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Abstract. This paper describes the application of hybrid modeling and
receding horizon optimal control techniques for supervising an automo-
tive robotized gearbox, with the goal of reducing consumptions and emis-
sions, a problem that is currently under investigation at Fiat Research
Center (CRF). We show that the dynamic behavior of the vehicle can
be easily approximated and captured by the hybrid model, and through
simulations on standard speed patterns that a good closed loop perfor-
mance can be achieved. The synthesized control law can be implemented
on automotive hardware as a piecewise affine function of the measured
and estimated quantities.

1 Introduction

The automotive market analysts forecast for the automatic transmission system
a relevant growth in the near future [1]. Conventional automatic transmissions
provide a good level of comfort, but evidence significant drawbacks concerning
other aspects: fuel economy, cost, weight, and size. Also, many customers (par-
ticularly in European countries) associate with the manual gearbox a significant
value in terms of driving feeling and expectation.
Recent technological developments try to satisfy the increasing demand of the
automotive market for automatic transmissions, matching at the same time the
conflicting requirements of comfort, performance, fuel economy and cost reduc-
tion. An extremely promising system is the automated gearbox, named in this
paper “robotized gearbox” (Fig. 1); it is based on servo actuators applied to a
standard mechanical gearbox. The new transmission system with both automatic
and semiautomatic operating modes [2,3,4,5] is directly derived from a standard
manual gearbox by adding electronically controlled small servo-hydraulic actua-
tors, capable to move better than the human driver the gearshift mechanisms [6].
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Fig. 1. Robotized gearbox

The introduction of the robotized gearbox gives the opportunity to transfer
the driver’s request to a higher level and to use automatic criteria for optimiz-
ing the lower level. An automatic system supervisor can in fact control the gear
shifting and the torque regulators with the duty of choosing the gear and the en-
gine torque, satisfying the requests of the driver, the constraints, and optimizing
the powertrain behavior, reducing consumptions and emissions. Emissions are
of particular interest, as in recent years the European Community has stressed
the noxious effects of emissions, and is trying to drastically reduce them in the
near future.

In this paper we show how the whole system (vehicle and robotized gearbox)
can be modeled as a hybrid one in order to synthesize a supervisor that brings
the engine torque close to the Optimal Operating Line (OOL), while minimizing
consumptions and emissions. The system is indeed intrinsically hybrid, as once
the gear (a discrete input) is selected, a different continuous dynamics results.

Current CRF control strategies are mainly based on static maps, as in most
automatic gear shifting schemes nowadays in production. Such control schemes
are motivated by the fact that the system is nonlinear. The presence of non-
linearities and constraints on one hand, and the simplicity needed for real-time
implementation on the other, have discouraged the design of optimal control
strategies for this kind of problem. Recently, a new framework for modeling hy-
brid systems was proposed in [7], and an algorithm for synthesizing piecewise
affine optimal controllers for such systems in [8]. In this paper we describe how
the hybrid framework [7] and the optimization-based control strategy [8] can be
successfully applied for solving this problem in a systematic way. More in detail,
for solving the gearbox control problem we need to design a supervisor (depicted
as MPC Controller in Fig. 2) that in real-time decides the best gear that min-
imizes consumptions and emissions and, at the same time, guarantees a good
tracking of the desired traction power. As these are conflicting objectives, besides
the gear the supervisor is allowed a second degree of freedom, namely to devi-
ate the desired requested engine torque TE(ωengine) by a quantity ∆Torque. The
idea is to solve the posed control problem by formulating a model-based receding
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Fig. 2. Hybrid supervisor for a robotized gearbox with two degrees of freedom

horizon optimal control problem which minimizes consumptions, emissions, and
the deviation ∆torque from the desired torque. We show, through simulations
on a simplified model and for a set of parameters provided by CRF, that good
performances can be achieved, particularly comparing our results with the ones
obtained by CRF and with the ones provided by the European Union on stan-
dard speed patterns. Furthermore, the resulting optimal controller consists of a
piecewise affine function of the measurements, that can be easily implemented.

