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Abstract. This paper addresses the problem of identification of piece-
wise affine (PWA) models. This problem involves the estimation from
data of both the parameters of the affine submodels and the partition of
the PWA map. The procedure that we propose for PWA identification
exploits a greedy strategy for partitioning an infeasible system of linear
inequalities into a minimum number of feasible subsystems: this provides
an initial clustering of the datapoints. Then a refinement procedure is
applied repeatedly to the estimated clusters in order to improve both
the data classification and the parameter estimation. The partition of
the PWA map is finally estimated by considering pairwise the clusters
of regression vectors, and by finding a separating hyperplane for each of
such pairs. We show that our procedure does not require to fix a priori
the number of affine submodels, which is instead automatically estimated
from the data.

1 Introduction

Black-box identification of nonlinear systems has been widely addressed in dif-
ferent contexts. A large number of model classes have been considered and
their properties deeply investigated (see the survey papers [1,2] and references
therein). In this paper, we deal with the problem of identifying a piecewise affine
(PWA) model of a discrete-time nonlinear system from input-output data. PWA
systems have become more and more popular in recent years, thanks to their
equivalence with several classes of hybrid systems [3,4]. However, estimation of
hybrid models from data has not received the attention it deserves in the control
community, except for few very recent contributions [5,6,7].

Identification of PWA models involves the simultaneous estimation of both
the parameters of the affine submodels and the partition of the PWA map. The
first issue is closely related to the problem of classifying the data, i.e., the prob-
lem of correctly assigning each datapoint to an affine submodel. In [5] a two-phase
approach for the classification of the datapoints and the estimation of the pa-
rameters has been proposed. The classification problem is reduced to an optimal
clustering problem, in which the number of clusters is fixed. Once the datapoints
have been classified, linear regression is used to compute the final submodels. In
[6] the attention is focused on two subclasses of PWA models, namely hinging
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hyperplanes (HHARX) and Wiener piecewise affine (W-PWARX) autoregres-
sive exogenous models. For these classes of models, the identification problem
is formulated as a suitable mixed-integer linear (or quadratic, depending on the
choice of the cost function) programming problem, which can be solved for the
global optimum. Also in [7] the identification problem for a class of hybrid sys-
tems is formulated as an optimization problem, and an algorithm which provides
an approximation of the optimal solution is developed. It makes it possible to
incorporate particular a priori knowledge, such as the level of abstraction, the
structure, and the desired accuracy of the model.

The identification procedure proposed in this paper does not require that
the number of affine submodels is fixed a priori. Hence, this number must be
estimated from data, together with the parameters of the submodels and the
partition of the map. The key approach here is the selection of a bound on the
prediction error. This induces a set of linear inequality constraints on the pa-
rameters of the PWA model to be estimated. These constraints are generally
infeasible (otherwise a single affine model would fit the data within the given
error level). Hence, a suitable strategy is suggested for picking a number of sub-
models which is compatible with the available data and the selected bound.
In particular, the greedy strategy proposed in [8] for partitioning an infeasible
system of linear inequalities into a minimum number of feasible subsystems, is
exploited in order to provide an initial clustering of the datapoints. To each feasi-
ble subsystem a set of feasible parameter vectors is then associated according to
the bounded-error assumption [9,10]. After the first classification, a projection
algorithm is applied repeatedly to the estimated clusters in order to improve
both the classification of the datapoints and the estimation of the parameters.
In this phase, the datapoints are grouped together according to the fact that
they are fitted by the same affine submodel, so that outliers are automatically
rejected. Notice that the final number of submodels and the corresponding pa-
rameter vectors will depend on the selected bound on the prediction error, so
that this determines both the complexity of the model and the quality of the ap-
proximation. The partition of the PWA map is finally estimated by considering
pairwise the clusters of regression vectors, and finding a separating hyperplane
for each of such pairs. Linear Support Vector Machines [11] are suitable for this
aim. In this paper, we show that, given two clusters of points, the problem of
finding a generalized separating hyperplane (i.e., a hyperplane that minimizes
the number of misclassified points) can be formulated as a maximum feasible
subsystem problem, for which computationally efficient methods exist [12].

2 Problem Statement

Let F : X �→ R
p be a nonlinear map defined over the polyhedron X ⊆ R

n, and
assume that a collection of N samples (yk, xk), k = 1, . . . , N , of F (·) is given,
where

yk = F (xk) + ek , (1)
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and ek ∈ R
p is a perturbation term. The aim is to find, on the basis of the

available samples, a Piecewise Affine (PWA) approximation f(·) of F (·),

f(x) =






θ′
1

[
x
1

]

if x ∈ X1

...
...

