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Università di Siena
Phone: +39 0577 234-631
Fax: +39 0577 234-632
bemporad@dii.unisi.it

Abstract. In this paper we study the solution to optimal control prob-
lems for discrete time linear hybrid systems. First, we prove that the
closed form of the state-feedback solution to finite time optimal control
based on quadratic or linear norms performance criteria is a time-varying
piecewise affine feedback control law. Then, we give an insight into the
structure of the optimal state-feedback solution and of the value func-
tion. Finally, we briefly describe how the optimal control law can be
computed by means of multiparametric programming.

1 Introduction

Different methods for the analysis and design of controllers for hybrid systems
have emerged over the last few years [31, 33, 11, 19, 26, 5]. Among them, the class
of optimal controllers is one of the most studied. Most of the literature deals with
optimal control of continuous-time hybrid systems and is focused on the study of
necessary conditions for a trajectory to be optimal [32, 29], and on the compu-
tation of optimal or sub-optimal solutions by means of Dynamic Programming
or the Maximum Principle [18, 20, 10, 30, 12]. Although some techniques for de-
termining feedback control laws seem to be very promising, many of them suffer
from the “curse of dimensionality” arising from the discretization of the state
space necessary in order to solve the corresponding Hamilton-Jacobi-Bellman or
Euler-Lagrange differential equations.

In this paper we study the solution to optimal control problems for linear
discrete time hybrid systems. Our hybrid modeling framework is extremely gen-
eral, in particular the control switches can be both internal, i.e., caused by the
state reaching a particular boundary, and controllable (i.e., one can decide when
to switch to some other operating mode). Even though interesting mathematical
phenomena occurring in hybrid systems such as Zeno behaviors [25] do not exist
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in discrete time, we have shown that for such a class of systems we can character-
ize and compute the optimal control law without gridding the state space. In [3]
we proposed a procedure for synthesizing piecewise affine optimal controllers
for discrete time linear hybrid systems. The procedure, based on multiparamet-
ric programming, consists of finding the state-feedback solution to finite-time
optimal control problems with performance criteria based on linear norms.

Sometimes the use of linear norms has practical disadvantages: A satisfactory
performance may be only achieved with long time-horizons, with a consequent
increase of complexity, and closed-loop performance may not depend smoothly
on the weights used in the performance index, i.e., slight changes of the weights
could lead to very different closed-loop trajectories, so that the tuning of the
controller becomes difficult. This work is a step towards the characterization
of the closed form of the state-feedback solution to optimal control problems
for linear hybrid systems with performance criteria based on quadratic norms.
First, we prove that the state-feedback solution to the finite time optimal control
problem is a time-varying piecewise affine feedback control law (possibly defined
over nonconvex regions). Then, we give an insight on the structure of the optimal
state-feedback solution and of the value function. Finally, we briefly describe
how the optimal control law can be computed by means of multiparametric
programming.

The infinite horizon optimal controller can be approximated by implement-
ing in a receding horizon fashion a finite-time optimal control law. The resulting
state-feedback controller is stabilizing and respects all input and output con-
straints. The implementation, as a consequence of the results presented here
on finite-time optimal control, requires only the evaluation of a piecewise affine
function. This opens up the route to use receding horizon techniques to control
hybrid systems characterized by fast sampling and relatively small size. In col-
laboration with different companies we have applied this type of optimal control
design to a range of hybrid control problems, for instance in traction control [8].

2 Hybrid Systems

Several modeling frameworks have been introduced for discrete time hybrid sys-
tems. Among them, piecewise affine (PWA) systems [31] are defined by parti-
tioning the state space into polyhedral regions, and associating with each region
a different linear state-update equation

x(t+ 1) = Aix(t) +Biu(t) + fi

if
[

x(t)
u(t)

]
∈ Xi , {[ x

u ] : Hix+ Jiu ≤ Ki}
(1)

where x ∈ Rnc ×{0, 1}n�, u ∈ Rmc ×{0, 1}m�, {Xi}s−1
i=0 is a polyhedral partition

of the sets of state+input space Rn+m , n , nc+n
, m , mc+m
. In the special
case x ∈ R

nc , u ∈ R
mc (no binary states and inputs), we say that the PWA

system (1) is continuous if the mapping (x(t), u(t)) �→ x(t + 1) is continuous.
The double definition of the state-update function over common boundaries of
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sets Xi (the boundaries will also be referred to as guardlines) is a technical issue
that arises only when the PWA mapping is discontinuous, and can be solved
by allowing strict inequalities in the definition of the polyhedral cells in (1).
PWA systems can model a large number of physical processes, such as systems
with static nonlinearities, and can approximate nonlinear dynamics via multiple
linearizations at different operating points.

