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Abstract. This paper proposes a novel approach to the verification of
hybrid systems based on linear and mixed-integer linear programming.
Models are described using the Mixed Logical Dynamical (MLD) for-
malism introduced in [5]. The proposed technique is demonstrated on a
verification case study for an automotive suspension system.

1 Introduction

Hybrid models describe processes evolving according to dynamics and logic rules.
The adjective “hybrid” stems from the fact that both continuous and discrete
quantities are needed to describe the behavior of the process at hand. Hybrid sys-
tems have recently grown in interest not only for being theoretically challenging,
but also for their impact on applications. Although many physical phenomena
are hybrid in nature, the main interest is directed to real-time systems, where
physical processes are controlled by embedded controllers. For this reason, it is
important to have available tools to guarantee that this combination behaves as
desired. Verification algorithms for hybrid systems are aimed at providing such
a certification.

Most of the literature about verification of hybrid systems originates from
the artificial intelligence realm, and solvers rely on symbolic computation. In
this paper, we propose an approach stemming from system science and propose
a solver based on mathematical programming. As an example application, we
report a case study on an automotive suspension system.

2 Mixed Logic Dynamic (MLD) Systems

The mixed logic dynamic (MLD) form has been introduced in [5]. It is a model-
ing framework that allows to describe various classes of systems, like finite state
machines interacting with dynamic systems, piecewise linear systems, systems
with mixed discrete/continuous inputs and states, systems with qualitative out-
puts, and so on. Physical constraints, constraint prioritization, and heuristics
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can also be included in the description of the system. For details, we defer to [5].
Here we only give the general MLD form

x(t+ 1) = Ax(t) +B1w(t) +B2δ(t) +B3z(t) (1a)
y(t) = Cx(t) +D1w(t) +D2δ(t) +D3z(t) (1b)

E2δ(t) + E3z(t) ≤ E1w(t) + E4x(t) + E5 (1c)

where x =
[

xc
x�

]
, is the state of the system, whose components are distinguished

between continuous xc ∈ R
nc and logical x� ∈ {0, 1}n� ; y =

[ yc
y�

]
, yc ∈ R

pc

y� ∈ {0, 1}p� , is the output vector collecting quantities of interest, w =
[

wc
w�

]
is a vector of disturbances entering the system, collecting both continuous dis-
turbances wc ∈ R

mc , and binary disturbances w� ∈ {0, 1}m� (e.g. faults [4]);
δ ∈ {0, 1}r� and z ∈ R

rc represent auxiliary logical and continuous variables
respectively. The auxiliary variables are introduced whenever logic propositions
are translated into linear inequalities. The key idea of the approach is in fact to
transform logic statements into mixed-integer linear inequalities. For instance:
“X1 ∧ X2 FALSE” becomes “δ1 + δ2 ≤ 1”, or “if X1 TRUE then Pressure
P1 ≤ P0” becomes “P1 − P0 ≤ M(1 − δ1)”, where M is a large number. All
these constraints are summarized in the inequality (1c). Note that the descrip-
tion (1) is only apparently linear because of the integrality constraints. Also, the
form (1) involves linear discrete-time dynamics. One might formulate a contin-
uous time version by replacing x(t + 1) by ẋ(t) in (1a), or a nonlinear version
by changing the linear equations and inequalities in (1) to more general nonlin-
ear functions. We restrict the dynamics to be linear and discrete-time in order
to obtain computationally tractable schemes. Nevertheless, we believe that this
framework permits the description of a very broad class of systems.

3 Automatic Verification of MLD Systems

Consider a linear discrete-time hybrid system of the form (1). Given a set of ini-
tial states X (0) and a set of disturbances W, consider the following Verification
Problems:

VP1 Verify that ∀w ∈ W and ∀x(0) ∈ X (0) the state x(t) ∈ Xs, where Xs

is an assigned set of safe states
VP2 Find the maximum range for y(t)

max
t≥0,w(t)∈W,x(0)∈X (0)

{Ccxc(t) + C�x�(t) +D1w(t) +D2δ(t) +D3z(t)}



Lecture Notes in Computer Science 3

3.1 A Simple but Numerically Impractical Solution

In principle, problem VP1 can be addressed by solving ∀T ≥ 0 the following
Mixed-Integer Feasibility Test (MIFT)




x(0) ∈ X (0)
x(T ) �∈ Xs

w(t) ∈ W
x(t+ 1) = Ax(t) +B1w(t) +B2δ(t) +B3z(t)
E2δ(t) + E3z(t) ≤ E1w(t) + E4x(t) + E5