θ′
s

[
x
1

]

if x ∈ Xs ,

(2)

where θi ∈ R
(n+1)×p are parameter matrices, and {Xi}s

i=1 is a polyhedral
partition of X (i.e.,

⋃s
i=1 Xi = X , Xi

⋂ Xj = ∅ if i �= j, and each region Xi is

a convex polyhedron, represented in the form1 Xi =
{

x ∈ R
n : Hi

[
x
1

]

≤ 0
}

,

where Hi ∈ R
qi×(n+1)).

In the context of nonlinear function approximation, yk represent values of
F (·) obtained at certain points xk, and ek is either zero (for instance when F (·)
can be computed analytically), or an approximation error (for instance when
F (·) is evaluated numerically by iterative procedures, as in the case of implicit
functions or optimal value functions).

In the context of system identification, k ∈ Z is the time index, xk is the
regression vector (accordingly, X is called the regressor set), yk is the system
output, and ek is noise. For instance, when identifying state-space models of the
form

{
ξk+1 = F1(ξk, uk)

ηk = F2(ξk, uk) ,
(3)

xk contains the components of the state and input vectors at time k, i.e., xk =
[ξ′

k u′
k]′, whereas yk = [ξ′

k+1 η′
k]′, assuming that the state vector is measurable.

A typical reason for estimating a PWA approximation of (3) is for applying
the tools of verification, controller synthesis, and stability analysis developed for
linear hybrid systems, to nonlinear processes.

In this paper, we rather focus on identification of PWARX (Piecewise affine
AutoRegressive eXogenous) models in the form (2), where p = 1, the regression
vector is defined as xk = [yk−1 . . . yk−na u′

k−1 . . . u′
k−nb

]′, and uk ∈ R
m and

yk ∈ R denote the system input and output, respectively. In this case, the
parameter vectors θi ∈ R

n+1, i = 1, . . . , s, contain the coefficients of the ARX
submodels. For simplicity of exposition, throughout the paper it is assumed p = 1,
though the presented approach is easily applicable to the case p > 1 by small
1 We do not assume here that f(·) is continuous. Without this assumption, defini-

tion (2) is not well posed in general, since the function could be multiply defined
over common boundaries of the regions Xi. One could avoid this by replacing some
of the “≤” inequalities with “<” in the definitions of the polyhedra Xi, although
this issue is not of practical interest in the problem at hand.
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amendments to the procedures shown in Sections 3 and 4. For a more compact
notation, hereafter we will consider the extended regression vector ϕk = [x′

k 1]′.
The key approach of this paper consists in selecting a bound δ on the pre-

diction error, i.e., in requiring

|yk − f(xk)| ≤ δ , ∀k = 1, . . . , N, (4)

for some δ > 0. Notice that the prediction error is the sum of the approxima-
tion error F (xk) − f(xk) and the perturbation term ek. Then, the considered
identification problem can be formulated as follows:

Problem 1. Given N datapoints (yk, xk), k = 1, . . . , N , estimate a positive in-
teger s, a partition {Xi}s

i=1 and parameter vectors {θi}s
i=1, such that the cor-

responding PWA model (2) of system (1) is compatible with the available data
according to condition (4).

Condition (4) naturally leads to a set-membership or bounded-error approach
to the identification problem (see, e.g., [9,10]). Notice that the bound δ is not
necessarily given a priori, it is rather a tuning knob of the procedure. A reliable
choice of it can often be made a posteriori by performing a series of trials for
different values of δ, and then selecting a value that provides a good trade-off
between the complexity of the model (in terms of number of submodels) and the
quality of the approximation (in terms of mean square error). To clarify this,
consider the case of nonlinear function approximation, where the smaller δ, the
larger the number s of submodels needed to fit the datapoints (yk, xk) to a PWA
map (2). On the other hand, the larger δ, the worse the approximation, since
large errors are allowed.

The following example will be used throughout the paper to illustrate the
mechanism of the proposed identification procedure.