Furthermore, we mention here linear complementarity (LC) systems [21, 35,
22] and extended linear complementarity (ELC) systems [13], max-min-plus-
scaling (MMPS) systems [14], and mixed logical dynamical (MLD) systems [5].
Recently, the equivalence of PWA, LC, ELC, MMPS, and MLD hybrid dynamical
systems was proven constructively in [23, 4]. Thus, the theoretical properties and
tools can be easily transferred from one class to another. Each modeling frame-
work has its advantages. For instance, stability criteria were formulated for PWA
systems [24, 27] and control and verification techniques were proposed for MLD
discrete time hybrid models [5, 7]. In particular, MLD models have proven suc-
cessful for recasting hybrid dynamical optimization problems into mixed-integer
linear and quadratic programs, solvable via branch and bound techniques [28].

MLD systems [5] allow specifying the evolution of continuous variables
through linear dynamic equations, of discrete variables through propositional
logic statements and automata, and the mutual interaction between the two.
Linear dynamics are represented as difference equations x(t+1) = Ax(t)+Bu(t),
x ∈ Rn . Boolean variables are defined from linear-threshold conditions over the
continuous variables. The key idea of the approach consists of embedding the
logic part in the state equations by transforming Boolean variables into 0-1 inte-
gers, and by expressing the relations as mixed-integer linear inequalities [5, 36].

By collecting the equalities and inequalities derived from the representation
of the hybrid system we obtain the Mixed Logical Dynamical (MLD) system [5]

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) + B3z(t) (2a)
E2δ(t)+E3z(t) ≤ E1u(t) + E4x(t) + E5 (2b)

where x ∈ Rnc ×{0, 1}n� is a vector of continuous and binary states, u ∈ Rmc ×
{0, 1}m� are the inputs, δ ∈ {0, 1}r�, z ∈ R

rc represent auxiliary binary and
continuous variables respectively, which are introduced when transforming logic
relations into mixed-integer linear inequalities, and A, B1−3, E1−5 are matrices
of suitable dimensions. We assume that system (2) is completely well-posed [5],
which means that for all x, u within a bounded set the variables δ, z are uniquely
determined, i.e., there exist functions F , G such that, at each time t, δ(t) =
F (x(t), u(t)), z(t) = G(x(t), u(t)). This allows one to assume that x(t + 1) is
uniquely defined once x(t), u(t) are given, and therefore that x-trajectories exist
and are uniquely determined by the initial state x(0) and input signal u(t). It
is clear that the well-posedness assumption stated above is usually guaranteed
by the procedure used to generate the linear inequalities (2b), and therefore
this hypothesis is typically fulfilled by MLD relations derived from modeling
real-world plants through the tool HYSDEL [34].
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In the next section we use the PWA modeling framework to derive the main
properties of the state-feedback solution to finite time optimal control problem
for hybrid systems. Thanks to the aforementioned equivalence between PWA
and MLD systems, the latter will be used in Section 4 to compute the optimal
control law.