0 ≤ t ≤ T

(2)

and VP2 through the Mixed-Integer Program (MIP)

max
x(0),{w(t),δ(t),z(t)}T

t=0

Cx(T ) +D1w(T ) +D2δ(T ) +D3z(T )

subj. to




x(0) ∈ X (0)
w(t) ∈ W, 0 ≤ t ≤ T

x(t+ 1) = Ax(t) +B1w(t) +B2δ(t) +B3z(t)
E2δ(t) + E3z(t) ≤ E1w(t) + E4x(t) + E5

(3)

Even in the case of polyhedral sets W, Xs, X (0), solving the MIFT (2) and
the Mixed Integer Linear Program (MILP)–(3) for large T becomes prohibitive.
In fact, each problem (2) is NP-complete because of the presence of integer
variables [5], which means that in the worst case the required computation time
grows exponentially with T [12].

3.2 A General Procedure for Verification of MLD Systems

The numerical complexities discussed above are due to the presence of free in-
teger variables in the optimization problems. Note, however, that the binary
variables δ are related to conditions on the continuous states xc. Therefore, a
trajectory of the hybrid system (1) can be partitioned in subtrajectories with
δ(t) ≡ const, and analogously with x�(t) ≡ const. With this idea in mind, we
consider a hypothetic partition of the continuous state space R

nc in subregions
Ci where system (1) evolves with δ(t) ≡ δi, x�(t) ≡ x�i, namely

Ci = {xc ∈ Xc : ∃z ∈ R
rc , w ∈ R

m, such that
E3z ≤ E1w + E4

[
xc
x�i

]
+ E5 − E2δi}

The number of these subregions is at most 2r�+n� , corresponding to all 0,1 com-
binations of each component of vector

[
δ
x�

]
. However, in general the number

of nonempty sets Ci is much smaller, as most combinations will not fulfill the
constraints stemming from translations of logical propositions (for instance, the
logic proposition “[δ1 = 1] ∧ [δ2 = 1] FALSE” becomes δ1 + δ2 ≤ 1, which rules
out the combination (δ1, δ2) = (1, 1)). Without loss of generality, we assume that
the logical components x� of the state are of the form

x�(t) = eJδ(t)
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Fig. 1. Algorithm for verification.

where eJ = [0, . . . , 0, 1, 0, . . . 0] is the J-th row of the r� × r� identity matrix. In
fact, the state transition of logical states derives in general from a logic predicate
involving literals associated with components of δ(t) and x�(t), and the latter
can be expressed again as additional auxiliary variables δ�(t), by simply adding
the constraints δ�(t) ≤ x�(t), −δ�(t) ≥ −x�(t) in (1c).

The main idea underlying the algorithm is sketched in Fig. 1 and can be
summarized as follows. Assume that X (0) ⊆ Ci for some i ∈ {0, . . . , 2r�−1}.
Then, consider the set Xi(t) of all possible evolutions from X (0) driven by w(t) ∈
W and such that δ(t) ≡ δi,

Xi(t) = {x : ∃xc(0) ∈ X (0), {w(k)}t
k=0 such that x(k) ∈ Ci, ∀k ≤ t}.

Note that Xi(t) = Reach(t,X (0))⋂Ci, where Reach(t,X (0)) denotes the reach
set from X (0). When at a certain time t̄ there exists some state xc(t̄) ∈ Reach(t,
X (0)) such that xc(t̄) �∈ Ci, say xc(t̄) ∈ Cj (i.e. δ(t̄) = δj �= δi satisfies the con-
straints in (1) for some w(t̄) ∈ W, z(t̄) ∈ R

rc), then Xj(0) � Reach(t,X (0))⋂ Cj

is used to start the exploration of a new region with δ(t) ≡ δj . A certain evolution
Xi(t) is considered explored or fathomed at time Ti when Xi(Ti) ⊆ Xi(Ti − 1),
i.e. the set Xi(Ti) has shrunk or is invariant, or is empty (i.e. all trajectories
escape from X (Ti − 1)). It may happen that during the exploration inside Cj at
time t some states x ∈ X ∗ � Reach(t,Xj(0))