2 Vehicle Model

With the objective in mind of controller design, the vehicle model considered
here is highly simplified, although it still allows the synthesis of a reasonably
performing control action, as will be shown in Section 5. The model consists of
the equations [9, 10]
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Table 1. Physical quantities and parameters of the vehicle model

Name Description
ωsec Secondary shaft speed rpm
VX Vehicle velocity m/s

Taxle Torque about the axle shaft Nm
TE Engine torque Nm
τc Gear ratio (when gear engaged)
τp Bridge ratio

Tbrake Brake torque Nm
JP (τc) Equivalent primary inertia kgm2

m Vehicle mass m
Re Rolling wheel radius m
Trot Rolling resistance torque Nm

Fslope Gravity contribution due to roadway slope N
β1 Axle coefficient kgm2/s

Ksa Axle coefficient kgm2/s2

β2 Combustion dynamic coefficient kgm2/s
ρ Air density kg/m3

S Frontal area of the vehicle m2

Cx Aerodynamic drag coefficient
JERKref Reference jerk during gear shifting m/s3

where the involved physical quantities and parameters are described in Table 1.
The first equation represents the engine dynamics, the second one describes the
longitudinal motion dynamics of the vehicle, the third equation is referred to
the axle dynamics. The friction force is approximated as a linear function of the
velocity, based on a best fit on the range [15, 120] km/h, which is the range where
the gear is most often shifted. The rolling resistance torque is approximated as
constant, as this force, compared to the other friction forces, has no meaningful
variations. Terms like JP (τc) show that those parameters depend on the gear
ratio τc, as there are indeed five different linear dynamics, one for each gear.
Fig. 3 shows the position of the open loop poles for each one of them. Moreover,
we assume that the requested engine torque is immediately applied (therefore
neglecting the delay due to the torque control loop) and that it corresponds to
the actual torque delivered by the engine.

3 Hybrid Model

Hybrid systems provide a unified framework for describing processes evolving ac-
cording to continuous dynamics, discrete dynamics, and logic rules [11,12,13,14].
The interest in hybrid systems is mainly motivated by the large variety of prac-
tical situations, for instance embedded control systems, where physical processes
interact with digital controllers. Several modeling formalisms were developed by
various researchers to describe hybrid systems, among them the class of Mixed
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Fig. 3. Position of the poles for each gear

Logical Dynamical (MLD) systems introduced in [7]. Examples of real-world
applications that can be naturally modelled within the MLD framework are
listed in [15], where the authors describe the language HYSDEL (Hybrid System
Description Language) for obtaining an MLD model from a high level textual
description of the hybrid dynamics. HYSDEL is used here to “hybridize” the
vehicle model (1), as reported in Appendix A. Such a model is obtained through
the following steps:

– Discretize the model with sampling time Ts = 0.3 s. This value corresponds
to the average synchronization time of the robotized gearbox.

– Introduce a Boolean input geari ∈ {0, 1} for each gear i = 1, . . . , 4, with
δi = 1 if and only if the corresponding gear #i is engaged. The condition
“gear #5 engaged” is then represented by gear1 = gear2 = gear3 = gear4 =
0.

– Introduce an auxiliary continuous variable ωsec(j) for each gear #j, j =
1, . . . , 5, and set ωsec =

∑5
j=1 ωsec(j), where only one variable ωsec(j) is

nonzero at a time.
– Reduce the order of the linear dynamics (1b) 1 and get a model with only

one state, in order to simplify the control algorithm.
– Add the following constraints in order to guarantee the correct operation of

the engine:
1 Order reduction is achieved by first obtaining a balanced realization using the

MATLABr function balreal, and then by reducing the order using the MATLABr

function modred.
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• On the primary shaft speed, ωengine must be in the range [700, 6000] rpm.
This requires a constraint on each secondary shaft speed of the form
ω(j)min < ω(j)sec < ω(j)max, where j = 1, . . . , 5 is the gear.