3 Finite-Time Constrained Optimal Control

Consider the PWA system (1) subject to hard input and state constraints1

umin ≤ u(t) ≤ umax,
xmin ≤ x(t) ≤ xmax

(3)

for t ≥ 0, and denote by constrained PWA system (CPWA) the restriction of
the PWA system (1) over the set of states and inputs defined by (3),

x(t+ 1) = Aix(t) +Biu(t) + fi

if
[

x(t)
u(t)

]
∈ X̃i , {[ x

u ] : H̃ix+ J̃iu ≤ K̃i}
(4)

where {X̃i}s−1
i=0 is the new polyhedral partition of the sets of state+input space

R
n+m obtained by intersecting the polyhedrons Xi in (1) with the polyhedron

described by (3).
Define the following cost function

J(UT−1
0 , x(0)) ,

T−1∑
k=0

‖Q(x(k)− xe)‖p + ‖R(u(k)− ue)‖p + ‖P (x(T )− xe)‖p

(5)

and consider the finite-time optimal control problem (FTCOC)

J∗(x(0)) , min
{UT−1

0 }
J(UT−1

0 , x(0)) (6)

s.t.

{
x(t+ 1) = Aix(t) +Biu(t) + fi

if
[

x(t)
u(t)

]
∈ X̃i

(7)

where the column vector UT−1
0 , [u′(0), . . . , u(T − 1)′]′ ∈ RmT , is the optimiza-

tion vector and T is the time horizon. In (5), ‖Qx‖p = x′Qx for p = 2 and
‖Qx‖p = ‖Qx‖1,∞ for p = 1,∞, where R = R′  0, Q = Q′, P = P ′ � 0 if
p = 2 and Q, R, P nonsingular if p = ∞ or p = 1.

1 Although the form (3) is very common in standard formulation of constrained opti-
mal control problems, the results of this paper also hold for the more general mixed
constraints Ex(t) + Lu(t) ≤ M arising, for example, from constraints on the input
rate ∆u(t) , u(t)− u(t − 1).
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We also need to recall the following definitions:

Definition 1. A collection of sets R1, . . . , RN is a partition of a set Θ if
(i)

⋃N
i=1Ri = Θ, (ii) (Ri\∂Ri) ∩ (Rj\∂Rj) = ∅, ∀i �= j, where ∂ denotes the

boundary. Moreover R1, . . . , RN is a polyhedral partition of a polyhedral set Θ
if R1, . . . , RN is a partition of Θ and Ri’s are polyhedral sets.

Definition 2. A function h(θ) : Θ �→ R
k , where Θ ⊆ R

s , is piecewise affine
(PWA) if there exists a partition R1, . . . ,RN of Θ and h(θ) = Hiθ+ki, ∀θ ∈ Ri,
i = 1, . . . , N .

Definition 3. A function h(θ) : Θ �→ R
k , where Θ ⊆ R

s , is PWA on poly-
hedrons (PPWA) if there exists a polyhedral partition R1, . . . ,RN of Θ and
h(θ) = Hiθ + ki, ∀θ ∈ Ri, i = 1, . . . , N .

In the following we need to distinguish between optimal control based on the
2-norm and optimal control based on the 1-norm or ∞-norm.

3.1 FTCOC - p = 2

Theorem 1. The solution to the optimal control problem (5)-(7) is a PWA state
feedback control law of the form

u(x(k)) = F k
i x(k) +G

k
i if x(k) ∈ Pk

i , {x : x(k)′Lk
i x(k) +M

k
i x(k) ≤ Nk

i },
k = 0, . . . , T − 1

(8)

where Pk
i , i = 1, . . . , Ni is a partition of the set Dk of feasible states x(k).

Proof: We will give the proof for u(x(0)), the same arguments can be re-
peated for u(x(1)), . . . , u(x(T − 1)).
Depending on the initial state x(0) and on the input sequence U = [ u(0)′,. . . ,
u(k− 1)′] the state x(k) is either infeasible or it belongs to a certain polyhedron
X̃i. Suppose for the moment that there are no binary inputs, m
 = 0. The
number of all possible locations of the state sequence x(0), . . . , x(T ) is equal to
sT+1. Denote by vi, i = 1, . . . , sT+1 the list of all possible switching sequences
over the horizon T , and by vk

i the k-th element of the sequence vi, i.e., vk
i = j

if x(k) ∈ X̃j .
Fix a certain vi and constrain the state to switch according to the sequence

vi. Problem (5)-(7) becomes

J∗
vi
(x(0)) , min

{UT−1
0 }

J(UT−1
0 , x(0)) (9)

s.t.



