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In this paper, linear model predictive control problems are formulated as multi-parametric
quadratic programs, where the control variables are treated as optimization variables and
the state variables as parameters. It is shown that the control variables are affine functions
of the state variables and each of these affine functions is valid in a certain polyhedral
region in the space of state variables. An approach for deriving the explicit expressions of
all the affine functions and their corresponding polyhedral regions is presented. The key
advantage of this approach is that the control actions are computed off-line: the on-line
computation simply reduces to a function evaluation problem.

1. INTRODUCTION

On-line optimization is a commonly used tool in the chemical process industry for op-
erating plants at their maximum performance. Typically, this issue is addressed via a
Model Predictive Control (MPC) framework where at regular time intervals the measure-
ments from the plant are obtained and an optimization problem is solved to predict the
optimal control actions - for a recent survey on MPC, see [1]. In this work, we propose
an alternative approach for the on-line calculation of control actions which requires a
very small computational effort as an optimizer is never called on-line. This approach
is based upon the fundamentals of parametric programming. In an optimization frame-
work, where the objective is to minimize or maximize a performance criterion subject to
a given set of constraints and where some of the parameters in the optimization prob-
lem are uncertain, parametric programming is a technique for obtaining the objective
function and the optimization variables as a function of the uncertain parameters [2,3].
Here, we present a parametric quadratic programming approach to address linear MPC
problems, where the state variables are treated as parameters and the control actions
are computed as a function of the state variables. The rest of the paper is organized
as follows. First a brief outline of MPC problems is presented and these problems are



formulated as multi-parametric quadratic programs (mp-QP). Next a solution approach
for mp-QPs is presented, followed by an illustrative example.

2. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) has been widely adopted by industry to solve control
problems of systems subject to input and output constraints. MPC is based on the so
called receding horizon philosophy: a sequence of future control actions is chosen according
to a prediction of the future evolution of the system and applied to the plant until new
measurements are available. Then, a new sequence is determined which replaces the
previous one. Each sequence is evaluated by means of an optimization procedure which
takes into account two objectives: optimize the tracking performance, and protect the
system from possible constraint violations. In a mathematical framework, MPC problems
can be formulated as follows.
Consider the following state-space representation of a given process model:

{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t),

(1)

subject to the following constraints: ymin ≤ y(t) ≤ ymax, umin ≤ u(t) ≤ umax, where
x(t) ∈ �n, u(t) ∈ �m, and y(t) ∈ �p are the state, input, and output vectors respectively,
subscripts min and max denote lower and upper bounds respectively and (A,B) is stabi-
lizable. Model Predictive Control (MPC) problems for regulating to the origin can then
be posed as the following optimization problems:

min
U

J(U, x(t)) = x′t+Ny |tPxt+Ny |t +
Ny−1∑
k=0

x′t+k|tQxt+k|t + u′t+kRut+k

s.t. ymin ≤ yt+k|t ≤ ymax, k = 1, . . . , Nc

umin ≤ ut+k ≤ umax, k = 0, 1, . . . , Nc

xt|t = x(t)
xt+k+1|t = Axt+k|t +But+k, k ≥ 0
ut+k = Kxt+k|t, Nu ≤ k ≤ Ny

(2)

where U � {ut, . . . , ut+Nu−1}, Q = Q′ � 0, R = R′ � 0, P � 0, (Q
1
2 , A) detectable, Ny ≥

Nu, and K is some feedback gain. The problem (2) is solved repetitively at each time t for
the current measurement x(t) and a vector of predicted state variables, xt+1|t, . . . , xt+k|t
at time t + 1, . . . , t + k respectively and corresponding control actions ut, . . . , ut+k−1 is
obtained. In the next section, we present a parametric programming approach where the
repetitive solution of (2) at each time interval is avoided and instead an optimization
problem is solved only once.