⋂ Ci enter again a region Ci where
an exploration has already been performed1. In this case, if X ∗ �⊆ ⋃Ti

t=0 Xi(t),
∀t ≤ Ti, a new exploration is performed from X 1

i (0) = X ∗; otherwise no ac-
tion is taken. The procedure stops only when all evolutions X h

i (·) have been
explored. Problem VP2 is solved by maximizing Ccxc(t)+D1w(t)+D3z(t) over
X h

i (t) × W × R
rc . When the aim is to solve VP1, the procedure stops when

X h
i (t)× {eJδi}

⋂Xu �= ∅, where Xu is the complementary set of Xs, i.e. the set
of “unsafe” states. This algorithm is formulated in Table 1. Note that there is no
1 If the system where in continuous time, then X ∗ would be a point or, at most, a
polyhedron of dimension nc − 1.
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need to investigate a priori all possible regions Ci, corresponding to all possible
combinations of δ. The algorithm will explore only those combinations which are
reachable from the assigned initial state X (0).

Algorithm 1.

0. Push problem P 0
0 = {i = 0, h = 0, δi = 0, T h

i = 0, X h
i (0) = X (0) ⊆ C0} on

STACK. Ymax = [−∞, . . . ,−∞]′.
1. While STACK nonempty,

1.1. Pop problem P h
i from STACK.

1.2. t ← 0.

1.3. If X h
i (0) ⊆

⋃T k
j

τ=1 X k
j (τ), for some fathomed problem P k

j , go to 1.

1.4. Ymax ← max{Ymax,maxxc∈Xh
i (t),w∈W,z∈Rrc Ccxc+C
x
i+D1w+D2δi+D3z}.

1.5. If X h
i (t)× {eJδi}⋂Xu 
= ∅, system is unsafe. Stop.

1.6. t ← t + 1.
1.7. For all Cj 
= Ci such that Reach(t,X h

i (0))
⋂ Cj 
= ∅:

1.7.1. n ← max{k : P k
j is on STACK}+ 1.

1.7.2. P n
j ← {j, n, δj, T n

j = 0, Xn
j (0) = Reach(t,X h

i (0))
⋂ Cj}.

1.7.3. Push P n
j on STACK.

1.8. Compute X h
i (t).

1.9. If X h
i (t) ⊆ X h

i (t − 1) or X h
i (t) = ∅, fathom P h

i and go to 1.

1.10. Go to 1.4.

2. Stop.

Table 1. Basic algorithm for verification of hybrid systems.

As the problem of verification of hybrid systems is undecidable [1, 11], there
is no guarantee that Algorithm 1 will terminate. However from a practical point
of view decidability would not be enough, as there is no difference between a non-
terminating procedure and a procedure which runs out of time or memory [2].
Nevertheless, when the proposed algorithm terminates, it provides an answer to
VP1and VP2respectively.

4 Verification of MLD Systems Based on Mathematical
Programming

Below we describe how Algorithm 1 can be implemented using Linear Program-
ming (LP) and Mixed Integer Linear Programming (MILP). We assume that the
set of disturbances W and the set of initial states X (0), as well as the safe set
Xs � {x : K1x ≤ K2}, are polyhedra, and that relations between continuous
and logic variables have the form [δ = 1] ↔ [xc ≤ 0]. The latter assumption,
which is rather general and satisfied in many applications, allows one to search
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for new subregions by simply minimizing and maximizing the components of the
continuous part of the state 2.

Because of the linear form of MLD system (1), the evolution x(t) can be
expressed as

x(t) = Atx0 +
t−1∑
i=0

Ai [B1w(t− 1− i) +B2δ(t− 1− i) +B3z(t− 1− i)] (4)

subject to (1c). Therefore, optimization of linear functions f(x(t), w(t), δ(t), z(t))
results in an MILP if the variables δ(t) are free, or LP if δ(t) are fixed (for instance
by setting δ(t) = δi to enforce x(t) ∈ Ci). The same holds for feasibility problems
of the form x(t) ∈ X , where X is a polyhedron. These considerations allow one
to rewrite Algorithm 1 as follows.

Algorithm 2.