Example 1. Let the data be generated by the PWARX system

yk =






[−0.4 1 1.5
]
ϕk + ek if

[
4 −1 10

]
ϕk < 0

[
0.5 −1 −0.5

]
ϕk + ek if

[−4 1 −10
5 1 −6

]

ϕk ≤ 0
[−0.3 0.5 −1.7

]
ϕk + ek if

[−5 −1 6
]
ϕk < 0 ,

for which ϕk = [yk−1 uk−1 1]′ and s = 3. The input signal uk and the noise signal
ek are uniformly distributed in [−5, 5] and [−0.1, 0.1], respectively. N = 200
estimation datapoints are used. The partition of the regressor set and the set of
available regression vectors are depicted in Figure 1. The three regions contain
55, 66 and 79 points, respectively.

3 The MIN PFS Problem

In this section we will describe the greedy algorithm proposed in [8] for partition-
ing an infeasible system of linear inequalities into a minimum number of feasible
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−6 −4 −2 0 2 4 6 8
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k−1

u k−
1

Fig. 1. The partition of the regressor set and the available regression vectors

subsystems. We will also show how to use this algorithm in our identification
procedure to obtain an initial classification of the datapoints and a set of feasible
parameter vectors for each submodel.

In the first part of our identification procedure, we do not consider the prob-
lem of estimating the hyperplanes defining the polyhedral partition of the re-
gressor set. We focus only on classifying the datapoints according to the fact
that they are fitted by the same affine submodel. Obviously, in this phase it is
reasonable to look for the minimum number of submodels (namely s) fitting all
(or most of, due to possible outliers) the datapoints. In other words, we look for
the “simplest” PWA model that is consistent with the data and condition (4),
where, for a given δ, “simplicity” is measured in terms of the number of affine
submodels.

By requiring condition (4), the classification problem can be formulated as
follows:

Problem 2. Given δ > 0 and the (possibly infeasible) system of N linear com-
plementary inequalities

{
ϕ′

kθ ≤ yk + δ

ϕ′
kθ ≥ yk − δ

, k = 1, . . . , N, (5)

find a partition of this system into a minimum number s of feasible subsystems,
under the constraint that two paired complementary inequalities must be in-
cluded in the same subsystem (i.e., they must be simultaneously satisfied by the
same parameter vector θ).

The above formulation makes it possible to address simultaneously the two fun-
damental issues of data classification and parameter estimation. Given any solu-
tion of Problem 2, the partition of the complementary inequalities provides the
classification of the datapoints, whereas each feasible subsystem defines the set
of feasible parameter vectors for the corresponding affine submodel.
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Problem 2 is an extension of the combinatorial problem of finding a Par-
tition of an infeasible system of linear equalities into a MINimum number of
Feasible Subsystems, which is known in the literature as MIN PFS. Since MIN
PFS turns out to be NP-hard, and we are only interested in a suboptimal solu-
tion of Problem 2 to initialize our identification procedure, we adopt the greedy
approach proposed in [8], which efficiently provides good approximate solutions.
This approach divides the overall partition problem into a sequence of subprob-
lems. Each subproblem consists in finding a parameter vector θ ∈ R

n+1 that
satisfies as many pairs of complementary inequalities as possible. Starting from
system (5), maximum feasible subsystems are iteratively extracted (and the cor-
responding inequalities removed), until the remaining subsystem is feasible. Due
to the suboptimality and randomness of the greedy approach [8], this procedure
yields a (not necessarily minimal) partition into feasible subsystems.

The problem of finding one θ ∈ R
n+1 that satisfies as many pairs of com-

plementary inequalities as possible extends the combinatorial problem of finding
a MAXimum Feasible Subsystem of an infeasible system of linear inequalities,
which is known in the literature as MAX FS. Based on the consideration that also
MAX FS is NP-hard, the approach proposed in [8] tackles the above extension
of MAX FS using a randomized and thermal variant of the classical Agmon-
Motzkin-Schoenberg relaxation method for solving systems of linear inequalities
[13,14]. This provides good solutions in a reasonably short computation time.

3.1 The Randomized Relaxation Method for the MAX FS Problem

We now briefly describe the randomized relaxation method proposed in [8] for
solving the extension of MAX FS to the setting with pairs of complementary
inequalities2.