x(t+ 1) = Aix(t) +Biu(t) + fi

if
[

x(t)
u(t)

]
∈ X̃i

x(k) ∈ X̃vk
i

k = 0, . . . , T
(10)
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Problem (9)-(10) is equivalent to a finite time optimal control problem for a
linear time-varying system with time-varying constraints and can be solved by
using the approach of [6]. It’s solution is the PPWA feedback control law

ũi(x(0)) = F̃ i
jx(0) + G̃

i
j , ∀x(0) ∈ T i

j , j = 1, . . . , Nri (11)

where Di =
⋃Nri

j=1 T i
j is a polyhedral partition of the convex set Di of feasible

states x(0) for problem (9)-(10). Nri is the number of regions of the polyhe-
dral partition of the solution and is a function of the number of constraints in
problem (9)-(10). The upper-index i in (11) denotes that the input ũi(x(0)) is
optimal when the switching sequence vi is fixed.

The optimal solution u(x(0)) to the original problem (5)-(7) can be found by
solving problem (9)-(10) for all vi. The set D0 of all feasible states at time 0 is
D0 =

⋃sT+1

i=1 Di and, in general, is not convex.
As some initial states can be feasible for different switching sequences, the

sets Di, i = 1, . . . , sT+1, in general, can overlap. The solution u(x(0)) can be
computed in the following way. For every polyhedron T i

j in (11),

1. If T i
j ∩ T l

m = ∅ for all l �= i, l = 1, . . . , sT−1, m = 1, . . . , Nrl
, then the

switching sequence vi is the only feasible one for all the states belonging to
T i

j and therefore the optimal solution is given by (11), i.e.

u(x(0)) = F̃ i
jx(0) + G̃

i
j , ∀x ∈ T i

j . (12)

2. If T i
j intersects one or more polyhedrons T l1

m1
,T l2

m2
,. . . , the states belong-

ing to the intersection are feasible for more than one switching sequence
vi, vl1 , vl2 , . . . and therefore the corresponding value functions J∗

vi
(x(0)),

J∗
vl1

(x(0)),J∗
vl2

(x(0)), . . . in (9) have to be compared in order to compute
the optimal control law.
Consider the simple case when only two polyhedrons overlap, i.e. T i

j ∩T l
m ,

T̃ i,l
j,m �= ?. We will refer to T̃ i,l

j,m as a polyhedron of multiple feasibility. For
all states belonging to T̃ i,l

j,m the optimal solution is:

u(x(0)) =



F̃ i

jx(0) + G̃
i
j , ∀x(0) ∈ T̃ i,l

j,m : J∗
vi
(x(0)) < J∗

vl
(x(0))

F̃ l
mx(0) + G̃

l
m, ∀x(0) ∈ T̃ i,l

j,m : J∗
vi
(x(0)) > J∗

vl
(x(0)){

F̃ i
jx(0) + G̃

i
j

F̃ l
mx(0) + G̃

l
m or

∀x(0) ∈ T̃ i,l
j,m : J∗

vi
(x(0)) = J∗

vl
(x(0))

(13)

Because J∗
vi
(x(0)) and J∗

vl
(x(0)) are quadratic functions on T̃ i

j and T̃ l
m respec-

tively, the theorem is proved. In general, a polyhedron of multiple feasibility
where n value functions intersect is partitioned into n subsets where in each
one of them a certain value function is greater than all the others.
The proof can be repeated in the presence of binary inputs, m
 �= 0. In this
case the switching sequences vi are given by all combinations of region indices
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J¤

vi
(x(0)) < J¤

vl
(x(0))

J¤

vi
(x(0)) > J¤

vl
(x(0))

(a)

J¤

vi
(x(0)) > J¤

vl
(x(0))

J¤

vi
(x(0)) < J¤

vl
(x(0))

J
¤

v
i
(x

(0
))

<
J

¤

v
l
(x

(0
))

(b)

Fig. 1. Possible partitions corresponding to the optimal control law in case 2.d of

Remark 1

and binary inputs , i.e. i = 1, . . . , (s ∗ m
)T+1. The continuous component
of the optimal input is given by (12) or (13). Such an optimal continuous
component of the input has an associated optimal sequence vi which provides
the remaining binary components of the optimal input.

