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Abstract

Model predictive control (MPC) has been used
in the process industries for more than 40 years
because of its ability to control multivariable
systems in an optimized way under constraints
on input and output variables. Traditionally, MPC
requires the solution of a quadratic program (QP)
online to compute the control action, sometimes
restricting its applicability to slow processes.
Explicit MPC completely removes the need for
online solvers by precomputing the control law
off-line, so that online operations reduce to a
simple function evaluation. Such a function is
piecewise affine in most cases, so that the MPC
controller is equivalently expressed as a lookup
table of linear gains, a form that is extremely easy
to code, requires only basic arithmetic operations,
and requires a maximum number of iterations that
can be exactly computed a priori.
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Introduction

Model predictive control (MPC) is a well-known
methodology for synthesizing feedback control
laws that optimize closed-loop performance
subject to prespecified operating constraints on
inputs, states, and outputs (Mayne and Rawlings
2009; Borrelli et al. 2017). In MPC, the control
action is obtained by solving a finite horizon
open-loop optimal control problem at each
sampling instant. Each optimization yields a
sequence of optimal control moves, but only
the first move is applied to the process: At
the next time step, the computation is repeated
over a shifted time horizon by taking the most
recently available state information as the new
initial condition of the new optimal control
problem. For this reason, MPC is also called
“receding horizon control.” In most practical
applications, MPC is based on a linear discrete-
time time-invariant model of the controlled
system and quadratic penalties on tracking errors
and actuation efforts; in such a formulation,
the optimal control problem can be recast as a
quadratic programming (QP) problem, whose
linear term of the cost function and right-hand
side of the constraints depend on a vector of
parameters that may change from one step to
another (such as the current state and reference
signals). To enable the implementation of MPC
in real industrial products, a QP solution method
must be embedded in the control hardware. The
method must be fast enough to provide a solution
within short sampling intervals and require
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simple hardware, limited memory to store the
data defining the optimization problem and the
code implementing the algorithm itself, a simple
program code, and good worst-case estimates
of the execution time to meet real-time system
requirements.

Several online solution algorithms have
been studied for embedding quadratic opti-
mization in control hardware, such as active-
set methods (Ricker 1985; Bemporad 2016),
interior-point methods (Wang and Boyd 2010),
fast gradient-projection methods (Patrinos and
Bemporad 2014), and the alternating direction
method of multipliers (Banjac et al. 2017).
Explicit MPC takes a different approach to meet
the above requirements, where multiparametric
quadratic programming is proposed to pre-solve
the QP off-line, therefore converting the MPC law
into a continuous and piecewise-affine function
of the parameter vector (Bemporad et al. 2002b;
Bemporad 2015). We review the main ideas of
explicit MPC in the next section, referring the
reader to Alessio and Bemporad (2009) for a
more complete survey paper on explicit MPC.

Model Predictive Control Problem

Consider the following finite-time optimal con-
trol problem formulation for MPC:

V �.p/ D min
´

`N .xN /C

N�1X

kD0

`.xk ; uk/ (1a)

s:t: xkC1 D Axk C Buk (1b)

Cxxk C Cuuk � c (1c)

k D 0; : : : ; N � 1

CNxN � cN (1d)

x0 D x (1e)

where N is the prediction horizon; x 2 R
m is

the current state vector of the controlled system;
uk 2 R

nu is the vector of manipulated variables
at prediction time k, k D 0; : : : ; N � 1; ´ ,
Œ u0
0
::: u0

N�1 �
0 2 R

n, n , nuN , is the vector of
decision variables to be optimized;

`.x; u/ D
1

2
x0Qx C u0Ru (2a)

`N .x/ D
1

2
x0Px (2b)

are the stage cost and terminal cost, respectively;
Q, P are symmetric and positive semidefinite
matrices; and R is a symmetric and positive
definite matrix.

Let nc 2 N be the number of constraints
imposed at prediction time k D 0; : : : ; N � 1,
namely, Cx 2 R

nc�m, Cu 2 R
nc�nu , and c 2

R
nc , and let nN be the number of terminal con-

straints, namely, CN 2 R
nN�m and cN 2 R

nN .
The total number q of linear inequality con-
straints imposed in the MPC problem formula-
tion (1) is q D Nnc C nN .