First, the algorithm requires the definition of a maximum number of cycles
C > 0, an initial temperature parameter T0 > 0, and an initial estimate θ(1) ∈
R

n+1 (e.g., randomly selected, or computed by least squares). During each cycle
all the datapoints are selected in the order defined by a prescribed rule (e.g.,
cyclicly, or uniformly at random without replacement), so that each cycle consists
of N iterations. If k is the index of the selected datapoint, and θ(j) is the current
estimate (where j = 1, . . . , CN is the iteration counter), the corresponding
violation is computed as follows:

vk
j =






ϕ′
kθ(j) − yk − δ if ϕ′

kθ(j) > yk + δ

yk − ϕ′
kθ(j) − δ if ϕ′

kθ(j) < yk − δ

0 otherwise .

The basic idea is to favor updates of the current estimate θ(j) which aim at
correcting unsatisfied inequalities with a relatively small violation. Indeed, the
2 The algorithm is illustrated in its first application to the overall system (5), but

it can be easily specialized when, in subsequent applications, only a subsystem of
system (5) is considered.
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correction of an unsatisfied inequality with large violation is likely to corrupt
other inequalities that θ(j) satisfies. A decreasing temperature parameter T ,
which the violations are compared with, is therefore introduced in order to give
decreasing attention to unsatisfied inequalities with large violations. The algo-
rithm can be formalized as follows.

Given: C, T0, θ(1);
Set c = 0, j = 1, θ̄ = θ(1);
while c < C do
Initialize the set of indices I = {1, . . . , N} and set T = (1 − c/C)T0;
repeat

Pick the index k from I according to the prescribed rule;
Compute the violation vk

j and set λj = (T/T0) exp(−vk
j /T );

if ϕ′
kθ(j) > yk + δ then θ(j+1) = θ(j) − λjϕk;

else if ϕ′
kθ(j) < yk − δ then θ(j+1) = θ(j) + λjϕk;

else θ(j+1) = θ(j);
if θ(j+1) �= θ(j) and θ(j+1) satisfies a larger number of complementary
inequalities than θ̄ then θ̄ = θ(j+1);
Set I = I − {k} and j = j + 1;

until I = ∅
Set c = c + 1;
end.

All the complementary inequalities satisfied by θ̄ form a feasible subsystem of
system (5), which is the solution of the extended MAX FS returned by the al-
gorithm. Notice that this solution is not guaranteed to be optimal, even though
θ̄ is the estimate that, during the process, has satisfied the largest number of
complementary inequalities.

For the choice of C and T0, as well as for practical questions concerning the
implementation of the algorithm, we refer to [8].

3.2 Comments about the Greedy Approach to MIN PFS

Let us denote by ŝ the number of feasible subsystems of system (5) provided by
successive applications of the algorithm described in Section 3.1. The estimate
of the number of affine submodels needed to fit the data and the classification of
the datapoints thus provided suffer two drawbacks. First, it is not guaranteed to
yield minimum partitions, i.e., the number of submodels ŝ could be larger than
the minimum number s needed, e.g., because two subsets of complementary
inequalities that could be satisfied by one and the same parameter vector, are
extracted at two different iterations. Second, since some datapoints might be
consistent with more than one submodel, the cardinality and the composition of
the clusters could depend on the order in which the close-to-maximum feasible
subsystems are extracted.

In order to cope with these drawbacks, a procedure for the refinement of
the estimates will be proposed in the next section. As we will show, such a
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Fig. 2. Initial classification of the regression vectors. Each mark corresponds to a dif-
ferent cluster, for a total of six clusters

procedure improves both the classification of the datapoints and the quality of
the fit by properly reassigning the datapoints and selecting pointwise estimates
of the parameter vectors that characterize each submodel.

Notice that one could decide to stop the algorithm when the cardinalities
of the extracted clusters become too small. This might be useful in order to
penalize submodels that account for just a few datapoints (that, most likely, are
outliers).

Example 1 (cont’d). We ran the greedy algorithm (with C = 100, T0 = 100 and
cyclic selection of the datapoints) over the set of datapoints of Example 1. Since
the noise was uniformly distributed in [−0.1, 0.1], the bound δ was chosen equal
to 0.1 accordingly. We found a complete partition into ŝ = 6 clusters, containing
52, 61, 35, 17, 20 and 15 datapoints, respectively. The six clusters of regression
vectors are depicted in Figure 2. The number of submodels is overestimated,
and from the comparison of Figures 1 and 2 it is evident that regression vec-
tors belonging to the same region were extracted at different iterations of the
algorithm.