2

Remark 1. Let T̃ i,l
j,m be a polyhedron of multiple feasibility and let F = {x ∈

T̃ i,l
j,m : J∗

vi
(x) = J∗

vl
(x)} be the set where the quadratic functions J∗

vi
(x) and

J∗
vl
(x) intersect (for the sake of simplicity we consider the case where only two

polyhedrons intersect). We distinguish four cases (sub-cases of case 2 in Theo-
rem 1):

2.a F = ?, i.e., J∗
vi
(x) and J∗

vl
(x) do not intersect over T̃ i,l

j,m.
2.b F = {x : Ux = P} and J∗

vi
(x) and J∗

vl
(x) are tangent on F .

2.c F = {x : Ux = P} and J∗
vi
(x) and J∗

vl
(x) are not tangent on F .

2.d F = {x : x′Y x+ Ux = P} with Y �= 0.

In the first case T̃ i,l
j,m is not further partitioned, the optimal solution in T̃ i,l

j,m is
either F̃ i

jx(0) + G̃
i
j or F̃ l

mx(0) + G̃
l
m. In case 2.b, T̃ i,l

j,m is not further partitioned
but there are multiple optima on the set Ux = P . In case 2.c, T̃ i,l

j,m is partitioned
into two polyhedrons. In case 2.d T̃ i,l

j,m is partitioned into two sets (not necessarily
connected) as shown in Figure 1.

In the special case where case 2.c or 2.d occur but the control laws are
identical, i.e., F i

j = F l
m and G̃i

j = G̃l
m, we will assume that the set T̃ i,l

j,m is not
further partitioned.
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Example 1. Consider the following simple system

x(t+ 1) =




[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ X1 = {x : [0 1]x ≥ 0}[

−1 −1
3 −1

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ X2 = {x : [0 1]x < 0}

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1]

(14)

and the optimal control problem (5)-(7), with T = 1, Q =
[
1 0
0 1

]
, R = 1.

The possible switching sequences are v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1},
v4 = {2, 2}. The solution to problem (9)-(10) is depicted in Figure (2). In Fig-
ure 3(a) the four solutions are intersected, the white region corresponds to poly-
hedrons of multiple feasibility. The state-space partition of the optimal control
law is depicted in Figure 3(b) (for lack of space, we do not report here the
analytic expressions of the regions and the corresponding affine gains).

Theorem 2. Suppose that the PWA system (1) is continuous, then the value
function J∗(x(0)) in (7) is continuous.

Proof: The continuity of the PWA system (1) implies the continuity of
J(UT−1

0 , x(0)) in (5) as the composition of continuous functions. From the main
results on sensitivity analysis [16], J∗(x(0)) is also continuous. 2

Theorem 3. Assume n
 = 0, m
 = 0 (no discrete states and inputs). Suppose
that the cost function J(UT−1

0 , x(0)) in (5) is continuous and that the optimizer
UT−1

0

∗
(x(0)) is unique for all x(0). Then the solution to the optimal control

problem (5)-(7) is the PPWA state feedback control law

u(x(k)) = F k
i x(k) +G

k
i if x(k) ∈ Pk

i , {x : Mk
i x(k) ≤ Nk

i },
k = 0, . . . , N − 1

(15)

Proof: : We will show that case 2.d in Remark 1 cannot occur by contra-
diction. Suppose case 2.d occurs. From the hypothesis the optimizer u(x(0)) is
unique and from Theorem 1 the value function J∗(x(0)) is continuous on F ,
this implies that F̃ i

jx(0) + G̃
i
j = F̃ l

mx(0) + G̃
l
m, ∀x(0) ∈ F . That contradicts

the hypothesis since the set F is not a hyperplane. The same arguments can be
repeated for u(x(k)), k = 1, . . . , N − 1. 2

Theorem 4. Assume n
 = 0, m
 = 0 (no discrete states and inputs). Suppose
that the cost function J(UT−1