By eliminating the states xk D Akx CPk�1
jD0A

jBuk�1�j from problem (1), the
optimal control problem (1) can be expressed
as the convex quadratic program (QP):

V ?.x/ , min
´

1

2
´0H´C x0F 0´C

1

2
x0Yx

(3a)

s:t: G´ � W C Sx (3b)

where H D H 0 2 R
n�n is the Hessian matrix;

F 2 R
n�m defines the linear term of the cost

function; Y 2 R
m�m has no influence on the

optimizer, as it only affects the optimal value
of (3a); and the matrices G 2 R

q�n, S 2 R
q�m,

W 2 R
q define in a compact form the constraints

imposed in (1). Because of the assumptions made
on the weight matrices Q, R, and P , matrix H
is positive definite, and matrix

�
H F 0

F Y

�
is positive

semidefinite.
The MPC control law is defined by setting

u.x/ D ŒI 0 : : : 0�´.x/ (4)

where ´.x/ is the optimizer of the QP problem (3)
for the current value of x and I is the identity
matrix of dimension nu � nu.
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Multiparametric Solution

Rather than using a numerical QP solver online to
compute the optimizer ´.x/ of (3) for each given
current state vector x, the basic idea of explicit
MPC is to pre-solve the QP off-line for the entire
set of states x (or for a convex polyhedral subset
X � R

m of interest) to get the optimizer function
´, and therefore the MPC control law u, explicitly
as a function of x.

The main tool to get such an explicit solu-
tion is multiparametric quadratic programming
(mpQP). For mpQP problems of the form (3),
Bemporad et al. (2002b) proved that the opti-
mizer function ´� W Xf 7! R

n is piecewise affine
and continuous over the set Xf of parameters
x for which the problem is feasible (Xf is a
polyhedral set, possibly Xf D X ) and that
the value function V � W Xf 7! R associating
with every x 2 Xf the corresponding optimal
value of (3) is continuous, convex, and piecewise
quadratic.

An immediate corollary is that the explicit
version of the MPC control law u in (4), being
the first nu components of vector ´.x/, is also
a continuous and piecewise-affine state-feedback

law defined over a partition of the setXf of states
into M polyhedral cells:

u.x/ D

8
<̂

:̂

F1x C g1 if H1x � K1
:::

:::

FMx C gM if HMx � KM

(5)

An example of such a partition is depicted in
Fig. 1. The explicit representation (5) has mapped
the MPC law (4) into a lookup table of linear
gains, meaning that for each given x, the values
computed by solving the QP (3) online and those
obtained by evaluating (5) are exactly the same.

Multiparametric QP Algorithms
A few algorithms have been proposed in the liter-
ature to solve the mpQP problem (3). All of them
construct the solution by exploiting the Karush-
Kuhn-Tucker (KKT) conditions for optimality:

H´C Fx CG0� D 0 (6a)

�i .G
i´ �W i � S ix/ D 0; 8i D 1; : : : ; q

(6b)

G´ � W C Sx (6c)

� � 0 (6d)

Explicit Model Predictive
Control, Fig. 1 Explicit
MPC solution for the
double integrator example
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where � 2 R
q is the vector of Lagrange multipli-

ers. For the strictly convex QP (3), conditions (6)
are necessary and sufficient to characterize opti-
mality.

An mpQP algorithm starts by fixing an arbi-
trary starting parameter vector x0 2 R

m (e.g.,
the origin x0 D 0), solving the QP (3) to get the
optimal solution ´.x0/, and identifying the subset

QG´.x/ D QSx C QW (7a)

of all constraints (6c) that are active at ´.x0/ and
the remaining inactive constraints:

OG´.x/ � OSx C OW (7b)

Correspondingly, in view of the complementarity
condition (6b), the vector of Lagrange multipliers
is split into two subvectors:

Q�.x/ � 0 (8a)

O�.x/ D 0 (8b)

We assume for simplicity that the rows of QG
are linearly independent. From (6a), we have the
relation

´.x/ D �H�1.F x C QG0 Q�.x// (9)

that, when substituted into (7a), provides

Q�.x/ D � QM. QW C . QS C QGH�1F /x/ (10)

where QM D QG0. QGH�1 QG0/�1 and, by substitu-
tion in (9),

´.x/ D H�1. QM QW C QM. QSC QGH�1F /x�Fx/

(11)
The solution ´.x/ provided by (11) is the correct
one for all vectors x such that the chosen com-
bination of active constraints remains optimal.
Such all vectors x are identified by imposing con-
straints (7b) and (8a) on ´.x/ and Q�.x/, respec-
tively, that leads to constructing the polyhedral
set (“critical region”):