4 Refinement of the Estimates

The initialization of the identification procedure described in Section 3 provides
the clusters D(0)

i which consist of all the datapoints (yk, xk) corresponding to
the i-th extracted feasible subsystem of system (5), i = 1, . . . , ŝ. Moreover,
each feasible subsystem defines the set of feasible parameter vectors for the
corresponding affine submodel.

As discussed in Section 3.2, a refinement procedure is required in order to
improve both the classification of the datapoints and the quality of the fit. The
basic procedure that we propose consists of two main steps to be iterated. In
the first step, all the datapoints are classified according to the current estimated
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parameter vectors. In the second step, new pointwise estimates of the param-
eter vectors are selected on the basis of the previously computed clusters of
datapoints. This is performed by using the projection estimate defined as

Φp(D) = arg min
θ

max
(yk,xk)∈D

∣
∣yk − ϕ′

kθ
∣
∣ , (6)

where D is a cluster of datapoints (yk, xk). Notice that the computation of the
projection estimate can be formulated as a suitable linear programming (LP)
problem. The refinement procedure can be formalized as follows.

0. Initialization
Set t = 1 and select a termination threshold γ ≥ 0.
For i = 1, . . . , ŝ, set θ̂

(1)
i = Φp(D(0)

i ).
1. Reassignment of the datapoints

For each datapoint (yk, xk), k = 1, . . . , N :
• If

∣
∣yk − ϕ′

kθ̂
(t)
i

∣
∣ > δ for all i = 1, . . . , ŝ, then mark (yk, xk) as infeasible.

• If
∣
∣yk − ϕ′

kθ̂
(t)
i

∣
∣ ≤ δ for more than one i = 1, . . . , ŝ, then mark (yk, xk)

as undecidable.
• If

∣
∣yk − ϕ′

kθ̂
(t)
i

∣
∣ ≤ δ for only one i = 1, . . . , ŝ, then assign (yk, xk) to D(t)

i

and mark it as feasible.
2. Re-estimation of the parameter vectors

For i = 1, . . . , ŝ, compute θ̂
(t+1)
i = Φp(D(t)

i ).
3. Termination

If
∥
∥θ̂

(t+1)
i − θ̂

(t)
i

∥
∥/

∥
∥θ̂

(t)
i

∥
∥ ≤ γ for all i = 1, . . . , ŝ, then exit. Otherwise, set

t = t + 1 and go to step 1.

In order to avoid that the procedure does not terminate, only a maximum num-
ber tmax of refinements is allowed. Convergence properties of the procedure are
currently under investigation.

The basic idea of the procedure is that, while the new parameter vectors
θ̂
(t+1)
i are computed on the basis of the clusters D(t)

i , some infeasible, as well
as undecidable, datapoints may become feasible, i.e., may be assigned to some
cluster D(t+1)

i , thus improving the quality of the classification. Notice that the
use of the projection estimate in step 2 guarantees that no feasible datapoint at
refinement t becomes infeasible at refinement t + 1, since

max
(yk,xk)∈D(t)

i

∣
∣yk − ϕ′

kθ̂
(t+1)
i

∣
∣ ≤ max

(yk,xk)∈D(t)
i

∣
∣yk − ϕ′

kθ̂
(t)
i

∣
∣ ≤ δ , i = 1, . . . , ŝ .

In step 1 the distinction among infeasible, undecidable, and feasible data-
points is motivated by the following considerations. If the estimated parameter
vectors provide a good fit of the data, it is likely that a datapoint (yk, xk) con-
siderably violating the inequalities

∣
∣yk − ϕ′

kθ̂
(t)
i

∣
∣ ≤ δ, i = 1, . . . , ŝ, is an outlier.

Hence, it is reasonable to expect that neglecting the infeasible datapoints in the
parameter re-estimation helps to improve the quality of the fit. The undecidable
datapoints are instead consistent with more than one submodel. This indecision
(that is inherent with the data) could be solved only by exploiting the partition
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of the PWA map. In this phase, neglecting the undecidable datapoints helps to
reduce the number of misclassifications. As it will be clarified in the next section,
this will make possible a better estimation of the PWA partition.

The basic procedure for the refinement of the estimates does not change the
estimated number of submodels, so that further steps are required to cope with
the case when the greedy algorithm provides an overestimation of the number
of submodels needed to fit the data. Recall that this could occur because of the
suboptimality of the greedy strategy, and the randomness of the method used
to tackle the extended MAX FS problem.