0. Push problem P 0
0 = {i = 0, h = 0, δi = 0, T h

i = 0, X h
i (0) = X (0) ⊆ C0} on

STACK. Ymax = [−∞, . . . ,−∞]′.
1. While STACK nonempty,

1.1. Pop problem P h
i from STACK.

1.2. t ← 0,

Mj(0) ← max
x∈Xh

i (0)

[ x(t)
−x(t)

]

1.3. For all fathomed problems P k
i :

1.3.1. For τ = 0, . . . , T k
i

1.3.1.1. For v ∈ {v1, . . . , vn}=vertices of X h
i (0) solve the feasibility

problem




xc(τ) = v
(4)+(1c), t = 0, . . . , τ
w(t) ∈ W
δ(t) = δi

x
(0) = x
i

xc(0) ∈ X k
i (0)

1.3.1.2. If feasible ∀v, fathom P h
i and go to 1.

1.4. Solve

Ȳ ←




max{w(k),z(k)}t
k=0,xc(0) Ccxc(t) + D1w(t) + D3z(t) + [D2δi + C
x
i]

subj. to




(4)+(1c), k = 0, . . . , t
w(k) ∈ W, k = 0, . . . , t

xc(0) ∈ X h
i (0)

x
(0) = x
i

δ(k) = δi, k = 0, . . . , t

and set Ymax ← max{Ymax, Ȳ }
2 The algorithm can be extended for [δ = 1] ↔ [Cxc ≤ 0] by minimizing/maximizing

C [j]x, where C [j] denotes the j-th row of C. Equivalently, the algorithm described
below can be used by defining new state components xaug = Cxc.
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1.5. Solve the feasibility problem defined by the constraints in 1.4. and

K
[j]
1 x(t) ≥ K

[j]
2 , j = 1, . . . , number of rows of K1. If any is feasible,

system is unsafe. Stop.

1.6. t ← t + 1
1.7. For j = 1, . . . , nc:

1.7.1. Solve

Mj(t) ←




max{w(k),z(k)}t
k=0,xc(0),δ(t)}

[ x(t)
−x(t)

]

subj. to




(4)+(1c), k = 0, . . . , t
w(k) ∈ W, k = 0, . . . , t
δ(k) = δi, k = 0, . . . , t − 1
δ(t) ∈ {0, 1}r�

xc(0) ∈ X h
i (0)

x
(0) = x
i

1.7.2. For each optimization in 1.7.1., if δ(t) = δj 
= δi,

1.7.2.1. n ← max{k : P k
j is on STACK}+ 1.

1.7.2.2. If Xn
j (0) 
⊆ X k

j (0), ∀Pj(k) on STACK, push P n
j = {j, n, δj, T n

j =
0, Xn

j (0) ⊆ Cj} on STACK

1.7.2.3. Recompute 1.7.1. with the additional constraint δ(t) = δi

1.8. If Mj(t) ≤ Mj(t−1) or the problems in 1.7.1. or 1.7.2.3. are infeasible,

fathom P h
i and go to 1.1.

1.9. Goto 1.4.

2. Stop.

At step (1.7.2.2.), one must define the new set Xn
j (0). According to Algorithm 1,

one should define Xn
j (0) = Reach(t,X h

i (0))
⋂ Cj , where the reach set at time t

Reach(t,X h
i (0)) is implicitly defined by Eqs. (4)+(1c). This definition of Xn

j (0),
although exact, has the disadvantage that the number of constraints defining
Xn

j (0) might keep growing during the execution of Algorithm 2. In this paper
we propose two alternatives, leading to inner and outer approximations of Xn

j (0)
respectively. The inner approximation Xn

j (0) = {xc(t)} (xc(t) corresponds to the
point marked as ’�’ in Fig. 1). The second consists of approximating Xn

j (0) with
a hyper-rectangle (dashed rectangle in Fig. 1), which is computed by covering the
points obtained as in step (1.7.2.3.) by letting δ(t) = δj . Other approximations
are possible, and will be investigated in the future. For instance, a better inner
approximation consists of taking the convex hull of these points. Ellipsoidal ap-
proximations seem to be not appropriate, as they would result in quadratic con-
straints in the optimization problems. Parallelotopic or higher order polyhedra
can be better approximations. Another technique can consist in approximating
recursively the reach sets during the exploration, so that Reach(t,X (0)) always
has a number of faces which is less than a specified limit. Finally, inner and
outer approximations can be run in parallel, by increasing their complexity until
lower and upper bounds to the verification problem converge within a desired
threshold. These ideas will be investigated in future research.