CR0 D fx 2 R
n W Q�.x/ � 0; OG´.x/ � OWC OSxg

(12)

Different mpQP solvers were proposed to
cover the rest X n CR0 of the parameter set
with other critical regions corresponding to
new combinations of active constraints. The
most efficient methods exploit the so-called
“facet-to-facet” property of the multiparametric
solution (Spjøtvold et al. 2006) to identify
neighboring regions as in Tøndel et al. (2003a),
Baotić (2002), and Bemporad (2015). Alter-
native methods were proposed in Jones and
Morari (2006), based on looking at (6) as a
multiparametric linear complementarity problem,
in Patrinos and Sarimveis (2010), which provides
algorithms for determining all neighboring
regions even in the case the facet-to-facet
property does not hold, and in Gupta et al.
(2011) based on the implicit enumeration of
active constraint combinations.

All methods handle the case of degeneracy,
which may happen for some combinations of
active constraints that are linearly dependent, that
is, the associated matrix QG has no full row rank
(in this case, Q�.x/ may not be uniquely defined).

Extensions

The explicit approach described earlier can be
extended to the following MPC setting:

min
´;�

N�1X

kD0

1

2
.yk� rk/

0Qy.yk� rk/C
1

2
Δu0kRΔΔuk

C .uk � ur
k/
0R.uk � ur

k/
0 C ���

2 (13a)

s:t: xkC1 D Axk C Buk C Bvvk (13b)

yk D Cxk CDuuk CDvvk (13c)

uk D uk�1 C Δuk ; k D 0; : : : ; N � 1
(13d)

Δuk D 0; k D Nu; : : : ; N � 1 (13e)

uk
min � uk � uk

max; k D 0; : : : ; Nu � 1 (13f)

Δuk
min � Δuk � Δuk

max; k D 0; : : : ; Nu � 1

(13g)

yk
min � �Vmin � yk � yk

max C �Vmax (13h)

k D 0; : : : ; Nc � 1
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where RΔ is a symmetric and positive definite
matrix; matrices Qy and R are symmetric and
positive semidefinite; vk is a vector of mea-
sured disturbances; yk is the output vector; rk

its corresponding reference to be tracked; Δuk
is the vector of input increments; ur

k is the input
reference; uk

min, uk
max, Δuk

min, Δuk
max, yk

min, yk
max

are bounds; and N , Nu, Nc are, respectively,
the prediction, control, and constraint horizons.
The extra variable � is introduced to soften out-
put constraints, penalized by the (usually large)
weight �� in the cost function (13a).

Everything marked in boldface in (13),
together with the command input u�1 applied at
the previous sampling step and the current state
x, can be treated as a parameter with respect to
which to solve the mpQP problem and obtain the
explicit form of the MPC controller. For example,
for a tracking problem with no anticipative
action (rk � r0, 8k D 0; : : : ; N � 1), no
measured disturbance, and fixed upper and lower
bounds, the explicit solution is a continuous
piecewise-affine function of the parameter vectorh
x
r0

u�1

i
. Note that prediction models and/or weight

matrices in (13) cannot be treated as parameters
to maintain the mpQP formulation (3).

Linear MPC Based on Convex
Piecewise-Affine Costs
A similar setting can be repeated for MPC
problems based on linear prediction models
and convex piecewise-affine costs, such as
1- and 1-norms. In this case, the MPC
problem is mapped into a multiparametric linear
programming (mpLP) problem, whose solution
is again continuous and piecewise-affine with
respect to the vector of parameters. For details,
see Bemporad et al. (2002a).

Robust MPC
Explicit solutions to min-max MPC problems
that provide robustness with respect to additive
and/or multiplicative unknown-but-bounded
uncertainty were proposed in Bemporad et al.
(2003), based on a combination of mpLP and
dynamic programming. Again the solution is
piecewise affine with respect to the state vector.