• On the two manipulated variables: the variation ∆Torque from the nomi-
nal engine torque TE(ωengine) is constrained in the range ∆Torque,min ≤
∆Torque ≤ ∆Torque,max, while concerning the gear, we have the con-
straint that only one gear can be selected at a time.

• On the braking torque that can be directly applied, the range is [0, 1150]
Nm.

• On the engine torque, in order to avoid applying an excessive torque,
TE(ωengine) + ∆Torque < Tavailable(ωengine).

The above dynamic equations and constraints are modeled in HYSDEL, as re-
ported in Appendix A, and translated by the HYSDEL compiler into the MLD
form

x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t) (2a)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (2b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5, (2c)

where x ∈ R4, (x1 = xred, x2 = Tref , x3 = Tbrake, x4 = road slope, u ∈
R × {0, 1}4, (u1 = ∆torque ∈ R, uj+1 = gearj ∈ {0, 1}, j = 1, . . . , 4), y ∈
R2, (y1 = ωengine, y2 = TE), δ ∈ {0, 1}2 and z ∈ R12. The state xred is the
state of the reduced-order model, the other states are actually just measured
variables, and all the inputs are manipulated variables.

In order to validate the model, in Fig. 4 we compare the open-loop evolu-
tion of the discrete-time MLD model (2) and of the nonlinear continuous time
model (1), under the same inputs (% of gas pedal and gear). It is apparent
that the MLD model captures in discrete time the hybrid behavior of the sys-
tem quite satisfactorily. It may be noted that there is a small offset due to the
approximation of the friction term: this is not a problem, as the offset will be
compensated by the feedback control action from actual measured values. The
validity of the hybrid MLD model is also confirmed by the fact that the “ground
power”2 requested by both models is practically the same (Fig. 5).

4 Optimization-Based Control Design

We describe how receding horizon optimal control for hybrid systems [7,8] can be
usefully employed here to design a control law for the robotized gearbox control
problem. The main idea is to setup a finite-horizon optimal control problem for
the hybrid MLD system by optimizing a performance index under constraints,
2 The ground power is the total power that the vehicle receives from the external

environment (the ground). Given the engine torque request TE , it is computed using
the following relations: TG = TEηtτpτc and PGRe = TGVX , where TG, ηt, and PG

are respectively ground torque, engine efficiency, and ground power.
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with the goal of minimizing consumptions and emissions and, at the same time,
of guaranteeing a good tracking of the desired traction power.

The performance index we attempt at minimizing will contain a term that pe-
nalizes the input command ∆torque (=deviation of the requested engine torque
from the nominal one) and two functions f1(C) and f2(E) that express the
value of consumptions and emissions, respectively. These functions, as shown
in Fig. 6, are highly nonlinear. In order to use linear programming solvers, we
need to approximate f1(C) and f2(E) as piecewise affine maps. With the goal
of minimizing consumptions and emissions, the supervisor should bring the out-
puts of the MLD system (engine speed and engine torque3) as close as possible
to the zone where the consumptions/emissions are lowest. As can be seen from
Fig. 6(a), the zone of minimum consumption is located near the zone where the
engine torque is maximum4. This means that minimizing consumptions does not
necessary imply a lower efficiency. On the contrary, if the right gear is chosen,
it is possible to maintain the same speed without loosing efficiency. We approx-
imate function f1(C) (f2(E)) as a piecewise affine function on the difference
between the system outputs and the coordinates of the point ycons of minimum

3 In the maps the ordinate is expressed in BMRP: it represents the ratio between the
engine torque and the swept volume; the second term depends on the volume of the
engine, once the engine is engaged, it is a constant.

4 The engine torque is maximum on the range [1500,2500] rpm; it is the same range
where BMRP is maximum because of the relation TE = BMRP · swept volume
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Fig. 6. Consumptions and emissions maps for the specific examined engine. The darkest
zones represent the zones where consumptions (emissions) are minimum

consumptions (yemiss of minimum emissions). As an example, Fig. 7 shows the
resulting piecewise affine approximation for f1(C).

