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a b s t r a c t 

In various classification problems characterized by a large number of features, feature selection (FS) is 

essential to guarantee generalization capabilities. The FS problem is often ill-posed due to significant cor- 

relations among features, which may lead to several different feature subsets with comparable scores in 

terms of classification performance. However, not all these subsets are equivalent from a domain-oriented 

point of view due to known relationships among features and their different acquisition costs in produc- 

tion to deploy the trained classifier. In this paper, we consider the potential benefits of including the 

domain expert’s preferences in the FS task, thus integrating both objective elements ( e.g. , classification 

accuracy) and subjective (often not quantifiable) considerations in the selection process. This goes in the 

direction of increasing the interpretability and the trustworthiness of the machine learning model, which 

is an often desired property in many application domains such as in medicine. The proposed method 

consists of an iterative procedure. At each iteration, the expert is asked to express a “human” preference 

on pairs of classifiers, each one trained from a different subset of features. The expressed preferences 

are used algorithmically to update a suitable surrogate function that mimics the latent subjective ex- 

pert’s objective function, and then to propose a new classifier for testing and comparison. The proposed 

method has been tested on academic and experimental FS problems, and notably, on a COVID’19 patients 

record. The preliminary experimental results are promising, in that a parsimonious and accurate solution 

is obtained after a relatively short number of iterations. 

© 2022 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Feature selection (FS) is of paramount importance in classifica- 

ion problems characterized by a large number of features, in par- 

icular in the presence of small-size training datasets. FS amounts 

o a combinatorial problem that aims at extracting the relevant 

eatures from a given set of candidate ones. FS methods can be 

roadly classified into filter and wrapper methods [27,29,30] . In fil- 

er methods, FS is performed independently of the classifier design, 

ased only on the intrinsic properties of the features. In wrap- 

er methods, the criterion for selecting features is based on the 

erformance of the classifier i.e., the classifier is “wrapped” on a 
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earch algorithm that seeks the subset of features which results 

n the highest classification accuracy. Wrapper methods are typi- 

ally more accurate, but also computationally intensive. Besides in 

achine learning applications, the problem of selecting the most 

elevant terms/samples for a given set has been addressed in dif- 

erent research areas. For example, in the systems and control area, 

he techniques answering to this selection problem are known un- 

er the collective term model structure selection , while in the signal 

rocessing community they are known as sparse approximation and 

ompressed sensing , see e.g, [22] . 

FS from a large set of features is often an ill-posed prob- 

em, due to significant correlation among features. As a result, 

t is a common experience that several equivalent classifiers can 

e obtained based on different sets of selected features, with 

quivalence measured in terms of classification accuracy or other 

iscrete performance-oriented indicators. It follows that the FS al- 

orithm cannot pick one feature set over the others based on ob- 
rved. 

https://doi.org/10.1016/j.ejcon.2022.100647
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejcon
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2022.100647&domain=pdf
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ective and quantitative elements. However, models with equiva- 

ent performance do not necessarily convey the same level of infor- 

ation to the domain expert regarding selected features, interac- 

ions among them, and model interpretability. For example, some 

eatures might be associated with the effects of the modeled phe- 

omenon rather than its causes. Furthermore, some features may 

e costly to obtain in practice (for example, those associated with 

nvasive clinical analysis, as opposed to other features obtained 

y standard non-invasive exams). Other features may be associ- 

ted with noisy and unreliable measurements. Ultimately, the do- 

ain expert may prefer classifiers based on specific combinations 

f features more often associated with the modeled phenomenon, 

r for classifiers whose performance is more accurate on specific, 

ritical samples. From these considerations, it is apparent that the 

S problem ultimately amounts to a multi-objective optimization 

roblem that accounts for both performance-oriented and subjec- 

ive criteria, the latter being related to model interpretability and 

xplainability and thus often not easy to mathematically formalize, 

23] . At the same time, introducing human feedbacks implies new 

ources of complexity related to variability of the expert’s current 

ocus, [11] . 

In this work, we investigate the potential benefits of including 

he domain expert’s preferences in the FS task, thus integrating 

oth objective elements ( e.g. , classification accuracy) and subjective 

onsiderations in the selection process. This “human-in-the-loop”

an be beneficial in solving the above mentioned ambiguities, [20] . 

n short, the proposed algorithm suitably generates candidate so- 

utions to submit to the expert, who is occasionally required to ex- 

ress a preference within pairs of solutions. This coarse informa- 

ion is then employed to “alter” the objectives of the FS algorithm, 

o drive it towards solutions that guarantee a required level of ac- 

uracy but at the same time are agreeable to the expert according 

o his or her subjective preferences. While human-AI interaction 

n machine learning has been deeply exploited for data producing, 

abeling, and pre-processing, relative few works deals with human- 

I interaction in machine learning modeling tasks, such as FS (see 

23] for details). In [14] the authors suggest to use domain hu- 

an expert knowledge to select among equally important features 

n the proposed wrapper FS method, but no method is proposed 

ased on this idea. In [13] , a Reinforcement Learning method for 

S is described where human experts only provide some initial in- 

ormation regarding the most relevant features, while during the 

earning process no human intervention is exploited. 

The preference-based FS method described in this paper builds 

pon a tailored extension of the GLISp algorithm proposed by 

ome of the authors for real-valued black-box global optimization 

hrough active preference learning [3] . The primary motivation be- 

ind using GLISp and other preference-based optimization algo- 

ithms (see, e.g., [1,4,10,17] ) is that many real-world problems re- 

uire optimizing a qualitative objective function. The function may 

e difficult to quantify, as a human decision-maker can only qual- 

tatively assess the “goodness” of a solution. In this case, it is well 

nown that humans are better at expressing a preference between 

wo options (“A is better than B”) rather than defining a fictitious 

etric to assess multiple solutions quantitatively [12] . 

In preference-based optimization, the expert’s preferences are 

sed to build a surrogate cost function describing his/her eval- 

ation of different solutions. In turn, this surrogate function is 

sed to build an acquisition function, which is optimized to select 

he next candidate solution to propose to the user for compari- 

on with the current best. The acquisition function balances ex- 

loitation (optimization only based on the surrogate cost function 

escribing the observed preferences) and exploration (searching 

nexplored areas of the solution domain). In the present research 

ndeavor, the GLISp approach is reformulated for a combinatorial 

ptimization framework and tailored to the FS task. The discrete 
2

ature of the optimization problem is explicitly accounted for in 

he construction of both the surrogate and acquisition functions. 

otice also that, again due to the discrete nature of the problem, 

he optimization of the acquisition function may occasionally yield 

 previously explored solution, which can never occur in the con- 

inuous setting. To avoid presenting to the expert already seen so- 

utions, a heuristic method is applied to locally perturb the solu- 

ion. To optimize the acquisition function we here employ the Ran- 

omized FS and Classification (RFSC) algorithm described in [9] . 