In order to decrease the number of submodels, we can use information about
the estimated parameter vectors and the cardinalities of the clusters. In fact,
if two subsets of complementary inequalities can be satisfied by one and the
same parameter vector, it is likely that the corresponding estimated parameter
vectors are very similar (and we possibly have a large number of undecidable
datapoints), so that they can be merged into one subset. On the other hand,
if during the refinement of the estimates the cardinality of a cluster becomes
too small with respect to N , the corresponding submodel can be discarded,
since it accounts only for few datapoints (most likely outliers). Additional steps
to the basic procedure are thus the following (α and β are fixed nonnegative
thresholds):

– Similarity of the parameter vectors
Compute αi∗,j∗ = min

1≤i<j≤ŝ

∥
∥θ̂

(t)
i − θ̂

(t)
j

∥
∥/ min

{∥
∥θ̂

(t)
i

∥
∥,

∥
∥θ̂

(t)
j

∥
∥
}
. If αi∗,j∗ ≤ α,

merge the submodels i∗ and j∗, update the number of submodels ŝ, and
renumber the submodels from 1 to ŝ.

– Cardinality of the clusters
Compute βi∗ = min

i=1,... ,ŝ
dim(D(t)

i )/N . If βi∗ ≤ β, discard the i∗-th submodel,

update the number of submodels ŝ, and renumber the remaining submodels
(and, accordingly, the corresponding clusters) from 1 to ŝ. Then, reassign
only the undecidable datapoints as in step 1.

The similarity of the parameter vectors is to be tested before the reassignment
of the datapoints. The fusion of two submodels i∗ and j∗ can be performed in
different ways. For instance, the fused parameter vector can be computed as
the mean

(
θ̂
(t)
i∗ + θ̂

(t)
j∗

)
/2, or on the basis of the union of the clusters D(t−1)

i∗

and D(t−1)
j∗ , using the projection estimate (6). This latter computation generally

provides better performance. The cardinality of the clusters is instead to be
tested after the reassignment of the datapoints.

The thresholds α and β should be suitably chosen in order to decrease the
number of submodels still preserving a good fit of the data. Indeed, it is clear
that, if such thresholds are chosen too large, the number of submodels might
decrease under s. In this case, the number of infeasible datapoints increases,
since some significant dynamics is no more in the model. One could use this
information to adjust α and β, and then repeat the refinement. In general, when
the procedure terminates, the number of infeasible datapoints is always an index
of the quality of the fit.
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Fig. 3. Classification of the regression vectors (triangles, circles, diamonds) after the
refinement

Example 1 (cont’d). We performed the refinement procedure with α = 15%,
β = 1% and γ = 0.001%. The termination condition was reached after six
refinements. The number ŝ of estimated submodels decreased from 6 to 3. The
corresponding three clusters of regression vectors are depicted in Figure 3, and
contain 53, 65 and 79 points, respectively. Two datapoints are left infeasible,
and only one is undecidable. The finally estimated parameter vectors are

θ̂1 =




−0.3921
0.9978
1.5426



 , θ̂2 =




0.4980

−0.9994
−0.4971



 , θ̂3 =




−0.3000
0.5005

−1.7011



 ,

providing very good estimates of the true submodels. In Figure 3 the highlighted
(misclassified) circle shows that the clusters marked with triangles and circles
are not linearly separable. It is worth noticing in Figure 4 how the number
of undecidable datapoints considerably decreases as the number of refinements
increases, i.e., as the number of estimated submodels is reduced.

5 Estimation of the Partition of the Regressor Set

So far we have classified the datapoints and estimated the affine submodels. The
final step of the identification procedure consists in estimating the partition of the
regressor set. This step can be performed by considering pairwise the clusters
Fi =

{
xk|(yk, xk) ∈ Di

}
(where Di, i = 1, . . . , ŝ, is the final classification of

the feasible datapoints provided by the refinement procedure), and finding a
separating hyperplane for each of such pairs.

Given two linearly separable clusters Fi and Fj , with i �= j, a separating
hyperplane x′a + b = 0, with a ∈ R

n and b ∈ R, is such that, for some ε > 0,
{

x′
ka + b ≤ −ε ∀xk ∈ Fi

x′
ka + b ≥ ε ∀xk ∈ Fj .