3. MULTI-PARAMETRIC QUADRATIC PROGRAMMING

Parametric programming has largely been used for incorporating the uncertainties in
the model, where (i) the objective function and the optimization variables are obtained



as a function of uncertain parameters and (ii) the regions in the space of the uncertain
parameters where these functions are valid are also obtained [2–5]. The main advantage of
using the parametric programming techniques to address the issue of uncertainty is that for
problems pertaining to plant operations, such as for process planning [6] and scheduling,
one obtains a complete map of all the optimal solutions and as the operating conditions
fluctuate, one does not have to re-optimize for the new set of conditions since the optimal
solution as a function of uncertain parameters (or the new set of conditions) is already
available. In the following paragraphs, we present a parametric programming approach
which avoids a repetitive solution of (2). First, we do some algebraic manipulations to
recast (2) in a form suitable for using and developing some new parametric programming
concepts. By making the following substitution in (2):

xt+k|t = Akx(t) +
k−1∑
j=0

AjBuk−1−j (3)

the objective J(U, x(t)) can be written as the following Quadratic Programming (QP)
problem:

min
U

1
2
U ′HU + x′(t)FU + x′(t)Y x(t)

s.t. GU ≤ W +Kx(t)
(4)

where U � [u′t, . . . , u
′
t+Nu−1]

′ ∈ �s, s � mNu, is the vector of optimization variables,
H = H ′ � 0, and H, F , Y , G, W , K are obtained from Q, R, and (2)–(3). With the
transformation, z � U + H−1F ′x(t), where z ∈ �s, (4) can be written as the following
Multi-parametric Quadratic Program (mp-QP):

µ(x) = min
z

1
2
z′Hz

s.t. Gz ≤ W + Sx(t),
(5)

where S � K+GH−1F ′, z represents the vector of optimization variables and x represents
the vector of parameters. The main advantage of writing (2) in the form given in (5) is
that z (and therefore U) can be obtained as an affine function of x for the complete
feasible space of x. To derive these results, we first state the following theorem (see also
[7]).

Theorem 1 For the problem in (5) let x0 be a vector of parameter values and (z0, λ0) a
KKT pair, where λ0 = λ(x0) is a vector of nonnegative Lagrange multipliers, λ, and z0 =
z(x0) is feasible in (5). Also assume that (i) linear independence constraint qualification
and (ii) strict complementary slackness conditions hold. Then,

[
z(x)
λ(x)

]
= −(M0)

−1N0(x− x0) +

[
z0
λ0

]
(6)



where,

M0 =




H GT
1 · · · GT

q

−λ1G1 −V1
...

. . .

−λpGq −Vq


 , N0 = (Y, λ1S1, . . . , λpSp)

T

where Gi denotes the ith row of G, Si denotes the ith row of S, Vi = Giz0 −Wi − Six0,
Wi denotes the ith row of W and Y is a null matrix of dimension (s× n).

The space of x where this solution, (6), remains optimal is defined as the Critical Region
(CR0) and can be obtained as follows. Let CRR represent the set of inequalities obtained
(i) by substituting z(x) into the inequalities in (5) and (ii) from the positivity of the
Lagrange multipliers, as follows:

CRR = {Gz(x) ≤ W + Sx(t), λ(x) ≥ 0}, (7)

then CR0 is obtained by removing the redundant constraints from CRR as follows:

CR0 = ∆{CRR}, (8)

where ∆ is an operator which removes the redundant constraints. Since for a given space
of state-variables, X, so far we have characterized only a sub-space of X i.e. CR0 ⊆ X,
in the next step the rest of the region CRrest, is defined as follows [3]:

CRrest = X − CR0. (9)

The above steps, (6–9) are repeated and a set of z(x), λ(x) and corresponding CR0s are
obtained. The solution procedure terminates when no more regions can be obtained, i.e.
when CRrest = ∅. For the regions which have the same solution and can be unified to give
a convex region, such a unification is performed and a compact representation is obtained.
The continuity and convexity properties of the optimal solution are summarized in the
next theorem.

Theorem 2 For the mp-QP problem, (5), the set of feasible parameters Xf ⊆ X is
convex, the optimal solution, z(x) : Xf �→ �s is continuous and piecewise affine, and the
optimal objective function µ(x) : Xf �→ � is continuous, convex and piecewise quadratic.