The RFSC is a wrapper algorithm, that employs a multi-model 

riterion for assessing the importance of each feature, for increased 

obustness. More specifically, at each iteration of the RFSC algo- 

ithm a set of models is extracted from a probability distribution 

efined over all the possible feature subsets. These models are 

stimated and evaluated, and the aggregate information regard- 

ng their performances is used to update the probability distribu- 

ion, by reinforcing the probability to extract features that appear 

n successful models more often than not. Ultimately, the distri- 

ution converges to a limit distribution corresponding to a sin- 

le model. The RFSC has several desirable features: a) it only re- 

uires the evaluation of the cost function; b) it generally provides 

n excellent tradeoff between model complexity and classification 

ccuracy; c) it is not prone to error accumulation problems (as 

equential methods); d) it operates the selection based on robust 

vidence gathered on a population of models; e) thanks to the ran- 

omization it can occasionally escape from local minima. All these 

eatures, and especially its robustness (due to the multi-model cri- 

erion for FS), make the RFSC well-suited for the GLISp framework. 

esides, the sample-and-evaluate strategy exploited by the RFSC 

as been successfully applied for feature selection in several dis- 

rete and continuous problems, as discussed in [6–8,16] . 

While the effectiveness of the GLISp and the RFSC has been al- 

eady analyzed in [3] and [9] with reference to several numerical 

ata sets taken from public available repositories, in this paper we 

re mainly interested in investigating their combination to solve FS 

roblems within a human-in-the-loop framework [20] . 

The proposed method has been tested on both academic and 

xperimental FS problems, and notably, a COVID’19 patients record, 

emonstrating its ability to drive the selection process towards 

olutions that optimize an unknown criterion, manifested to the 

lgorithm only utilizing the expert preferences. Regarding the 

OVID’19 dataset, classifiers for mortality prediction in patients 

ith COVID-19 pneumonia have been trained. A human-in-the- 

oop experiment is also documented where the trained classifiers 

re proposed to a human medical expert, who iteratively expresses 

airwise preferences between two classifiers according to his 

unknown) subjective understanding and model interpretability. 

The main contributions of this work are: 

• A novel FS approach that accounts for human-AI interaction, by 

resorting to the expert advise for better tuning of the optimiza- 

tion process; 

• A tailored extension of the GLISp algorithm for discrete opti- 

mization; 

• Presentation and discussion of a medical human-in-the-loop 

experiment related to prognosis for COVID’19. 

We stress again that this work is not meant to make a compar- 

son with existing classical FS approaches, but rather to discuss the 

otential benefit of considering human-AI interaction for ill-posed 

S problems, where classical methods are at a loss. 

The rest of the paper is organized as follows. Section 2 presents 

he active preference-based FS problem. Section 3 reviews the 

LISp framework upon which the proposed algorithm detailed in 

ection 4 is built. A brief description of the RFSC algorithm used 

o maximize the acquisition function is provided in Section 5 . 

ection 6 reports the results in applying the proposed procedure to 
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1 In the following, when we refer to a model structure s , we also implicitly refer 

to the corresponding classifier g s , ϑ � , with parameters ϑ � s obtained by solving (1) . 
n illustrative example and to a case study dealing with predicting 

ortality in COVID-19 pneumonia. Some concluding remarks end 

he paper. 

. Problem statement 

We here consider a multi-class classification problem, 

here a training set is given with T input-output pairs 

 = { ( x (k ) , c(k )) } T 
k =1 

, with x (k ) ∈ R 

N f denoting the k th input

or feature vector) and c(k ) = { 1 , 2 , . . . , N c } the corresponding

utput label (or observed class). 

In many classification problems, the size N f of the feature vec- 

or x ( i.e. , the number of features) can be very large, which makes 

he estimation of the full model awkward, since overparametriza- 

ion and overfitting issues are likely to ensue, unless a prior selec- 

ion of the features is carried out. The robustness and reliability of 

he model, i.e. the capability of generalizing the prediction perfor- 

ances to unseen observations, are greatly improved if the num- 

er of features is kept low, including in the model only a small 

ubset of meaningful features. This has also an important practi- 

al consequence, given that the actual obtainment of the feature 

alues is often not devoid of cost, as in the case, e.g. , of features

ssociated to clinical tests that a patient has to undergo. Finally, 

he interpretability of the model is also increased by focusing on 

ew features. For all these reasons, a FS procedure must be put in 

lace, as discussed in the following. 

A classifier g s , ϑ : R 

N f → { 1 , 2 , . . . , N c } , maps features to classes,

 ∈ S = { 0 , 1 } N f coding its structure , such that s i = 1 if the i th fea-

ure x i enters the model and s i = 0 otherwise, and ϑ ∈ � being a 

et of parameters. The classifier can be trained on the dataset D
y minimizing a loss function L : S × � → R ( e.g. , minus the log-

ikelihood of the data). The minimal loss L achieved by a classifier 

ith structure s can be thus computed as 

 ( s ) = min 

ϑ ∈ �
L ( s , ϑ ) (1) 

nd ϑ 

� 
s = arg min ϑ ∈ � L ( s , ϑ ) denotes the corresponding 

arametrization. Accordingly, we denote by g s , ϑ � s 
the classifier 

ith structure s and corresponding optimal parameters ϑ 

� 
s . 

We here investigate the possibility to include in the FS proce- 

ure the subjective criteria employed by a domain expert by taking 

nto account his/her preferences, occasionally expressed over pairs 

f suggested classifiers. The intuition behind this idea is that the 

xpert’s preferences may convey useful and subjective information 

o allow the FS algorithm to balance model accuracy and other 

ot formalized – but nonetheless important – requirements. This 

ltimately brings the algorithm to select those features (or com- 

inations of features) that ensure high classification accuracy and 

t the same time are meaningful from a domain-oriented point of 

iew. 

Formally, we state the FS problem as follows: 

min 

s ∈S 
p( s ; g s , ϑ � s ) , (2a) 

.t. f ( s ; g s , ϑ � s ) ≤ 0 (2b) 

here p( s ; g s , ϑ � s 
) : S → R is an unknown cost function which de-

ends on the classifier g s , ϑ � s 
and describes the subjective opinion 

f an external expert about the feature subset s and the corre- 

ponding classifier performance. Instead, we assume that the con- 

traint function f ( s ; g s , ϑ � s 
) in (2b) , with f : S → R 

n c , captures pos-

ible quantifiable and objective properties that the classifier must 

atisfy, e.g., minimum classification accuracy, specificity, sensitiv- 

ty, or model size. However, we assume that f can be only eval- 

ated after g s , ϑ has been trained. In the following, for ease of no- 

ation, we omit the dependence of the functions p and f on the 

lassifier g s , ϑ . 
3 
Since function p is not directly available to the FS procedure, to 

olve problem (2) the expert should in principle rate all the pos- 

ible structures in S . This is generally not affordable due to the 

arge number 2 N f of combinations, where the dimension N f of S
an be also large. Instead, we propose an iterative procedure to 

olve (2) where at each iteration the expert is asked to give some 

references between pairs of candidate model structures 1 , as dis- 

ussed in the following. 