0 , x(0)) in (5) is strictly convex with respect to UT−1
0

and x0. Then, the solution to the optimal control problem (5)-(7) is a PPWA
state feedback control law of the form (15). Moreover the solution u(x(k)) is
continuous, J∗(x(0)) is convex and cases 2.c and 2.d in Remark 1 will never
occur.
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(a) States-space partition cor-
responding to the solution to
problem (5)-(10) for v1 =
{1, 1}

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

X (0)1

X
(0

)
2

(b) States-space partition cor-
responding to the solution to
problem (5)-(10) for v2 =
{1, 2}
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(c) States-space partition cor-
responding to the solution to
problem (5)-(10) for v3 =
{2, 1}
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(d) States-space partition cor-
responding to the solution to
problem (5)-(10) for v4 =
{2, 2}

Fig. 2. First step for the solution of Example 1. Problem (5)-(10) is solved for
different vi, i = 1, . . . , 4

Proof: The convexity of Dk and J∗(x(0)) and the continuity of u(x(0))
follow from the main theorems on sensitivity analysis [16]. Suppose cases 2.c or
cases 2.d occur, then two (or more) value functions J∗

vi
(x), J∗

vl
(x) intersects over

a polyhedron of multiple feasibility T̃ i,l
j,m. In T̃ i,l

j,m the value function J∗(x(0)) is
min{J∗

vi
(x), J∗

vl
(x)}, which is not convex. 2

Remark 2. Theorem 2 relies on a rather weak uniqueness assumption. As the
proof indicates, the key point is to exclude case 2d in Remark 1. Therefore,
it is reasonable to believe that there are other conditions or problem classes
which satisfy this structural property without claiming uniqueness. We are also



114 Alberto Bemporad, Francesco Borrelli, and Manfred Morari

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

X (0)1

X
(0

)
2

v1

v2

v3

v4

v1

(a) Feasibility domain corre-
sponding to the solution of Ex-
ample 1 obtained by joining
the solutions plotted in Fig-
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sponds to polyhedrons of mul-
tiple feasibility.
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(b) State-space partition cor-
responding to the optimal con-
trol law of Example 1

Fig. 3. State-space partition corresponding to the optimal control law of Example 1

currently trying to identify and classify situations where it is usually the state
transition structure that guarantees the absence of disconnected sets as shown
in Figure 1(b).

Example 2. Consider the following simple system


x(t+ 1) =




[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ X1 = {x : [0 1]x ≥ 0}[

−1 −1
0 −1

]
x(t) +

[
0
1

]
u(t) if x(t) ∈ X2 = {x : [0 1]x < 0}

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1]

(16)

and the optimal control problem (5)-(7), with T = 1, Q =
[
1 0
0 1

]
, R = 1.

The possible switching sequences are v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1},
v4 = {2, 2}. In Figure 4(a) the white region corresponds to polyhedrons of mul-
tiple feasibility. The state-space partition of the optimal control law is depicted
in Figure 4(b). Note that the feasible domain is convex and that the partition
corresponding to the optimal control law is polyhedral.

The following proposition summarizes the properties enjoyed by the solution
to problem (5)-(7) as a direct consequence of Theorems 1-3 and Remark 1
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Fig. 4. State-space partition corresponding to the optimal control law of Example 2

Proposition 1.
1. u(x(k)) and J∗(x(k)) are, in general, discontinuous and Dk may be noncon-
vex.

2. J∗(x(k)) can be discontinuous only on a facet of a polyhedron of multiple
feasibility.

3. If there exists a polyhedron of multiple feasibility with F = {x : x′Y x+Ux =
P}, Y �= 0, then on F u(x(k)) is not unique, except possibly at isolated
points.

3.2 FTCOC - p = 1, ∞
The results of the previous section can be extended to piecewise linear cost
functions, i.e., cost functions based on the 1-norm or the ∞-norm.

Theorem 5. The solution to the optimal control problem (5)-(7) with p = 1, ∞
is a PPWA state feedback control law of the form (15), where Pk

i , i = 1, . . . , Ni

is a partition of the set Dk of feasible states x(k).