The resulting finite-time hybrid optimal control problem is the following:

min
u

T −1
0 ,δ

T −1
0 ,z

T −1
0

J(uT −1
0 , x0) ,

T −1∑
k=0

ρ · ‖(∆torque(t + k|t))‖∞ +

ρc ·
∣∣∣∣∣∣∣∣[qc1 qc2

qc3 qc4

] ([
y1(t + k|t)
y2(t + k|t)

]
− ycons

)∣∣∣∣∣∣∣∣
∞

+ ρe ·
∣∣∣∣∣∣∣∣[qe1 qe2

qe3 qe4

] ([
y1(t + k|t)
y2(t + k|t)

]
− yemiss

)∣∣∣∣∣∣∣∣
∞
(3)

subject to


x0 = x(t)

xk+1 = Axk + B1uk + B2γk + B3zk

yk = Cxk + D1uk + D2γk + D3zk

E2γk + E3zk ≤ E1uk + E4xk + E5,

where x(t) is the state of the MLD system at time t, and ‖ · ‖∞ is the
standard ∞-norm. Matrices Q1 =

[ qc1 qc2
qc3 qc4

]
and Q2 =

[ qe1 qe2
qe3 qe4

]
are the weighting

matrices needed for the approximated piecewise affine consumption and emission
functions. By varying the weights ρc, ρe we are able to emphasize the reduction
of consumptions or emissions.
In (3) we assume that possible physical and/or logical constraints on the variables
of the hybrid system are already included in the mixed-integer linear constraints
of the MLD model, as they can be conveniently modeled through the language
HYSDEL. Receding horizon control (RHC) amounts to repeatedly computing
the optimal solution to (3) at each time t, and applying only the first optimal
control move u∗

0 as the input u(t) to the system. Problem (3) can be translated
into a mixed integer linear problem (MILP), i.e., into the minimization of a
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linear cost function subject to linear constraints, where some of the variables are
constrained to be binary, see [8] for details.

5 Simulations

The receding horizon optimal controller based on the hybrid MLD model (2)
is simulated in closed loop with a more accurate nonlinear model provided by
CRF. The reported simulations are performed using standard speed patterns for
emission test cycles, namely the ECE and EUDC patterns5.

– The ECE cycle is an urban driving cycle, also known as UDC. It was devised
to represent city driving conditions, e.g., in Paris or Rome. It is characterized
by low vehicle speed, low engine load, and low exhaust gas temperature.

– The EUDC (Extra Urban Driving Cycle) segment has been added after the
fourth ECE cycle to account for more aggressive, high speed driving modes.
The maximum speed of the EUDC cycle is 120 km/h.

We investigate the behavior of the nonlinear model provided by CRF in closed-
loop with three different types of controllers: (1) receding horizon hybrid optimal
controller, (2) controller based on static maps (provided by CRF), and (3) gear
shifting sequence provided by the EU standard.

The first controller, as described in Section 4, has two degrees of freedom: the
gear and the deviation from the nominal requested engine torque. By varying
the weights ρc and ρe it is possible to emphasize the reduction of consumptions
or emissions, or in general to trade off between them. The second one is based
on a static map provided by CRF that is mainly designed for minimizing con-
sumptions (other maps may be available for minimizing emissions). The third
simulation is obtained by feeding the gear shifting sequence provided by the EU
standard to the nonlinear vehicle model. Such a sequence represents an ideal
5 The cycles definition can be found in the EEC Directive 90/C81/01.
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sequence, specific for the emission test cycles at hand, and has the objective of
reducing both consumptions and emissions.

We underline that only our controller is allowed to modify the nominal engine
torque. Unfortunately, since varying the engine torque implies to vary also the
speed and since in ECE and EUDC cycles the speed tracking is an important
aspect, the deviation ∆Torque from the desired nominal engine torque is highly
penalized. As we did not model the vehicle “start up” phase, in all simulation
tests rather than decreasing the speed up to 0 km/h it is decreased up to 8 km/h.