Given two candidate model structures s (1) , s (2) ∈ S, the prefer- 

nce function π : S × S → {−1 , 0 , 1 } expressed by the expert is de-

ned as 

( s (1) , s (2) ) = 

{ −1 if s (1) is “better” than s (2) 

0 if s (1) is “as good as” s (2) 

+1 if s (1) is “worse” than s (2) 

, (3) 

here for all s ( j) , s (k ) , s (l) ∈ S it holds that: 

1. π( s ( j) , s ( j) ) = 0 , 

2. π( s ( j) , s (k ) ) = −π( s (k ) , s ( j) ) , 

3. π( s ( j) , s (k ) ) = π( s (k ) , s (l) ) = −1 ⇒ π( s ( j) , s (l) ) = −1 (transitive

property). 

Note that π is a black-box function that can be evaluated on 

airs ( s (1) , s (2) ) by querying the expert. In particular, we assume 

hat the value π( s (1) , s (2) ) is returned by the user according to his

r her underlying function p as follows: 

1. p( s ( j) ) < p( s (k ) ) → π( s ( j) , s (k ) ) = −1 , 

2. p( s ( j) ) = p( s (k ) ) → π( s ( j) , s (k ) ) = 0 , 

3. p( s ( j) ) > p( s (k ) ) → π( s ( j) , s (k ) ) = 1 , 

or all s ( j) , s (k ) ∈ S satisfying constraint (2b) . Without loss of gen- 

rality, we assume that combinations s ∈ S such that constraint 

f ( s ) > 0 holds are implicitly always not preferred to feasible so- 

utions. In other words: 

( s ( j) , s (k ) ) = −1 , ∀ s ( j) , s (k ) : f ( s ( j) ) ≤ 0 , f ( s (k ) ) > 0 . (4) 

his allows us model the constraint f (s ) ≤ 0 directly as a known 

roperty of the cost function p, that is 

f ( s ( j) ) ≤ 0 , f ( s (k ) ) > 0 → p( s ( j) ) < p( s (k ) ) , ∀ s ( j) , s (k ) ∈ S (5) 

To conclude, Problem (2) ultimately amounts to finding a model 

tructure s � that is better (or at least not worse) than all other 

cceptable model structures, i.e. such that 

( s � , s ) ≤ 0 , ∀ s ∈ S. (6) 

. The GLISp framework 

The preference-based FS method described in this paper follows 

he GLISp scheme [3] , in that it iteratively suggests a sequence of 

odel structures s (1) , . . . , s (N) to the user to test and compare. The 

ser preferences gathered in the process are then exploited to col- 

ect information regarding the unknown cost function p( s ) . 

More precisely, at each iteration of the GLISp scheme, a surro- 

ate preference function ˆ p ( s ; g ϑ ( s ) ) : S → R is trained to approxi-

ate the latent function p( s ; g ϑ ( s ) ) . The set of observed pairwise 

references expressed by the user is taken into account by try- 

ng to preserve the relations: ˆ p ( s (1) ) < ˆ p ( s (2) ) if π( s (1) , s (2) ) =
1 , ̂  p ( s (1) ) > ˆ p ( s (2) ) if π( s (1) , s (2) ) = 1 , and ˆ p ( s (1) ) = ˆ p ( s (2) ) if

( s (1) , s (2) ) = 0 . The surrogate ˆ p is then used to build an acqui-

ition function that is minimized to select the next point s ∈ S for 

valuation, thus proposing a new comparison to the user between 

 ϑ ( s ) and the current best classifier. The acquisition function real- 

zes a trade-off between exploitation (optimization only based on 
s 
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he surrogate function describing the observed preferences) and 

xploration (searching unexplored areas of the solution domain S). 

his iterative algorithm terminates when the maximum number of 

ser queries is reached or when a satisfactory solution is obtained. 

verall, the goal of GLISp is to approach the optimal solution s � 
ithin a small number of experiments, in order to minimize the 

umber of expert interventions. 

In the following subsections we discuss in detail how the sur- 

ogate and acquisition functions can be constructed in the context 

f FS. 

.1. Building the surrogate preference function 

In this section we summarize the approach proposed in [3] to 

onstruct the surrogate preference function ˆ p . Assume that we 

ave trained N ≥ 2 classifiers from the dataset D for N different 

odel structures s ( j) ∈ S, j = 1 , . . . , N. Assume also that the expert

ser has expressed M (with 1 ≤ M ≤
(

N 
2 

)
) pairwise preferences be- 

ween model structures (evaluated based on the comparison of the 

espective classifiers), in the form: 

 h = π( s (i (h )) , s ( j(h )) ) , (7) 

ith h = 1 , . . . , M, i (h ) , j(h ) ∈ { 1 , . . . , N} , i (h ) 	 = j(h ) . According to

he definition of preference, it holds that b h ∈ {−1 , 0 , 1 } . The user

references are collected in a preference vector B = [ b 1 . . . b M 

] T ∈
−1 , 0 , 1 } M , along with the compared structures indexed by

 (h ) , j(h ) , with h = 1 , . . . , M. 

Let us parameterize the surrogate function ˆ p to be estimated 

s the following linear combination of Radial Basis Functions 

RBFs) [18,24] : 

ˆ p ( s ) = 

N ∑ 

k =1 

βk φ(εd( s , s (k ) )) , (8) 

here d : S × S → R is a distance measure between two model

tructures s (i ) and s ( j) , such as the Euclidean distance 

( s (i ) , s ( j) ) = ‖ s (i ) − s ( j) ‖ 

2 
2 , (9) 

> 0 is a scalar parameter, φ : R → R is an RBF, and β =
 β1 . . . βN ] 

T are the unknown coefficients to be trained from 

he available preference vector B . Some examples of RBFs are the 

nverse quadratic φ(εd) = 

1 
1+(εd) 2 

, the Gaussian φ(εd) = e −(εd) 2 , 

nd the thin plate spline φ(εd) = (εd) 2 log (εd) functions (see 

ore examples in [2,18] ). 

Based on the observed preference vector B, the surrogate pref- 

rence function ˆ p is constructed by imposing the constraints 

ˆ p ( s (i ) ) ≤ ˆ p ( s ( j) ) − σ + ε h if π( s (i ) , s ( j) ) = −1 (10a) 

ˆ p ( s (i ) ) ≥ ˆ p ( s ( j) ) + σ − ε h if π( s (i ) , s ( j) ) = 1 (10b) 

 ̂

 p ( s (i ) ) − ˆ p ( s ( j) ) | ≤ σ + ε h if π( s (i ) , s ( j) ) = 0 (10c) 

or all h = 1 , . . . , M, where σ > 0 is a given tolerance and ε =
 ε 1 , . . . , ε M 

] are positive slack variables. More specifically, the co- 

fficients β in (8) are computed by solving the convex quadratic 
4 
rogramming (QP) problem 

min β,ε 

M ∑ 

h =1 

c h ε h + 

λ

2 

N ∑ 

k =1 

β2 
k 

s . t . 