At step (1.3.1.1.) the algorithm checks the stronger condition X h
i (0) ⊆ X k

i (t)

for some t ≤ T k
i , instead of X h

i (0) ⊆
⋃T k

i
i=0 X k

i (t). Because of convexity of the
sets X k

i (t), the first condition is easier to test, as only inclusion of the vertices
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Escape
Valve

Valve

Compressor

Fig. 2. Suspension system.

of X h
i (0) must be checked. Note that although the results of the verification

algorithm are not affected, the number of explored regions might increase.

4.1 Complexity of Algorithm 2

The optimization problems have the following complexity: (1.2) solves 2nc LPs;
(1.3.1.1.) one feasibility problem over linear constraints (LP); (1.4.) pc LPs;
(1.5.)m feasibility tests over linear constraints (LP), wherem=number of rows in
matrixK1, i.e. number of inequalities defining the safe set Xs; (1.7.1.) 2nc MILPs
with r� integer variables; (1.7.2.2) depends on the complexity of the sets X k

j (0),
for instance requires very little computation when X k

j (0) are hyper-rectangles;
(1.7.2.3.) ≤ 2nc LPs. Note that compared to the simple approach described in
Sect 3.1 where the number of integer variables involved in the optimization grows
with time, in each optimization at step (1.7.1.) the number of integer variables
remains equal to r�.

Although the number of continuous variables adds only minor computational
complexity when compared to the number of integers, Algorithm 2 solves linear
problems with a number of variables proportional to T k

i . Our experience is that
the problems are usually fathomed after a small number of time steps, i.e. T k

i

do not increase much. However, one might get large T k
i when fast sampling is

applied to slow dynamics, for instance, because of the presence of different time
constants in the systems.

5 Verification of an Automotive Electronic Height
Control System

In this section we describe an application of Algorithm 2 to the case study
proposed first in [13], and reconsidered in [7] and [8]. The aim is to verify that
an automotive control system satisfies certain driving comfort requirements.
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5.1 Description of the System

The chassis level of the car is controlled by a pneumatic suspension system. The
level is raised by pumping air into the system, and lowered by opening an escape
valve. The configuration can be seen in Fig. 2. For the sake of simplicity, as
in [13, 7], we consider an abstract model including only one wheel. The suspen-
sion system is commanded by a logic controller, whose behavior is represented in
Fig. 3. In short, the controller switches the compressor on when the level of the
chassis is below a certain outer tolerance OTl, off when it reaches again an inner
tolerance ITl, while it opens the valve when the level is above OTh, and closes
it again when the level decreases below ITh. Because of high-frequency distur-
bances due to irregularities of the surface of the road, the controller switches
based on a filtered version f(t) = 1

1+ash(t) of the measured level h of the chas-
sis. The filter is reset to f = 0 each time f returns within the inner range [ITl,
ITh]. The compressor can lift the chassis at a rate cp(t) ∈ [cpmin cpmax], and
the escape valve can lower it at a rate ev(t) ∈ [evmin evmax]. These parameters
are reported in Table 2. We model this uncertainty as unmeasured disturbances,
by letting cp(t) = cp + ∆cp(t), ev(t) = ev + ∆ev(t), where cp = cpmax+cpmin

2 ,
ev = evmax+evmin

2 , and ∆cp(t), ∆ev(t) range within [ cpmin−cpmax
2 , cpmax−cpmin

2 ] and
[ evmin−evmax

2 , evmax−evmin
2 ] respectively.

Symbol OTh OTl ITh ITl 1/a Ts cpmin cpmax evmin evmax dmin dmax fsp
Value 20 -40 16 -6 2 1 1 2 -2 -1 -1 1 0

Unit mm mm mm mm s s mm s−1 mm s−1 mm s−1 mm s−1 mm s−1 mm s−1 mm

Table 2. Model parameters

6 Modeling the Automotive Hybrid System in MLD
Form

The Electronic Height Controller is represented by the automaton depicted in
Fig. 3. We introduce auxiliary binary variables in order to translate the automa-
ton into the MLD form (1). We will use a shortened notation by writing δ instead
of [δ = 1], and δ̄ instead of [δ = 0]. Define

δ1 ↔ [f(t) ≤ ITh] , δ2 ↔ [f(t) ≤ ITl]
δ3 ↔ [f(t) ≥ OTh] , δ4 ↔ [f(t) ≥ OTl]

As OTl<ITl<ITh<OTh, it is easy to see that

δ1 → δ̄3; δ2 → δ1, δ̄3; δ̄4 → δ̄3, δ2, δ1
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Fig. 3. Hybrid automaton for the controller.