Besides the weights, the other two main parameters of the supervisor to be
tuned are:

Horizon length T . By increasing the prediction horizon T the controller per-
formance improves, but, at the same time, the number of constraints in (3)
(and the complexity of the piecewise affine controller) increases. Therefore,
tuning T amounts to find the smallest value which leads to a satisfactory
closed-loop behavior. In our case, since the requested engine torque is im-
mediately applied (see Section 2), the engine torque dynamics is neglected,
so that the difference in performance using different horizons T (we tested
T = 1, . . . , 4) is minimal. Hence, for the benefit of computational simplicity,
we chose T = 1.

Control signal ∆Torque. While this should be as much as possible close to zero
for the reasons mentioned above, it improves the performance of the MPC
controller, as it gives the possibility of further reducing consumptions and
emissions, at the price of a loss of perfect power tracking, as shown in Fig. 8.

In Fig. 8 and in Fig. 9 we show the simulation results on the ECE and EUDC
cycles. In simulating the MPC controller, rather than looking for a trade off
between consumptions and emissions, we emphasize the performance where the
goal is only to reduce consumptions or only to reduce emissions, as requested by
CRF for a comparison between the MPC controller and the one based on static
maps.

The MPC controller has a good performance in both cases: clearly, in Fig. 9
the results on the left side are obtained using a high ratio ρc/ρe (controller
MPCC), on the contrary, with a low ρc/ρe we obtained the results shown on
the right side (controller MPCE), by consequently reducing only emissions. By
properly choosing the weights we would have a behavior very similar to the one
that used the ideal gear shifting sequence.

As expected, when we emphasize the performance where the goal is only to
reduce consumptions (MPCC) or emissions (MPCE), the other variable (emis-
sions or consumptions, respectively) sensibly increases, as shown in Fig.10. We
remark again that in the present MPC setup one directly selects the desired
tradeoff between consumptions and emissions by simply choosing the ratio ρc/ρe.

The results discussed above were simulated in about 220 s (ECE cycle) and
440 s (EUDC cycle) on a PC Pentium III 1 GHz running MATLAB/Simulink
and the MILP solver of Cplex [16], using a prediction horizon T = 1 (see [17]
for more simulation results). Therefore, the controller is not directly suitable for
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implementation on automotive hardware, both for excessive CPU requirements
and software complexity. This problem is dealt with in next section.

6 Implementation as a Piecewise Affine Control Law

Once the tuning of the MPC controller is done in simulation, the explicit piece-
wise affine form of the control law can be computed off-line by using a multi-
parametric mixed integer linear programming (mp-MILP) solver, according to
the approach of [8], [18]. Rather than solving the MILP (3) on line for the given
current states and reference signals, the idea is to use the mp-MILP solver to
compute off line the solution of the MILP (3) for all the states and reference
signals within an (overestimate of the) expected range of values.

As shown in [8], the control law has the piecewise affine form

u(t) = FiΘ(t) + gi if HiΘ(t) ≤ ki, i = 1, ..., nr, (4)

where for our model u = [∆torque, gear6]′ and the set of parameters Θ =
[speed,%gas pedal]′7. Therefore, the set of states+references is partitioned into
nr polyhedral cells, and an affine control law is define in each one of them.
6 It is a real variable; it easy to translate it in the form presented in Section 3.
7 These parameters can be translated into the state vector by using suitable transfor-

mation maps.
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strategies (ECE and EUDC cycles)

We remark that for any given Θ(t) the on-line solution of RHC via MILP
and the explicit off-line solution (4) provide the same result. Therefore, a good
design strategy consist of tuning the MPC controller using simulation and on-line
optimitazion, and then to convert the controller to its piecewise affine explicit
form. The explicit controller will behave in exactly the same way at a much lower
computational cost. The control law can in fact be implemented on-line in the
following simple way:

i. determine the i-th region that contains the current vector Θ(t);
ii. compute the u(t) = FiΘ(t) + gi according to the corresponding i-th control

law.