N ∑ 

k =1 

(φ(εd( s (i (h )) , s (k ) ) − φ(εd( s ( j(h )) , s (k ) )) βk 

≤ −σ + ε h , ∀ h : b h = −1 

N ∑ 

k =1 

(φ(εd( s (i (h )) , s (k ) ) − φ(εd( s ( j(h )) , s (k ) )) βk 

≥ σ − ε h , ∀ h : b h = 1 ∣∣∣∣∣
N ∑ 

k =1 

(φ(εd( s (i (h )) , s (k ) ) − φ(εd( s ( j(h )) , s (k ) )) βk 

∣∣∣∣∣
≤ σ + ε h , ∀ h : b h = 0 

h = 1 , . . . , M 

(11) 

here c h are positive weights, e.g. c h = 1 , ∀ h = 1 , . . . , M, and λ > 0

s a regularization hyperparameter. Note that the slack variables ε h 
n (10) and (11) are used to relax the constraints imposed by the 

reference vector B . Infeasibility of the constraints may be due to 

nconsistent assessments done by the user or to the poor flexibility 

f the basis functions used to parameterize ˆ p . 

emark 1. As stated in [11] , a potential risk in using human feed-

ack is the confirmation bias. Indeed, in expressing preferences, 

xperts may track the likelihood of a hypothesis, which could lead 

o bias if the experts only acknowledge evidence that is consis- 

ent with their existing beliefs. This calls for a proper balancing of 

he exploitation of the current available observations vs. the explo- 

ation when generating the new structures. The risk for confirma- 

ion bias will be considered in future work. 

Finally, we remark that the computation of the surrogate func- 

ion ˆ p requires to set the hyperparameter ε defining the shape of 

he RBFs φ in (8) . The simplest way to choose ε is by K-fold cross-

alidation [28] , by testing the capabilities of ˆ p in reconstructing the 

references in parts of the dataset not used to estimate ˆ p . 

.2. Building the acquisition function 

Once the surrogate function ˆ p is estimated, one could in prin- 

iple minimize it to find the model structure (and corresponding 

lassifier) that represents the best selection for the user, accord- 

ng to definition (6) . More specifically, the following steps could be 

teratively followed: 

i) Propose a new model structure by minimizing ˆ p , i.e. , 

s (N+1) = arg min 

s ∈S 
ˆ p ( s ) ; (12) 

ii) Ask the user to express the preference π( s (N+1) , s (N) 
� ) , with s (N) 

� 

being the best model structure found so far, corresponding to 

the smallest index i � such that 

π( s (i � ) , s (i ) ) ≤ 0 , ∀ i = 1 , . . . , N; (13) 

ii) Update the estimate of ˆ p through (11) . 

Unfortunately, by exploiting only the current available obser- 

ations in the model structure selection process, one may easily 

iss the global optimum s � in (6) , as the proposed candidate so- 

utions only rely on the available observations, leaving regions of 

he search space S unexplored. A term promoting the exploration 

f the space S should thus be considered, along with the surro- 

ate ˆ p , in proposing the next model structure s (N+1) . As proposed 



F. Bianchi, L. Piroddi, A. Bemporad et al. European Journal of Control 66 (2022) 100647 

i

d

z

w  

t

t

f

t

s

q

a

w

�

i

s

p

(

o

 

e

s

l

s

s

r

S

f

e

n

i  

n

p

t

a

t  

s

c

p

4

t

p

f

a

m

s

b

t

m

l

p

Algorithm 1 Preference-based FS algorithm. 

Input: Number N init ≥ 2 of initial structures, maximum number 

N max ≥ N init of preference observations, hyper-parameters δ ≥ 0 , 

σ > 0 , ε > 0 , self-calibration index set I sc ⊆ { 1 , . . . , N max − 1 } . 
Output: Optimal structure s � . 

1: Generate N init random structures { s (1) , . . . , s (N init ) } ; 
2: N ← 1 , i � ← 1 , CONTINUE ← True ; OBSERVE ← True ; 

3: while N < N max and CONTINUE do 

4: if N ≥ N init then 

5: if N ∈ I sc then 

6: Recalibrate ε by K-fold cross-validation; 

7: end if 

8: Solve optimization problem (11) and get β; 

9: Solve optimization problem (16) and get s (N+1) 

(Algorithm 2); 

10: if s (N+1) ∈ { s (1) , . . . , s (N) } then 

11: 
(
s (N+1) , CONTINUE 

)
← flip 

(
s (N+1) , { s (k ) } N 

k =1 

)
; 

12: end if 

13: Compute classifier associated to s (N+1) ; 

14: if f ( s (N+1) ) ≤ 0 then 

15: OBSERVE ← True ; 

16: else 

17: OBSERVE ← False ; 

18: end if 

19: end if 

20: i (N) ← i � , j(N) ← N + 1 ; 

21: if OBSERVE then 

22: Observe preference b N = π
(
s (i (N)) , s ( j(N)) 

)
; 

23: if b N = 1 then 

24: i � ← j(N) ; 

25: end if 

26: end if 

27: N ← N + 1 ; 

28: end while 

(
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n [2,3] , the exploration term is constructed based on the inverse 

istance weighting (IDW) function z : S → [0 , 1] defined as 

( s ) = 

{ 

0 if s ∈ { s (1) , . . . , s (N) } 
2 
π tan 

−1 

(
1 ∑ N 

i =1 w i ( s ) 

)
otherwise 

(14) 

here w i ( s ) = 

1 
d( s , s (i ) ) 2 

. In other words, z( s ) = 0 for all already

ested structures, and z( s ) > 0 otherwise. The inverse tangent func- 

ion in (14) prevents z( s ) from getting excessively large far away 

rom all sampled points. 

In the GLISp algorithm [3] , an acquisition function is employed 

o balance exploitation vs. exploration when generating the new 

ample s (N+1) . Given an exploration hyperparameter δ ≥ 0 , the ac- 

uisition function a : S → R is constructed as 

 ( s ) = 

ˆ p ( s ) 

� ˆ p 
− δz( s ) , (15) 

here 

ˆ p = max 
i 

{ ̂  p ( s (i ) ) } − min 

i 
{ ̂  p ( s (i ) ) } 

s the range of the surrogate function values on the samples 

 

(1) , . . . , s (N) and acts as a normalization constant in (15) to sim- 

lify the choice of the exploration parameter δ. Note that � ˆ p ≥ σ
where σ is the tolerance introduced in (10) ) if there is at least 

ne comparison such that b h = π( s (i (h )) , s ( j(h )) ) 	 = 0 . 