Hybrid MPC
An MPC formulation based on convex piecewise-
affine costs (like 1- or 1-norms) and linear
hybrid dynamics expressed in mixed-logical
dynamical (MLD) form can be solved explicitly
by treating the optimization problem associated
with MPC as a multiparametric mixed integer
linear programming (mpMILP) problem. The
solution is still piecewise affine but may be
discontinuous, due to the presence of binary
variables (Bemporad et al. 2000). A better
approach based on dynamic programming
combined with mpLP (or mpQP) was proposed
in Borrelli et al. (2005) for hybrid systems in
piecewise-affine (PWA) dynamical form and
linear (or quadratic) costs. For explicit hybrid
MPC based on quadratic costs, the issue of
possible partition overlaps is solved in Fuchs
et al. (2015).

Applicability of Explicit MPC

Complexity of the Solution
The complexity of the solution is given by the
number M of regions that form the explicit solu-
tion (5), dictating the amount of memory to
store the parametric solution (Fi , Gi , Hi , Ki ,
i D 1; : : : ;M ) and the worst-case execution
time required to compute Fix C Gi once the
problem of identifying the index i of the region
fx W Hix � Kig containing the current state x
is solved (which usually takes most of the time).
The latter is called the “point location problem,”
and a few methods have been proposed to solve
the problem more efficiently than searching lin-
early through the list of regions (see, e.g., the
tree-based approach of Tøndel et al. 2003b).

An upper bound to M is 2q , which is the
number of all possible combinations of active
constraints. In practice, M is much smaller than
2q , as most combinations are never active at
optimality for any of the vectors x (e.g., lower
and upper limits on an actuation signal cannot
be active at the same time, unless they coincide).
Moreover, regions in which the first nu com-
ponent of the multiparametric solution ´.x/ is
the same can be joined together, provided that
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their union is a convex set (an optimal merging
algorithm was proposed by Geyer et al. (2008) to
get a minimal numberM of partitions). Nonethe-
less, the complexity of the explicit MPC law
typically grows exponentially with the number
q of constraints. The number m of parameters
is less critical and mainly affects the number of
elements to be stored in memory (i.e., the number
of columns of matrices Fi , Hi ). The number n
of free variables also affects the number M of
regions, mainly because they are usually upper
and lower bounded.

Computer-Aided Tools
The Model Predictive Control Toolbox (Bem-
porad et al. 2014) offers functions for design-
ing explicit MPC controllers in MATLAB
since 2014, implementing the algorithm described
(Bemporad 2015). Other tools exist such as the
Hybrid Toolbox (Bemporad 2003) and the Multi-
Parametric Toolbox (Kvasnica et al. 2006).

Summary and Future Directions

Explicit MPC is a powerful tool to convert an
MPC design into an equivalent control law that
can be implemented as a lookup table of linear
gains. Whether explicit MPC is preferable to
online QP depends on available CPU time, data
memory, program memory, and other practical
considerations. In order to answer this ques-
tion, Cimini and Bemporad (2017) analyzed
the behavior of a state-of-the-art dual active set
method for QP in a parametric way, finding out
that the number of iterations to solve the QP
online is a piecewise constant function of the
parameter vector. They precisely quantify how
many flops the online QP solver takes in the worst
case, so that the corresponding CPU time, as well
as memory footprint, can be exactly compared
with explicit MPC. Although suboptimal explicit
MPC methods have been proposed for reduc-
ing the complexity of the control law, still the
multiparametric approach remains convenient for
relatively small problems (say one or two com-
mand inputs, short control and constraint hori-
zons, up to ten states). For larger-size problems

and/or time-varying prediction models, online QP
solution methods tailored to embedded MPC are
usually preferable.

Cross-References

� Model-Predictive Control in Practice
� Nominal Model-Predictive Control
� Optimization Algorithms for Model Predictive

Control

Recommended Reading

For getting started in explicit MPC, we
recommend reading the paper by Bemporad et al.
(2002b) and the survey paper by Alessio and
Bemporad (2009). Hands-on experience using
one of the MATLAB tools listed above is also
useful for fully appreciating the potentials and
limitations of explicit MPC. For understanding
how to program a good multiparametric QP
solver, the reader is recommended to take one
of the approaches described in Tøndel et al.
(2003a), Spjøtvold et al. (2006), Bemporad
(2015), Patrinos and Sarimveis (2010), or Jones
and Morari (2006).
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