More efficient ways of evaluating piecewise affine control law, based on the or-
ganization of the controller gains an a balanced search tree, are reported in [19].
At this stage the complexity of the explicit piecewise affine control low (4) has
not been yet analyzed. This will be the subject of future research.
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using different weights (ECE and EUDC cycles)
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A Appendix

Below we report the HYSDEL model of the vehicle, from which we obtain the
MLD model. Note that Tref , Tbrake, slope are treated here as measured constant
states, as their value is updated at every step.
/* Model 8: model for the control release 8.5
27.02.02(M.S.G)-01.03.02(N.S.G.) M.p.T */

SYSTEM MODEL8 {
INTERFACE
{
STATE
{

REAL wsec, Cref, brake, slope;
/* wsec = The only state in the reduced-order model: it has not a physical meaning

Cref = Engine reference torque at time t
brake = Braking torque
slope = Slope*/

}
INPUT
{

REAL DC;
/* DC= Engine torque variation*/
BOOL gear1,gear2,gear3,gear4;
/*gear(i)= i-th gear; gear 5 is obtained when each input is zero*/

}
OUTPUT
{

REAL wmot, torque;
/* wmot = Primary shaft speed in rpm*

torque= Real torque applied*/
}
PARAMETER
{

REAL T1 = 3.909;
REAL T2 = 2.238;
REAL T3 = 1.444; /*Gear ratio (for each gear engaged)*/
REAL T4 = 1.029;
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REAL T5 = 0.767;
REAL Tp = 3.15; /*Bridge ratio*/
REAL wmin=700; /*Minimum primary shaft speed*/
REAL wmax=6000; /*Maximum primary shaft speed*/

REAL C1=0.8874;
REAL C2=1.0026;
REAL C3=1.0442; /*coefficients for the outputs re-establish from the state (of the

reduced-order model) wsec*/
REAL C4=1.0601;
REAL C5=1.0676;
.
. /*other parameters are omitted for lack of space*/
.
REAL pi= 3.14159;
REAL e = 1e-6; /*precision*/

}
}
IMPLEMENTATION
{

AUX
{

REAL wsec1, wsec2, wsec3, wsec4, wsec5, Cm1, Cm2, Cm3, Cm4, Cm5, Cwmax1, Cwmax3;
BOOL w1, w2; /*auxiliary variables*/

}
AD
{

w1 = wmax1-(60/2/pi)*(C1*wsec1*T1+C2*wsec2*T2+C3*wsec3*T3+C4*wsec4*T4+C5*wsec5*T5)<=0
[wmax1-wmin,wmax1-wmax,e];

w2 = wmax2-(60/2/pi)*(C1*wsec1*T1+C2*wsec2*T2+C3*wsec3*T3+C4*wsec4*T4+C5*wsec5*T5)<=0
[wmax2-wmin,wmax2-wmax,e];

/*w3 = wmax3-wsec1*T1+wsec2*T2+wsec3*T3+wsec4*T4+wsec5*T5<=0 [wmax3-wmin,wmax3-wmax,e];*/
}
DA
{

wsec1 = {IF (gear1) THEN a111*wsec+b111*rend*(T1*Cref+DC)+b112*slope+b113*brake+b114*Crot+b115
[(wmax*pi*2)/(60*T5),0,e]};

wsec2 = {IF (gear2) THEN a211*wsec+b211*rend*(T2*Cref+DC)+b212*slope+b213*brake+b214*Crot+b215
[(wmax*pi*2)/(60*T5),0,e]};

wsec3 = {IF (gear3) THEN a311*wsec+b311*rend*(T3*Cref+DC)+b312*slope+b313*brake+b314*Crot+b315
[(wmax*pi*2)/(60*T5),0,e]};

wsec4 = {IF (gear4) THEN a411*wsec+b411*rend*(T4*Cref+DC)+b412*slope+b413*brake+b414*Crot+b415
[(wmax*pi*2)/(60*T5),0,e]};

wsec5 = {IF ˜(gear1|gear2|gear3|gear4) THEN
a511*wsec+b511*rend*(T5*Cref+DC)+b512*slope+b513*brake+b514*Crot+b515 [(wmax*pi*2)/(60*T5),0,e]};