Given a set { s (1) , . . . , s (N) } of samples and a vector B of prefer-

nces defined by (7) , the next model structure s (N+1) (and corre- 

ponding classifier) to propose to the user is computed as the so- 

ution of the following optimization problem with binary variables: 

 

(N+1) = arg min 

s ∈S 
a ( s ) . (16) 

In the acquisition function (15) , the exploration term promotes 

ampling the space S in areas that have not been explored yet. Pa- 

ameter δ balances the exploitation and exploration terms in a ( s ) . 

etting δ = 0 makes the GLISp algorithm rely only on the surrogate 

unction ˆ p as in (12) , whereas setting δ � 1 makes it explore the 

ntire input space regardless of the results of the comparisons. 

We finally remark that, in executing the GLISp algorithm, a 

ew candidate classifier s (N+1) may not satisfy f ( s (N+1) ) ≤ 0 as 

n (2b) after computing g ϑ ( s ) . In this case, because of (4) , there is

o need to ask a preference to the user between the sample s (N+1) 

roposed in (16) and the best model structure s (N) 
� achieved up 

o iteration N. It is also possible that in the first iterations of the 

lgorithm a comparison should be performed over two classifiers 

hat both violate the constraint (2b) . In this case, a remedy is to

et π automatically so that the model structure with the highest 

lassifier accuracy (or another quantitative performance metric) is 

referred. 

. A preference-based feature selection algorithm 

Algorithm 1 summarizes the steps required to compute the op- 

imal structure s � and the associated classifier g ϑ ( s � ) , based on user 

references modeled using RBF interpolants (8) and the acquisition 

unction (15) . Throughout the algorithm, the classifier g ϑ ( s ) associ- 

ted with a given s is computed by exploiting the linear program- 

ing based classification method proposed in [5] . Other classifiers, 

uch as Gaussian Process classifiers or Support Vector Machines can 

e alternatively used. 

In the initialization phase (cf. Algorithm 1 , Step 1), N init struc- 

ures are generated randomly, possibly imposing a priori require- 

ents on the resulting classifier such as e.g., a desired minimum 

evel of accuracy, sensitivity, or specificity. 

The main cycle of Algorithm 1 consists of two main 

hases: generation and observation. During the generation phase 
5 
cf. Algorithm 1 , Steps 5 – 18), which applies only for iterations 

 ≥ N init , an approximate solution to Problem (16) is generated as 

xplained in Section 5 . 

Once the candidate solution s (N+1) has been retrieved, it un- 

ergoes a test (cf. Algorithm 1 , Step 11) to establish whether it 

as been already explored (to avoid unnecessary queries to the ex- 

ert). This may happen due to the randomized nature of the RFSC 

nd the discrete nature of S . If s (N+1) ∈ { s (1) , . . . , s (N) } , we perturb

he solution as follows. All the model structures at a Hamming dis- 

ance of 1 from s (N+1) are sorted according to their surrogate func- 

ion values, and the best unexplored solution is returned. If all the 

ew generated structures have been already explored, we exit from 

lgorithm 1 . The generation phase concludes by verifying whether 

r not the generated candidate solution s (N+1) satisfies the con- 

traint f ( s ) ≤ 0 in (2b) (cf. Algorithm 1 , Step 14). In the affirma-

ive case, the algorithm proceeds with the preference observation 

hase (cf. Algorithm 1 , Step 22). In this phase, the expert is asked 

o provide a pairwise preference between the sample s (N+1) pro- 

osed in (16) and the best model structure s (N) 
� achieved up to it- 

ration N. If the proposed candidate solution is preferred, the best 

odel structure is updated accordingly (cf. Algorithm 1 , Step 23). 

. The generation phase 

In the generation phase the algorithm selects a new structure 

 

(N+1) to be proposed to the expert for comparison with the best 

ne obtained so far s (N) 
� . The new structure is obtained by min- 

mizing the acquisition function a ( s ) . To solve this combinatorial 
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Algorithm 2 Randomized algorithm for structure generation. 

Input: Number N p of structures to extract at each iteration, 

number N f of features, initial Bernoullian success probabilities μ, 

probability saturation values μmin and μmax , scaling factor K, RBF 

coefficients β, scalar parameter ε. 

Output: Proposed structure s . 

1: repeat 

2: for p = 1 to N p do 

3: Extract non-empty structure s (p) from Bernoullian( μ); 

4: Evaluate the surrogate function ˆ p ( s (p) ) as in (8); 

5: Define acquisition function a ( s (p) ) as in (15); 

6: J 

(p) ← e −K·a ( s (p) ) ; 

7: end for 

8: for j = 1 to n do 

9: J 

� ← 0 ; n � ← 0 ; J 

� ← 0 ; n � ← 0 ; 

10: for p = 1 to N p do 

11: if s 
(p) 
j 

= 1 then 

12: J 

� ← J 

� + J 

(p) ; n � ← n � + 1 ; 

13: else 

14: J 

� ← J 

� + J 

(p) ; n � ← n � + 1 ; 

15: end if 

16: end for 

17: χ ← 

1 
10 ( J best −J mean ) +0 . 1 

; 

18: μ j ← μ j + χ
(

J �
max ( n �, 1 ) 

− J �
max ( n �, 1 ) 

)
; 

19: μ j ← max 
(
min 

(
μ j , μmax 

)
, μmin 

)
; 

20: end for 

21: until Stopping criterion 

22: s ← round ( μ) ; 
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roblem over the space of structures S, we apply the RFSC algo- 

ithm [9] . The RFSC employs a probabilistic reformulation of the 

ptimization problem, by introducing the random variable φ which 

akes values in S according to a probability distribution P φ . The 

erformance of φ is also a random variable, and its expectation is 

iven by 

 [ J (φ)] = 

∑ 

s ∈S 
J ( s ) P φ( s ) , (17) 

here J ( s ) = e −K·a ( s ) , so that performance is graded from 0 to 1.

ndex (17) is maximized when the probability mass concentrates 

n a feature subset with minimum value of a . Accordingly, the op- 

imization problem can be solved by searching for the limit distri- 

ution 

 

∗
φ = arg min 

P φ
E [ J (φ)] . (18) 

To address this problem in practice, P φ is parameterized by as- 

ociating a Bernoulli random variable ρ j to each feature x j , that 

odels the belief that x j belongs to the target feature subset: 

j ∼ Be (μ j ) , (19) 

j = 1 , . . . , N f , where μ j ∈ [0 , 1] is the success probability. A feature

ubset can then be extracted from this distribution, by extracting a 

alue from the Bernoullian distribution associated to each feature 

 j , j = 1 , . . . , N f , and including the latter in the feature subset if

he outcome is 1. This event has probability μ j , which is accord- 

ngly denoted Feature Inclusion Probability (FIP) of the jth feature. 