Proof: The proof is similar to the proof of Theorem 1. Fix a certain switch-
ing sequence vi, consider the problem (5)-(7) and constrain the state to switch
according to the sequence vi to obtain problem (9)-(10). Problem (9)-(10) can be
viewed as a finite time optimal control problem with performance index based on
1-norm or∞-norm for a linear time varying system with time varying constraints
and can be solved by using the multiparameric linear program as described in [2].
It solution is a PPWA feedback control law

ũi(x(0)) = F̃ i
jx(0) + G̃

i
j , ∀x ∈ T i

j , j = 1, . . . , Nri (17)
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and the value function J∗
vi

is piecewise affine and convex. The rest of the proof
follows the proof of Theorem 1. Note that in this case the value functions to be
compared are piecewise affine and not piecewise quadratic. 2

Theorem 6. Suppose that the cost function J(UT−1
0 , x(0)) in (5) is convex with

respect to UT−1
0 and x0. Then the solution to the optimal control problem (5)-(7)

is a PPWA and continuous state feedback control law of the form (15), where
Dk =

⋃
i Pk

i and J∗(x(0)) are convex and u(x(0)) is continuous.

Proof: The proof is similar to the proof of Theorem 4. 2

4 Efficient Computation of the Solution

In the previous section the properties enjoyed by the solution to hybrid optimal
control problems were investigated. Despite the fact that the proof is construc-
tive (as shown in the figures), it is based on the enumeration of all the possible
switching sequences of the hybrid system, the number of which grows exponen-
tially with the time horizon. Although the computation is performed off line (the
on-line complexity is the one associated with the evaluation of the PWA con-
trol law (15)), more efficient methods than enumeration are desirable. Here we
show that MLD framework can be used in order to avoid enumeration. Consider
the equivalent MLD system (2) of the PWA system (4). Problem (5)-(7) can be
rewritten as:

min
{UT−1

0 }
J(UT−1

0 , x(0)) ,
T−1∑
k=0

‖Ru(t)‖p + ‖Qx(t)‖p + ‖Px(T |t)‖p (18)

subj. to
{
x(k + 1) = Φx(k) +G1v(k) +G2δ(k) +G3z(k)
E2δ(k) + E3z(k) ≤ E1v(k) + E4x(k) + E5

(19)

The optimal control problem in (18)-(19) can be formulated as a Mixed Inte-
ger Quadratic Program (MIQP) when the squared Euclidean norm p = 2 is used
[5], or as a Mixed Integer Linear Program (MILP), when p = ∞ or p = 1 [3],

min
ε

ε′H1ε+ ε′H2x(0) + x(0)′H3x(0) + f ′1ε+ f
′
2x(0) + c

subj. to Gε ≤ S + Fx(0)
(20)

whereH1,H2,H3, f1, f2, G, S, F are matrices of suitable dimensions, ε = [ε′c, ε′d]
where εc, εd represent continuous and discrete variables, respectively and H1,
H2, H3, are null matrices if problem (20) is an MILP.

Given a value of the initial state x(0), the MIQP (or MILP) (20) can be solved
to get the optimal input ε∗(x(0)). Multiparametric programming [17, 15, 6, 9]
can be used to efficiently compute the explicit form of the optimal state-feedback
control law u(x(k)). By generalizing the result of [6] for linear systems to hybrid
systems, the state vector x(0), which appears in the objective function and in
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the linear part of the rhs of the constraints, can be handled as a vector of
parameters. Then, for performance indices based on the ∞-norm or 1-norm, the
optimization problem can be treated as a multi-parametric MILP (mp-MILP),
while for performance indices based on the 2-norm, the optimization problem
can be treated as a multi-parametric MIQP (mp-MIQP).

Solving an mp-MILP (mp-MIQP) amounts to expressing the solution of the
MILP (MIQP) (20) as a function of the parameters x(0) . Two main approaches
have been proposed for solving mp-MILP problems in [1, 15], while, to the au-
thors’ knowledge, there does not exist an efficient method for solving mp-MIQPs.
An efficient algorithm for the solution of mp-MIQP problems arising from hy-
brid control problems that uses mp-QP solvers and dynamic programming is
currently under development.
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