The three states of the automaton in Fig. 3 are represented by a two-dimensional
logic state

x� =




[
0
0

]
if compressor OFF, valve CLOSED[

0
1

]
if compressor ON, valve CLOSED[

1
0

]
if compressor OFF, valve OPEN

(5)

By using Karnough map techniques, (5) can be rewritten as

x�1(t+ 1) = x̄�1(t)δ3(t) + x�1(t)δ̄1(t) (6)
x�2(t+ 1) = x�2(t)δ2(t) + x̄�1(t)δ̄4(t) (7)

(note that typically (6)–(7) are available from the team which designed the
logic controller). By defining δ5 = x̄�1δ3, δ6 = x�1δ̄1, δ7 = x�2δ2, δ8 = x̄�2δ̄4,
δ9 = δ5 ∨ δ6, δ10 = δ7 ∨ δ8, Eqs. (6)–(7) are equivalent to x�1(t + 1) = δ9(t),
x�2(t + 1) = δ10(t). As the state

[
1
1

]
does not exist, the additional constraints

x�1 + x�2 ≤ 1, δ9 + δ10 ≤ 1 are included3.
The input w(t) of the system is redefined as

w(t) =



cp+∆cp(t) if x�(t) =

[
0
1

]
ev +∆ev(t) if x�(t) =

[
1
0

]
0 if x�(t) =

[
0
0

] (8)

By letting δ11 = x̄�1x�2, δ12 = x�1x̄�2, with δ11 + δ12 ≤ 1, and z1 = cp δ11,
z2 = ev δ12, one gets w(t) = z1(t) + z2(t). The continuous dynamics of the car
3 Contrary to optimization over continuous variables, in mixed-integer programming
constraints involving integer variables can help the solver significantly.
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and the filter are sampled by exact discretization (by introduction of zero-order
holders), namely

f(t+ 1) = e−aTsf(t) + (1− e−aTs)h(t) (9)
h(t+ 1) = h(t) + Ts[d(t) + w(t)] (10)

As the filter is reset to a set point value fsp during the transitions
[
0
1

] → [
0
0

]
and

[
1
0

] → [
0
0

]
, i.e.

[
[x�(t) =

[
1
0

] ∧ x�(t+ 1) =
[
0
0

]
] ∨ [x�(t) =

[
1
0

] ∧ x�(t+ 1) =
[
0
0

]
]
] → [f(t) = fsp]

we introduce the variables δ13 = (δ̄9δ̄10δ14), where δ14 = x�1∨x�2, and modify (9)
in the form

f(t) = z3(t), z3(t) = [e−aTsf(t) + (1− e−aTs)h(t)]δ13(t) + fsp[1− δ13(t)]

In summary, the system has xc = [f, h]′, x� = [x�1, x�2]′, w = [∆cp,∆ev, d]′,
δ = [δ1, . . . , δ14]′, and z = [z1, z2, z3]′.

Matrix A B1 B2 B3 E1 E2 E3 E4 E5
Sparsity (%) 93.75 92.67 96.43 75.00 97.74 89.46 93.22 85.59 47.45

Table 3. Sparsity of MLD matrices

6.1 MLD Translation & HYSDEL List

The system described above is translated into the MLD form (1) by using the
language HYSDEL (HYbrid System DEscription Language) currently developed
at the Automatic Control Lab, ETH Zürich. The description of the system in
HYSDEL is reported in Table 4. The HYSDEL compiler automatically generates
the matrices of the system. The sparsity is reported in Table 3. The number of
constraints in (1c) is 59.

6.2 Numerical Results

Algorithm 2 has been implemented in Matlab using rectangular approximations
of new regions to explore, and provides a maximum range −44.54149 ≤ h(t) ≤
25.00000. The rectangular approximations X h

i (0) in the (f, h) plane are shown in
Fig. 4. The algorithm uses interpreted m-code and terminates in 761 s on a PC
Pentium II 300 MHz with 96 Mb RAM. In [7], where this verification problem
is solved analytically, the authors report the exact range −43 ≤ h(t) ≤ 23.
In [13], the authors use HyTech [2] for symbolic verification, and obtain the
range −47 ≤ h(t) ≤ 27. These bounds are slightly conservative because, in order
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% Description of variables and constants

state f,h,xl1,xl2;
input d,dc,dev;

const OTh, OTl, ITh, ITl;
const M1,M2,M3,M4,m1,m2,m3,m4;
const e;
const Ts,cbar,evbar,eats,cmax,cmin,evmax,evmin;