or simplicity, all random variables ρ j , j = 1 , . . . , N r are assumed

ndependent. The probability of a feature subset s ∈ S can be ex- 

ressed as 

 φ( s ) = 

∏ 

j: s j =1 

μ j 

∏ 

j: s j =0 

(1 − μ j ) . (20) 

he RFSC operates by adapting the FIPs until convergence to a 

arget limit distribution ( i.e. , such that all FIPs are valued 0 or 1,

hich corresponds to assigning probability 1 to a specific feature 

ubset). The adaptation of P φ is carried out by repeating the fol- 

owing tasks at each iteration: a) extract a set of feature subsets, 

) evaluate the corresponding values of the acquisition function, c) 

stimate the importance of each feature, d) update the FIP of each 

eature. The importance of a feature x j is calculated by means of 

n aggregate indicator I j that compares the average performance 

f the feature subsets including the said feature with that of the 

emaining ones: 

 j = E [ J (φ) | φ j = 1] − E [ J (φ) | φ j = 0] , (21)

here j = 1 , . . . , N f . Indicator I j averages over all structures in S
nd can therefore be considered a global measure of the regressor 

mportance. In task (c) of the main loop of the algorithm, I j is 

stimated based on the sampled feature subsets. Then, in task (d), 

he FIPs are updated as follows 

j (t + 1) = μ j (t) + χ ˆ I j (22) 

or j = 1 , · · · , N f , where ˆ I j is the sampled estimate of I j and χ
s a gain factor (or step size). The value of χ balances algorithm 

peed and robustness, and reflects the reliability that the user can 

ssume on the sampled estimate of the importance indicator. 

The structure generation procedure is summarized in 

lgorithm 2 . We address the reader to [9] for all technical 

etails of the algorithm and for a comprehensive numerical analy- 

is on several numerical data sets from the UCI machine learning 

epository, [25] . Notice that the original version of the method 

ncludes a feature pre-processing step that is here omitted. 
6 
. Examples 

.1. Illustrative example 

We first show the performance of the proposed scheme in op- 

imizing an (unknown) numerical cost function through user pref- 

rences. The expert employs the following latent cost function to 

ate model structures: 

p( s ) = ‖ s − s ◦‖ 

2 
1 + P( s ) , (23) 

here 

 

◦
i = 

{
0 , i ∈ { 3 , . . . , 10 } , 
1 , i ∈ { 1 , 2 , 11 , 12 , . . . , 20 } , 

nd P( s ) = 100 ‖ s { 3 , ... , 10 } ‖ 1 . In other words, the expert’s subjective 

riterion penalizes structures different from s ◦. However, the FS al- 

orithm gets this information only indirectly and partially, by way 

f pairwise comparisons between structures. 

Algorithm 1 has been applied to this FS problem, assuming that 

he expert preferences are given according to the latent cost p. The 

arameter settings for Algorithms 1 and 2 are reported in Table 1 . 

Fig. 1 shows the value of the latent function p and of the surro- 

ate ˆ p as a function of the number of queried preferences (number 

f iterations). Apparently, the constructed surrogate function ˆ p is 

apable of driving the algorithm toward the global minimum (rep- 

esented by the dashed red line) which is reached after 40 queried 

references (excluding the N init ones), despite the fact that p and 

ˆ p have very different shapes. Indeed, ˆ p has been constructed only 

o honor the preference constraints (10) given by the user, which 

ccount for the relative relationships (in terms of the preference 

unction) of a small number of model structure pairs. 

Fig. 2 provides a full pictorial representation of the pairwise 

references among the structures proposed at each iteration. The 
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Fig. 1. Value of the latent function p and of the surrogate ˆ p vs number of queried preferences (number of iterations). The green marker denotes the optimizer found by the 

proposed algorithm. The red dashed line indicates the true optimal cost p � . 

Fig. 2. Preferences (green: 0, blue: 1, white: −1 ) based on the latent function p (left) and its constructed surrogate ˆ p (right). Optimal structure s � at row 45. 

Table 1 

Example 1: parameter setting for Algorithm 1 and 2 . 

Param Value 

N init 5 

N max 100 

I sc { 10 , 20 , . . . , 90 } 
δ 1 

σ 0.001 

ε 1 

N p 100 

μ j 0.5 

μmin 0.001 

μmax 0.999 

K 1 
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eft picture shows the preferences calculated according to the la- 

ent function p, while the right picture considers the surrogate 

unction ˆ p . It is evident that the constructed surrogate correctly 

econstructs the preferences between the identified optimal struc- 

ure s � (row 45) and all the other explored structures, thus fulfill- 
7 
ng its purpose. Finally, note from Fig. 1 that, as expected, the al- 

orithm proceeds in exploring the solution space S until the max- 

mum number N max of preference observations is reached. In this 

xample, the flip routine has never been executed. 

.2. Case study - Predicting mortality in COVID-19 pneumonia 

To apply the proposed FS algorithm in a real-world context, we 

onsider the problem of training a classifier to predict 30-day mor- 

ality in patients with COVID-19 pneumonia. We remark that this 

ase study is reported only for illustrative purposes and it only 

ims at showing the effectiveness and potential of the proposed FS 

pproach in a clinical application using real data and experts (clin- 

cians). Extensive validation is not performed for this case study, 

nd thus the models presented in this paper should not be used 

y clinicians to fight against COVID-19 infections. The interested 

eader is referred to [15,19,31] and the references therein for stud- 

es on data-driven development of mortality predictors in COVID- 

9 pneumonia. 
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Table 2 

Case study: parameter setting for Algorithm 1 and 2 . Within brackets the values 

used in Section 6.2.4 , if changed. 

Param Value 

N init 5 

N max 150 (60) 

I sc { 10 , 20 , . . . , 140 } ( { 1 , 2 , . . . , 59 } ) 
δ 1 

σ 0.0001 

ε 1 

N p 100 

μ j 0.016 

μmin 0.001 

μmax 0.999 

K 1 
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.2.1. Dataset 

The dataset consists of 704 patients diagnosed with COVID- 

9 pneumonia admitted from February to November 2020 to the 

uglielmo da Saliceto Hospital, Piacenza, in northern Italy. Among 

he considered patients, 438 (62%) were discharged, while the re- 

aining 266 (38%) deceased. Data characterizing the patients in- 

ludes demographic information, comorbidities, laboratory tests, 

ymptoms and blood examinations at hospital admission, etc., for 

 total of 64 features (see Table 4 for the complete list). Contin- 

ous features are normalized in the [0 , 1] range, and a nearest- 

eighbour method is used to fill in missing data. The overall pa- 

ient data set is randomly split into training (599) and test (105) 

ets. 