(7)
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Fig. 4. Number of undecidable datapoints vs the number of refinements

If the two clusters Fi and Fj are not linearly separable, a hyperplane that
minimizes the number of misclassified points (i.e., points xk not satisfying (7))
is called generalized separating hyperplane. Notice that, even though the true
function F (·) were a PWA map defined over a polyhedral partition of the X -
domain, two clusters Fi and Fj might anyway not be linearly separable due to
classification errors. This kind of errors is actually expected to be reduced by
the distinction into infeasible, undecidable, and feasible datapoints. Indeed, the
infeasible datapoints account mainly for the outliers, whereas the undecidable
datapoints are those that most likely could induce misclassifications, since they
are consistent with more than one submodel.

Linear Support Vector Machines (SVMs) are a suitable tool for this stage of
the identification procedure, since they accomplish simultaneously the distinct
tasks of finding the optimal separating hyperplane of two clusters of points (i.e.,
the separating hyperplane that maximizes the distance from the closest point of
each cluster), while minimizing the number of misclassified points [11].

In this paper, we show that the problem of finding a generalized separat-
ing hyperplane (thus providing also linearly separable clusters of points) can be
formulated as a MAX FS problem. Indeed, given two clusters Fi and Fj , ac-
cording to (7) a separating hyperplane turns out to be a solution of the system

of linear inequalities Φ

[
a
b

]

≤ ξ, where the rows of Φ are the vectors ϕ′
k for all

xk ∈ Fi and −ϕ′
k for all xk ∈ Fj , and ξ is a column vector of −ε’s. If such

system is infeasible, solving a MAX FS problem clearly corresponds to finding a
hyperplane that minimizes the number of misclassified points. The misclassified
points, if any, are then removed from Fi and/or Fj . Since MAX FS is NP-hard,
the randomized relaxation method for MAX FS proposed in [12] (of which the
algorithm presented in Section 3.1 is a straightforward estension) can be used
to provide good solutions in a short amount of computation time.

Optionally, once two linearly separable clusters of points are available, one
could look for the optimal separating hyperplane of the two clusters. As detailed
in [11], this can be performed by solving a quadratic programming (QP) problem:
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Fig. 5. Final classification of the regression vectors (triangles, circles, diamonds), and
true (dashed lines) and estimated (solid lines) partition of the regressor set

min
(a,b)

1
2

‖a‖2

subject to

{
x′

ka + b ≤ −1 ∀xk ∈ Fi

x′
ka + b ≥ 1 ∀xk ∈ Fj .

(8)

This separating hyperplane is termed optimal as it separates the two clusters
with the maximal margin3. Each estimated region X̂i, i = 1, . . . , ŝ, is then
defined by all the optimal hyperplanes separating Fi from Fj , with j �= i.

The method for the estimation of the PWA partition based on separating
hyperplanes has two major drawbacks. First, if the two clusters Fi and Fj are
not contiguous, the corresponding separating hyperplane possibly does not con-
tribute to delimiting the estimated regions X̂i and X̂j , i.e., we have redundancy
in the representation of the partition. Second, when n > 1, this method does not
guarantee that the estimated regions form a complete partition of the regressor
set.

The former drawback can be overcome by eliminating redundant hyperplanes
through standard linear programming techniques. The latter drawback is more
important, since it causes the model to be not completely defined over the whole
regressor set. However, both in simulation and optimization the presence of
“holes” in the PWA partition can be often accepted. In simulation, when a
regression vector falls into a “hole”, it can be reasonably assigned to the nearest
region, whereas for optimization purposes, trajectories passing through a “hole”
are simply automatically discarded as infeasible, with the only consequent draw-
back of inducing suboptimal solutions. We are currently investigating how to
avoid the presence of such “holes” by partitioning them into additional convex
sets.

3 It can be easily shown that, in (8), at least one “≤” and one “≥” constraint are
active at the optimum, so that the distance of the closest point of each cluster from
the optimal hyperplane is 1/ ‖a‖.
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The above mentioned techniques generally provide satisfactory results when
the number of misclassified points is small with respect to the cardinalities of
the two clusters Fi and Fj . If this is not the case, at least one of Fi and Fj

needs to be partitioned. Notice that, when a cluster Fi must be partitioned,
this may correspond to nonconnected regions where the parameter vector is the
same (recall that the classification procedure groups together the datapoints only
according to the fact that they are fitted by the same affine submodel), or to a
nonconvex region that needs to be split into convex polyhedra. Techniques for
partitioning a cluster Fi by exploiting the information about the misclassified
points while separating Fi from Fj , with j �= i, are currently under investigation.