Based upon the above theoretical developments the solution of an mp-QP of the form
given in (5), to calculate U as an affine function of x and characterize X by a set of
polyhedral regions, CRs, can be obtained. This approach provides a significant advance-
ment in the solution and on-line implementation of MPC problems. Since its application
results in a complete set of control actions as a function of state-variables (from (6)) and
the corresponding regions of validity (from (8)), which are computed off-line. Therefore



during on-line optimization, no optimizer needs to be called and instead for the current
set of measurements the region, CR0, where these measurements are valid, can be iden-
tified by substituting the value of these measurements into the inequalities which define
the regions. Then, the corresponding control actions can be computed by using a func-
tion evaluation of the corresponding affine function. In the next section, we present an
example to illustrate these concepts.

4. NUMERICAL EXAMPLE

Consider the following state-space model representation:



x(t+ 1) =

[
0.7326 −0.0861
0.1722 0.9909

]
x(t) +

[
0.0609
0.0064

]
u(t)

y(t) =
[
0 1.4142

]
x(t)

(10)

together with the following constraints: −2 ≤ u(t) ≤ 2. The corresponding optimization
problem of the form (2) for regulating to the origin is given as follows:

min
ut,ut+1

x′t+2|tPxt+2|t +
1∑

k=0

x′t+k|txt+k|t + .01u2
t+k

s.t. −2 ≤ ut+k ≤ 2, k = 0, 1
xt|t = x(t)

(11)

where P solves the Lyapunov equation P = A′PA+Q, Q = [ 1 0
0 1 ], R = 0.01, Nu = Ny =

Nc = 2. The corresponding mp-QP problem of the form (5) has the following constant
vectors and matrices.

H =
[

0.0196 0.0063
0.0063 0.0199

]
, F =

[
0.1470 0.1123
0.1058 −0.0834

]
, G =




1 0
−1 0
0 1
0 −1


 ,W =




2
2
2
2


 ,K =




0 0
0 0
0 0
0 0


 .

The solution of the mp-QP problem as computed by using the solution approach described
in Section 3 is provided in Table 1. Note that the regions 3,4 and 7,8 in Table 1 are
combined together and a compact convex representation is obtained. To illustrate how
on-line optimization reduces to a function evaluation problem, consider the starting point
x(0) = [1 1]′. This point is substituted into the constraints defining the regions in Table 1
and it satisfies only the constraints of the regions 7,8. The control action corresponding to
the regions 7,8 from Table 1 is u = −2, which is obtained without any further optimization
calculations.

5. SUMMARY AND CONCLUDING REMARKS

In this work, linear MPC problems were formulated as mp-QPs. An approach for the
solution of mp-QPs was proposed. It was shown that the solution (a set of control actions)



Table 1
Solution of the numerical example

Region# Region u

1

[ −6.3202 −7.5004
6.3202 7.5004−3.6447 6.5748
3.6447 −6.5748

]
x ≤

[
2.0000
2.0000
2.0000
2.0000

]
[ −6.3202 −7.5004 ] x

2 [ 0.1123 −0.0834
0.1470 0.1058 ] x ≤ [ −0.0524

−0.0519

]
2.0000

3,4
[ −5.6485 4.1968

5.6485 −4.1968
0.1114 0.1322

]
x ≤

[
2.6341
1.3659−0.0353

]
2.0000

5
[ −7.4906 −5.3891
−0.0651 0.1174
7.4906 5.3891

]
x ≤

[
1.3577−0.0357
2.6423

]
[ −7.4906 −5.3891 ] x+ 0.6423

6
[ −0.1470 −0.1058
−0.1123 0.0834

]
x ≤ [ −0.0519

−0.0524

] − 2.0000

7,8
[ −5.6485 4.1968

5.6485 −4.1968
−0.1114 −0.1322

]
x ≤

[
1.3659
2.6341−0.0353

]
− 2.0000

9
[

7.4906 5.3891
0.0651 −0.1174
−7.4906 −5.3891

]
x ≤

[
1.3577−0.0357
2.6423

]
[ −7.4906 −5.3891 ] x− 0.6423

of mp-QPs is an affine function of parameters (state-variables) which is valid in certain
regions of optimality which are described by linear inequalities. The main advantage
of this approach is that control actions are computed off-line. The on-line computation
thus simply reduces to a function evaluation problem. Current work focusses on the
extension of the algorithms for multi-parametric mixed-integer programs [3] for hybrid
control problems [8].
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