ ±(Ti(k)− Tamb), (19b)

automata Figures 2, 3, (19c)
(15), (16) (19d)
(17), (18) (19e)

where {x, u, z,δ, εT }={x(k), u(k),z(k), δ(k), εT (k)}T−1
k=0 , εT =[εT 1(0), εT 2(0),. . . ,

εT 1(T − 1), εT 2(T − 1)]′ ∈ R
2T .

Each part of the optimal control problem is managed by either the SAT solver
or the LP solver: the cost function (19a), the inequalities (19b), (19d), and the
additional constraints (19e) are managed by the LP solver, the logic part (19c)
is managed by the SAT solver. In our simulations we have used, respectively,
zCHAFF [23] for SAT and CPLEX [24] for LP.

In all our simulations we have adopted depth first search as the node selection
rule, to reduce the amount of memory used during the search.

For the initial condition T1(0) = 5◦ C, T2(0) = 2◦ C and for Tamb = 25◦ C
we have done simulations for different horizons (the obtained optimal solution
is clearly the same both using the SAT-based B&B and the MILP), reported in
Table 1.

We can see that the performance of the SAT-based B&B is always better
than the one obtained via MILP. The main reason is that the SAT B&B algo-
rithm solves a much smaller number of LPs than the MILP solver. The “cuts”
performed by the SAT solver, i.e. the infeasible SAT problems, obtained at step
3 of the algorithm turn out very useful to exclude subtrees containing no inte-
ger feasible solution. Moreover, the time spent for solving an integer feasibility
problem described as SAT problem is much smaller than solving a pure integer
problem, see Table 2. We can also see from Table 1 that the number of feasible
SAT solved equals the number of LP solved plus one. This one more SAT is used
to complete a feasible solution and it turns out very useful to further reduce the
computation time.

The results were simulated on a PC Pentium IV 1.8 GHz running CPLEX
8.1 and zCHAFF 2003.07.22.

7 Conclusions

In this paper we have proposed a new unifying framework for MIP and CSP
techniques based on the integration of convex programming and SAT solvers for
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Table 1. Optimal control solution: com-
parison between pure MILP (CPLEX)
and SAT-based B&B

T Int MILP SATbB&B
Vars (s) LPs (s) LPs SATs “cuts”

5 75 0.04 60 0.04 15 16 0
10 150 0.22 119 0.38 15 16 0
15 225 0.61 152 0.66 17 18 2
20 300 1.452 248 1.011 17 18 3
25 375 2.594 301 1.512 19 20 2
30 450 4.307 363 2.093 20 21 4
35 525 5.729 367 2.844 20 21 5
40 600 12.058 486 3.505 27 28 9
45 675 13.479 534 4.367 31 32 7
50 750 19.108 607 5.368 43 44 8

Table 2. Computation time for solving
a pure integer feasibility problem: com-
parison between the SAT (zCHAFF) and
MILP (CPLEX)

T Int. Constraints SAT MILP
Vars (s) (s)

5 75 460 0 0.03
10 150 920 0.01 0.03
15 225 1380 0.02 0.04
20 300 1840 0.03 0.04
25 375 2300 0.04 0.05
30 450 2760 0.05 0.06
35 525 3220 0.06 0.08
40 600 3680 0.08 0.11
45 675 4140 0.08 0.15
50 750 4600 0.08 0.18

solving optimal control problems for discrete-time hybrid systems. The approach
consists of a logic-based branch and bound algorithm, whose performance in
terms of computation time is superior in comparison to more standard mixed-
integer programming techniques, as we have illustrated on an example.
Ongoing research is devoted to the improvement of the logic-based method by
including relaxations of the automaton and MS parts of the hybrid system in
the convex programming part, to the investigation of alternative relaxations of
the SAS dynamics that are tighter than the big-M method, to the use of SAT
solvers for also performing domain reduction (cutting planes), and to the use
of the SAT-based B&B algorithm for reachability analysis and for efficiently
converting discrete-time hybrid systems to an equivalent piecewise affine form.
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