.2.2. Fictitious quantitative cost function 

For the sake of illustration, we first test the algorithm by defin- 

ng preferences based on a fictitious quantitative cost function, to 

erify that it is able to reach good solutions although it ignores the 

ost function employed by the expert and only employs the coarse 

nformation provided by the given preferences. To this aim, we em- 

loy the following multi-objective fictitious cost to rate classifiers: 

p( s ; g ϑ ( s ) ) = (1 − acc (g ϑ ( s ) )) + 

‖ s ‖ 

2 
1 

64 

+ f sens (g ϑ ( s ) ) + f spec (g ϑ ( s ) ) , 

here acc (g ϑ ( s ) ) , sens (g ϑ ( s ) ) , and spec (g ϑ ( s ) ) measure respec- 

ively the accuracy, sensitivity and specificity of the classifier g ϑ ( s ) , 

nd 

f sens (g ϑ ( s ) ) 

= 

{
exp (−10( sens (g ϑ ( s ) ) − 0 . 6)) , if sens (g ϑ ( s ) ) ≥ 0 . 6 

(1 + 10 | sens (g ϑ ( s ) ) − 0 . 6 | ) , otherwise 

f spec (g ϑ ( s ) ) 

= 

{
exp (−10( spec (g ϑ ( s ) ) − 0 . 85)) , if spec (g ϑ ( s ) ) ≥ 0 . 85 

(1 + 10 | spec (g ϑ ( s ) ) − 0 . 85 | ) , otherwise 

The rationale behind the designed cost function p( s ; g ϑ ( s ) ) is to 

aximize the overall classifier performance and to comply with a 

esired minimum level of sensitivity, i.e., 60% , and specificity, i.e., 

5% . Classifier complexity is penalized as well. The parameter set- 

ings for Algorithms 1 and 2 are reported in Table 2 . 

Fig. 3 shows the designed cost function p( s ; g ϑ ( s ) ) and its con- 

ribution as a function of the number of queried preferences (num- 

er of iterations) for an execution of the proposed algorithm. Ap- 

arently, the designed cost function fulfills its purposes, as the 

references defined based on it suffice to steer the algorithm to- 

ards a parsimonious solution (9 features) with the desired overall 

erformance. As can be observed in the figure, the optimal solution 

s found after 60 iterations. 
8

.2.3. Effects of feature correlation 

Table 3 reports the classifier performance assessed in terms of 

odel accuracy, specificity, sensitivity, and the selected features 

btained by executing three times the presented algorithm with 

he designed cost function p( s ; g ϑ ( s ) ) . In this way, three different 

lassifiers, denoted as C 1 , C 2 and C 3 are obtained. Although the 

hree classifiers show similar performance, their structure is ex- 

remely different. This is due to the fact that many features are 

orrelated (see Fig. 4 ), which implies that multiple equivalent clas- 

ifiers can be obtained. Nonetheless, the obtained classifiers C 1 , C 2 , 
nd C 3 are not equivalent from a clinical point of view, as here dis- 

ussed. 

The PaO 2 -to-FiO 2 ratio is known to be one of the most impor- 

ant predictor of mortality in COVID-19 pneumonia, and is present 

n all three models. Creatinine is present in the first and second 

lassifier, and not in the third one. Nevertheless, the third clas- 

ifier comprises the urea level, which is strongly correlated with 

he creatinine, as also observed experimentally, with a linear cor- 

elation coefficient equal to 0.72. It is worth remarking that a 

hird of patients with severe COVID-19 pneumonia presents also 

n acute kidney injury [26] , and thus creatinine/urea turns out to 

e strongly related to the worse outcome in these patients. How- 

ver, high creatinine/urea levels is consistently found not only in 

OVID-19 pneumonia, but also in other diseases that compromise 

idney function. 

Looking at the single classifiers, all features involved in C 1 can 

e easily collected at the hospital admission. The only exception is 

he respiratory rate , which is mostly measured manually and it is 

elieved to waste valuable time for clinicians, especially in emer- 

ency settings. Furthermore, although the accuracy in the mea- 

urements of respiratory rate by healthcare professionals has been 

eported to be fairly high, minor changes in this variable may have 

n important effect in risk assessment in critically ill COVID-19 pa- 

ients [21] . Overall, classifier C 1 shows good performance, but lacks 

nflammatory parameters (such as the neutrophil-to-lymphocyte ra- 

io and the C-reactive protein ) which are the most predictive labo- 

atory variables in COVID-19 pneumonia. 

Classifier C 2 , is the simplest in terms of required predictors, but 

t provides information only on kidney and pulmonary functions. 

urthermore, it comprises the sodium level as a predictor, whose 

orrelation with prognosis in COVID-19 is still a matter of debate. 

The last classifier C 3 is the most complete and informative 

rom a physician perspective, as it comprises clinical and labo- 

atory parameters, such as: PaO 2 -to-FiO 2 ratio ; symptom duration ; 

nd neutrophil-to-lymphocyte ratio . Notably, C 3 is the only classifier 

onsidering the age as a feature. However, it comprises the PaO 2 

 i.e. , partial pressure of oxygen dissolved in plasma), that is redun- 

ant with respect to the PaO 2 -to-FiO 2 ratio. Overall, the two clin- 

cians involved in this study (Dr. Geza Halasz and Dr. Matteo Vil- 

ani), agree to consider C 3 as the most valuable classifier among 

he three in predicting COVID-19 mortality. 

The above discussion highlights the differences among the three 

lassifiers, and shows the importance of involving experts to drive 

he construction of prognostic models for clinical practices. 

.2.4. Clinician-in-the-loop decision making 

The clinician Dr. Geza Halasz was asked to act as expert in the 

pplication of the proposed preference-based algorithm. 

To start the experiment, five initial classifiers are randomly gen- 

rated with the following constraints: maximum number of fea- 

ures equal to 15; accuracy larger than 0.7, sensitivity and speci- 

city larger than 0.5. An initial comparison between these five 

lassifiers is then performed, as detailed in Algorithm 1 . 

New models are then iteratively proposed according to 

lgorithm 1 . To avoid unnecessary queries to the expert, only mod- 

ls with an accuracy acc (g ϑ ( s ) ) higher than 0.7 are proposed for 
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Table 4 

Complete list of patients’ characteristics available in the COVID-19 dataset. 