% Variable types

real f,h,z1,z2,z3,d,dc,dev;
logic d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11,d12,d13,d14;

% Relations

d1 = {f-ITh <= 0, M1, m1, e};
d2 = {f-ITl <= 0, M2, m2, e};
d3 = {f-OTh >= 0, M3, m3, e};
d4 = {f-OTl >= 0, M4, m4, e};

d5 = ~xl1 & d3; % Should be accepted also: d5=(1-xl1)&d3, d5=(1-xl1)*d3
d6 = xl1 & ~d1;
d7 = xl2 & d2;
d8 = ~xl2 & ~d4;
d9 = d5 | d6;
d10 = d7 | d8;
d11 = ~xl1 & xl2;
d12 = xl1 & ~xl2;
d13 = ~(~d9 & ~d10 & d14);
d14 = xl1 | xl2;

z1 = d11 * (cbar + dc) {cmax,cmin,e};
z2 = d12 * (evbar + dev) {evmax,evmin,e};
z3 = (eats * f + (1 - eats) * h)*d13 {10*OTh,10*OTl,e};

% Other constraints

must xl1 + xl2 <= 1;
must ~(d9 & d10);
must ~(d11 & d12);

% Update

update f = z3;
update h = h + Ts * (d + z1 + z2);
update xl1 = d9;
update xl2 = d10;

Table 4. HYSDEL description of the automotive active leveler.
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Fig. 4. Evolution of Algorithm 2 in the (f, h) plane using rectangular approximations
of the new regions. The vertical thick lines represent the guard lines, where the logic
conditions switch.

to fit the model used in HyTech, the dynamics is described as k1 ≤ ẋ ≤ k2.
The authors report a computation time of 62 m on a Sun SparcStation 20 with
128 Mb RAM. In [8], the author reports computation times up to one day.

Although some conservativeness arises from the rectangular approximations,
the algorithm presented in this paper provides a larger range mainly because of
the discrete-time filter dynamics. In fact, one can easily check that the sequence
of disturbances d(t) ≡ 1, ∆cp(t) ≡ 0, ∆ev(t) ≡ 0 leads the initial state f(0) = 0,
h(0) = 14.76537 to h(16) = 24.76537 (as f(8) = 19.99999, the transition from
the logic state (0, 0) to (1, 0) happens between t = 9 and t = 10. See Fig. 5(a)).
Note that by using a point-wise inner approximation, one gets h(t) ≤ 24.35318.
Concerning the lower bound, by applying d(t) ≡ −1, ∆cp(t) ≡ 0, ∆ev(t) ≡
0 from the initial state f(0) = 0, h(0) = −5.54149, one reaches exactly the
computed lower bound h(39) = −44.54149 (in fact for f(37) = −39.99999, the
transition from the logic state (0, 0) to (0, 1) happens between t = 38 and t = 39.
See Fig. 5(b)).

These different approaches to the solution of the verification problem have
their benefits and disadvantages. The method proposed in [2] uses symbolic
computation, can handle a wide class of verification problems, but requires ap-
proximation of the dynamics and is computationally expensive. In [8], there is
no approximation of the dynamics, but the author uses parallelotopic approx-
imations of the reach sets in order to compute the solution of the verification
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(a) d(t) ≡ 1. (b) d(t) ≡ −1

Fig. 5. Worst-case simulation with step disturbances d(t) (thin line: f(t); thick line:
h(t)).

problem. The approach suggested in [7] is exact, but seems to be tailored to
the particular example. The algorithm proposed in this paper promises to be
computationally affordable, can handle a wider class of hybrid models, and al-
lows the solution of verification problems that can be recast in an optimization
framework.

7 Conclusions

In this paper we have presented a novel approach to the verification of hybrid
systems. It is based on linear/mixed-integer linear optimization and relies on the
modeling formalism introduced in [5]. Computational feasibility of the approach
has been shown in a non-trivial case study. Future research will be devoted to
examine different inner/outer approximation techniques, iterative approximation
of the reach sets, and improving the efficiency of the computer codes used to test
the proposed algorithms.
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