Example 1 (cont’d). The final classification of the regression vectors and the
estimated partition of the regressor set are depicted in Figure 5. The line sepa-
rating triangles and diamonds has not been drawn, since it is redundant, whereas
the two solid lines are defined by the coefficient vectors

ĥ1 =
[
4.0036 −0.9854 9.5903

]′
, ĥ2 =

[
5.0002 0.9990 −6.2009

]′
,

that are very similar to the true ones. Notice that in Figure 3 the clusters marked
with triangles and circles are not linearly separable (consider the highlighted
circle), so that the pre-separation exploiting MAX FS is actually useful to de-
tect the misclassification and to provide linearly separable clusters. The overall
computation of the estimated PWA model took about 7 seconds on an AMD
Athlon 1GHz running Matlab 6.1 non-optimized code.

Example 2. The PWA identification algorithm was successfully applied to fit
the data generated by a discontinuous PWARX system for which the regression
vector was xk = [yk−1 yk−2 uk−1 uk−2]′ (so that n = 4), and s = 4. The input
signal uk was chosen to be uniformly distributed in [−5, 5], and the noise signal ek

was assumed to be normally distributed with zero mean and variance σ2 = 0.2.
δ was chosen equal to 3σ = 1.34. N = 1000 and Nv = 500 datapoints were used
for estimation and validation, respectively. The algorithm provided ŝ = s = 4
submodels. The true and the estimated parameter vectors are shown in Table 1.
The validation of the model was performed by computing the prediction error,
i.e., the difference between the measured and the predicted output, whose plot is
depicted in Figure 6. Notice that it is mostly contained between δ and −δ. Spikes

Table 1. True and estimated parameter vectors for Example 2

θ1 θ̂1 θ2 θ̂2 θ3 θ̂3 θ4 θ̂4

-0.05 -0.09 1.21 1.22 1.49 1.48 -1.20 -1.25
0.76 0.77 -0.49 -0.50 -0.50 -0.52 -0.72 -0.65
1.00 1.04 -0.30 -0.28 0.20 0.23 0.60 0.65
0.50 0.45 0.90 0.89 -0.45 -0.36 -0.70 -0.80
0 0.08 0 -0.13 0 0.20 0 0.37
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Fig. 6. Plot of the prediction error for Example 2

are due to regression vectors assigned to the wrong submodel because of errors in
the estimation of the PWA partition, and to discontinuity of the PWA map. The
overall computation of the estimated PWA model took about one minute and
half on an AMD Athlon 1GHz running Matlab 6.1 non-optimized code. Notice
that this example is quite challenging, due to the quite low signal/noise ratio
and the high number of parameters to be estimated with respect to the available
data.

6 Conclusions

In this paper we considered the problem of identifying a PWA model of a (pos-
sibly non-smooth) discrete-time nonlinear system from input-output data. We
proposed a two-stage procedure that first divides the data into clusters and esti-
mates the parameters of the affine submodels, and then estimates the coefficients
of the hyperplanes defining the partition of the PWA map.

In order to provide an initial clustering of the datapoints, we adopted the
greedy strategy proposed in [8]. The major capability of this strategy is that it
also provides an estimate of the number of submodels needed to fit the data.
Other approaches could be used to initialize the identification procedure (e.g.,
the k-plane clustering algorithm proposed in [15]). Then, we proposed an algo-
rithm for improving both the classification of the datapoints and the estimation
of the parameters. The algorithm alternates between datapoint reassignment and
parameter update. Moreover, the number of submodels is allowed to vary from
iteration to iteration. This is made possible by introducing the thresholds α and
β, which the similarities of the parameter vectors and the cardinalities of the
clusters of datapoints are compared with, respectively. Current research is aimed
at deriving rules for the automatic selection and update of α and β, in order
to completely automatize the algorithm and to further improve its performance,
and at investigating convergence properties of the algorithm.
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The partition of the PWA map is finally estimated by considering pairwise
the clusters of regression vectors, and finding a separating hyperplane for each
of such pairs. We are also currently investigating how to avoid the presence of
”holes” in the resulting partition, and how to split the clusters corresponding to
nonconvex regions, or to nonconnected regions where the affine submodel is the
same.
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1. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjal-
marsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification:
a unified overview. Automatica 31 (1995) 1691–1724

2. Juditsky, A., Hjalmarsson, H., Benveniste, A., Delyon, B., Ljung, L., Sjöberg, J.,
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