Number Feature Number Feature 

1 glucose level 33 prothrombin time 

2 urea level 34 prothrombin activity percentage 

3 creatinine level 35 prothrombin time - INR 

4 sodium level 36 partial thromboplastin time 

5 potassium level 37 activated partial thromboplastin time 

6 chloride level 38 C-reactive protein 

7 conjugated total 39 age 

8 conjugated bilirubin 40 gender 

9 aspartate aminotransferase 41 systolic blood pressure 

10 alanine aminotransferase 42 heart rate 

11 lactate dehydrogenase 43 oxygen saturation 

12 creatine kinase 44 respiratory rate 

13 amilase 45 temperature 

14 lipase 46 PaO 2 -to-FiO 2 ratio 

15 cholinesterase 47 symptoms 

16 white blood cells count 48 hypertension 

17 red blood cells count 49 atrial fibrillation 

18 haemoglobin 50 chronic obstructive pulmonary disease 

19 hematocrit 51 dislypidemia 

20 mean corpuscular volume 52 chronic kidney disease 

21 mean hemoglobin concentration 53 diabetes 

22 mean corpuscular hemoglobin concentration 54 malignancy (active or previously treated) 

23 platelets count 55 previous stroke 

24 red cell distribution width 56 peripheral artery disease 

25 neutrophils percentage 57 comorbidities 

26 lymphocytes percentage 58 neutrophil-to-lymphocyte ratio 

27 monocytes percentage 59 coronary artery disease 

28 eosinophil percentage 60 arterial pH 

29 lymphocytes count 61 PaO 2 

30 monocytes count 62 PaCO 2 

31 eosinophil count 63 HCO 3 

32 neutrophils count 64 glasgow coma scale 

Fig. 3. Cost function p( s ; g ϑ ( s ) ) and its contributions as a function of the number of queried preferences (number of iterations). The green marker denotes the found optimal 

solution. 
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omparison. Classifiers not satisfying this constraint are thus auto- 

atically “labelled” as worse than the previous best classifier. Be- 

ides quantitative metrics such as accuracy, sensitivity, specificity, 

nd required features, the clinician implicitly considered the fol- 

owing criteria in expressing his preference: clinical interpretability 

f the model; cost and difficulty in obtaining the features; presence 

f variables typically associated with mortality in COVID-19 pneu- 
9

onia. For instance, at iteration N = 12 the comparison between 

he following two models is proposed: 

• best model g 
ϑ ( s (N) 

� ) 
achieved up to iteration N = 12 : 

acc (g ϑ ( s (N) ) ) = 77 . 14% ; spec (g ϑ ( s (N) ) ) = 64 . 10% ; sens (g ϑ ( s (N) ) ) =
84 . 85% ; features = { neutrophil-to-lymphocyte ratio , white blood 

cells count , monocytes percentage , monocytes count , prothrombin 
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Table 3 

Performance and selected features of three different classifiers. 

Accuracy [%] Sensitivity [%] Specificity [%] Selected features 

C 1 81.91 71.80 87.88 creatinine level 

cholinesterase 

haemoglobin 

red cell distribution width 

monocytes percentage 

prothrombin activity percentage 

respiratory rate 

PaO 2 -to-FiO 2 ratio 

C 2 80.95 64.10 90.91 creatinine level 

sodium level 

oxygen saturation 

PaO 2 -to-FiO 2 ratio 

C 3 80.00 66.667 87.88 urea level 

neutrophils count 

age 

PaO 2 -to-FiO 2 ratio 

symptoms 

peripheral artery disease 

neutrophil-to-lymphocyte ratio 

PaO 2 

Fig. 4. Linear correlation coefficients between pairs of features: x and y axis represent the feature number. 
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time , age , PaO 2 -to-FiO 2 ratio , chronic obstructive pulmonary 

disease , chronic kidney disease , coronary artery disease } . 
• new candidate model g ϑ ( s (N) ) : acc (g ϑ ( s (N) ) ) = 76 . 20% ; 

spec (g ϑ ( s (N) ) ) = 58 . 98% ; sens (g ϑ ( s (N) ) ) = 86 . 36% ; features

= { neutrophil-to-lymphocyte ratio , white blood cells count , 

monocytes percentage , eosinophil count , prothrombin time , age , 

PaO 2 -to-FiO 2 ratio , chronic obstructive pulmonary disease , chronic 

kidney disease } . 
Although accuracy and sensitivity of the new candidate model 

re lower than the best model proposed so far, the former is 

referred since it involves less features and also includes the 

osinophil count which, according to the literature, is strongly re- 

ated to mortality in COVID-19 pneumonia. 

It is interesting to discuss also the comparison proposed at 

he next iteration (i.e, N = 13 ), where the best model is the one

ust reported, while the new candidate model has the follow- 

ng characteristics: acc (g ϑ ( s (N) ) ) = 74 . 28% ; spec (g ϑ ( s (N) ) ) = 56 . 41% ;

ens (g ϑ ( s (N) ) ) = 84 . 85% ; features = { neutrophil-to-lymphocyte ra- 

io , monocytes percentage , prothrombin time , chronic obstructive pul- 

onary disease , chronic kidney disease } . The two models are differ- 

nt in terms of selected features, and the first one outperforms the 

econd one. However, the latter has a similar clinical interpretabil- 

ty, although it contains less variables. In this case, the clinician 

efines the two models as “comparable”. 
10 
At iteration N = 20 , the model with the following char- 

cteristics is proposed and selected: acc (g ϑ ( s (N) ) ) = 79 . 05% ; 

pec (g ϑ ( s (N) ) ) = 64 . 10% ; sens (g ϑ ( s (N) ) ) = 87 . 88% ; features =
 neutrophil-to-lymphocyte ratio , white blood cells count , prothrom- 

in time , age , PaO 2 -to-FiO 2 ratio , symptoms , chronic obstructive 

ulmonary disease , chronic kidney disease } . The procedure keeps 

oing until N max = 60 iterations, but no better models are selected. 

his model contains a “reasonable” number of variables, which 

urns out to be quite informative from a clinical perspective. 

n fact, this model includes: laboratory parameters; symptom 

uration before hospital admission; clinical variables as the 

aO 2 -to-FiO 2 ratio ; and coexisting pathological conditions. For 

he above reasons, both clinicians involved in this study agree 

hat this model model is better than the three ones discussed in 

ection 6.2.3 and reported in Table 3 . 

. Conclusion 

A novel algorithm for active preference-based FS in classifica- 

ion problems has been discussed. It relies on a suitable formula- 

ion of the FS problem based on the optimization of a latent cost 

unction describing the subjective opinion of an external expert 

bout the selected feature subset and about the classifier perfor- 

ance. Since this term is not directly available to the algorithm, 
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 surrogate of it is iteratively trained based on binary preferences 

xpressed by the expert on pairs of candidate feature subsets. The 

roposed method has been tested on both synthetic and experi- 

ental FS problems, proving its effectiveness in selecting the rel- 

vant features. Notably, the potentiality of the proposed approach 

as been validated by two clinicians involved in the study deal- 

ng with predicting mortality in COVID-19 pneumonia. The prelim- 

nary experimental results are promising, in that a parsimonious 

nd accurate solution is obtained after a relatively short explo- 

ation phase. Future research will focus on deriving alternative pa- 

ameterizations of the surrogate function, as well as addressing the 

onfirmation bias issue. 
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