Cm1 = {IF (gear1) THEN Cref+DC/T1 [Cmax,-70,e]};
Cm2 = {IF (gear2) THEN Cref+DC/T2 [Cmax,-70,e]};
Cm3 = {IF (gear3) THEN Cref+DC/T3 [Cmax,-70,e]};
Cm4 = {IF (gear4) THEN Cref+DC/T4 [Cmax,-70,e]};
Cm5 = {IF ˜(gear1|gear2|gear3|gear4) THEN Cref+DC/T5 [Cmax,-70,e]};

Cwmax1 = {IF (˜w1) THEN /* Maximum Engine torque in the range [700, w1] rpm*/
Tcmax1*((C1*wsec1*T1+C2*wsec2*T2+C3*wsec3*T3+C4*wsec4*T4+C5*wsec5*T5)-(wmax1)*(2*pi/60))+Cmax

[9000,-5,e]};

Cwmax3 = {IF w2 THEN /* Maximum Engine torque in the range [w2, 6000] rpm*/
Tcmax3*((C1*wsec1*T1+C2*wsec2*T2+C3*wsec3*T3+C4*wsec4*T4+C5*wsec5*T5)-(wmax2)*(2*pi/60))+Cmax

[500,-50,e]};
}

CONTINUOUS
{

wsec=wsec1+wsec2+wsec3+wsec4+wsec5; /*in rad/s*/
Cref=Cref; /*Nm*/
brake=brake; /*Nm*/
slope=slope; /*N*/

}

OUTPUT
{

wmot=(C1*wsec1*T1+C2*wsec2*T2+C3*wsec3*T3+C4*wsec4*T4+C5*wsec5*T5)*60/2/pi;
/*Primary shaft speed in rpm*/
torque=4*pi*(Cm1+Cm2+Cm3+Cm4+Cm5)/(100*1.91);
/*Engine Torque/swept volume in BMRP*/

}
MUST
{

-brake<=0; /* Minimum brake torque*/
brake<=maxbrake; /* Maximum brake torque*/
/*˜((˜w1)&(˜(gear1|gear2|gear3|gear4)));*/
w2->w1;
/*w3->w2;
w3->w1*/

-((REAL gear1)+(REAL gear2)+(REAL gear3)+(REAL gear4)+1)<=-0.9999;
(REAL gear1)+(REAL gear2)+(REAL gear3)+(REAL gear4)<=1.0001;

/* Check the Primary shaft speed*/
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-(C1*wsec1*60*T1+C2*wsec2*60*T2+C3*wsec3*60*T3+C4*wsec4*60*T4+C5*wsec5*60*T5)/(2*pi)<=-wmin;
C1*wsec1<=((wmax-1000)*pi*2)/(60*T1);
C2*wsec2<=(wmax*pi*2)/(60*T2);
C3*wsec3<=(wmax*pi*2)/(60*T3);
C4*wsec4<=(wmax*pi*2)/(60*T4);
C5*wsec5<=(wmax*pi*2)/(60*T5);

/*Maximum Engine Torque*/
Cm1<=Cwmax1+Cmax*((REAL w1)+(1-(REAL w2))-1)+Cwmax3;
Cm2<=Cwmax1+Cmax*((REAL w1)+(1-(REAL w2))-1)+Cwmax3;
Cm3<=Cwmax1+Cmax*((REAL w1)+(1-(REAL w2))-1)+Cwmax3;
Cm4<=Cwmax1+Cmax*((REAL w1)+(1-(REAL w2))-1)+Cwmax3;
Cm5<=Cwmax1+Cmax*((REAL w1)+(1-(REAL w2))-1)+Cwmax3;

/*Constraints for Delta Torque*/
DC<=DCmax;

-DC<=-DCmin;
}

}
}
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