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For model-free optimal control design, this paper proposes an approach based on optimizing the refer-
ence model that is used in direct data-driven controller synthesis. Optimality is defined with respect to
suitable cost functions reflecting desired performance and control objectives. We rely on the well-known
Virtual Reference Feedback Tuning technique and on a direct control design approach that ensures stabil-

ity of the resulting closed-loop system. The proposed design method leads to a non-convex optimization
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problem with a small number of variables that can be easily solved by a global optimizer, such as by par-
ticle swarm optimization. The effectiveness of the proposed solution is illustrated in simulation examples.

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Control design based on experimental data has been a research
topic of great interest over the last decades. The main goal of direct
(model-free) data-driven approaches is to avoid the need of deriv-
ing a dynamical model of the process to be controlled from phys-
ical laws, since this can be a difficult and time-consuming task,
requiring one to trade off between the quality of the model and its
simplicity [16,20,28]. Indeed, direct methods only use very basic
properties of the process to define desired and achievable closed-
loop dynamics and to select a suitable parametric controller family.
Control design is then performed by minimizing a cost function,
computed from experimental data, that penalizes the discrepancy
between desired and achieved closed-loop dynamics.

Several contributions and different data-driven design strate-
gies are available in the literature (see, e.g., [1,4,6,10,17,18,26,29,30],
and the books [2,21] for an extensive review and treatment on
this topic). Specifically, Virtual Reference Feedback Tuning (VRFT)
[4,6,11,12,26], is a direct data-driven technique that defines the de-
sired complementary sensitivity (i.e., the desired tracking perfor-
mance) in terms of a stable transfer function, and then minimizes
a cost reflecting the discrepancy between the desired reference
model and the potential closed-loop behavior.

While VRFT is computationally simple and can be quite
straightforwardly extended to deal with issues such as disturbance
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rejection [9], it has no theoretical guarantees on the stability of the
resulting closed-loop system, although techniques for data-driven
controller certification [7,8,14] have been proposed to address the
problem of verifying whether a given controller is stabilizing for
an unknown plant on the basis of input-output data collected in
open- or closed-loop configuration. Some research work on direct
data-driven techniques has accounted for stability requirements
within the design procedure (see, e.g., [1,30]). The approach
in [30] defines the desired complementary sensitivity in terms
of a stable transfer function and aims at designing a controller
such that the feedback interconnection with the actual process
reproduces the desired reference behavior as closely as possible.
Furthermore, a sufficient condition is introduced which uses the
collected dataset to determine whether a candidate controller
is stabilizing or not. This allows one to theoretically assess the
stability of the feedback interconnection between a candidate
controller and the unknown plant. However, in case of unstable or
stable but nonminimum phase plants, the technique in [30] only
allows the refinement of a pre-determined stabilizing controller.
The idea of using the collected dataset for both performance and
stability purposes is also exploited, in a different way, in the ap-
proach proposed in [1]. Such an approach relies on the definition
of two reference models, in terms of two stable transfer functions,
expressing the desired input sensitivity and complementary (or
output) sensitivity. The rationale behind the need for two refer-
ence models is that the desired complementary sensitivity defines
output performance objectives, whereas the desired input sensi-
tivity is related to input performance and stability requirements.
Then, the controller is designed by solving a multi-objective
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problem, with the aim of minimizing the discrepancy between the
potential output sensitivity and the desired reference one, as well
as the discrepancy between the potential input sensitivity and
the desired reference one. Furthermore, a sufficient a-posteriori
stability test based on the collected data is also introduced in
order to determine whether a candidate controller is stabilizing
or not. The approach of Battistelli et al. [1] is based on a slightly
more complex architecture than the one of van Heusden et al.
[30]. However, it does not require any stabilizing controller in
the case of stable, possibly nonminimum-phase plants. Moreover,
the technique can be straightforwardly extended to the case
of unstable plants by resorting to a simple cascaded control
architecture.

A critical step of all the aforementioned direct data-driven
control techniques is the choice of the reference model. This
should reflect the desired closed-loop behavior, but also account
for the capability of the underlying unknown process to repro-
duce such a behavior when the synthesized controller is used
to close the loop. Guidelines for choosing a reference model for
multiple-input multiple-output (MIMO) plants with fixed-structure
centralized or decentralized controllers are presented in [13].
These guidelines only require basic information on the plant,
such as relative degree, vague knowledge of the dominant time
constants, and non-minimum phase zeros, if any. The case of
data-driven control design for single-input single-output (SISO)
plants with unknown non-minimum phase zeros is addressed
in [5], where a flexible reference model with free numerator coef-
ficients is used. These coefficients are then optimized along with
the controller in an iterative way. The work in [15] is extended to
control of MIMO plants using a parametrized decoupled reference
model. Further, [23] proposes a hierarchical architecture, in which
an inner controller is first designed from data to match a simple
low-performance closed-loop reference model, that is then used as
a prediction model in an outer model predictive controller (MPC)
designed to enhance tracking performance and enforce input
and output constraints. The same architecture is used in [22],
where the best model used by MPC to predict the behavior of
the inner loop is chosen through iterative experiments. Although
this architecture can achieve satisfactory outcomes, choosing a too
low-performing reference model for the inner loop could lead the
outer MPC to exert aggressive control actions.

In this paper we propose an alternative method to choose the
reference model for direct model-free design. The goal is to deter-
mine optimal reference models, where optimality is defined with
respect to a cost function reflecting desired closed-loop perfor-
mance and control objectives. Preliminary results, only related to
the VRFT approach and not accounting for stability guarantees of
the resulting closed-loop system, were presented in [27]. We high-
light that the proposed method is a general framework for the
choice of reference models, which is suitable to being used also
in combination with other variants of the VRFT approach. Indeed,
in this paper we consider only two direct data-driven design tech-
niques just for example, namely VRFT (due to its simplicity) and
the one proposed in [1] (because it allows one to explicitly account
for closed-loop stability objectives).

The paper is organized as follows. In Section 2, after briefly de-
scribing the VRFT approach, we will provide guidelines for the op-
timal selection of the reference model. In Section 3, we will focus
on stability guarantees. In particular, we will consider the approach
of [1] and, after briefly recalling this technique, we will propose a
joint optimal selection of both input and output reference mod-
els. Section 4 will be devoted to the solution of the optimization
problems formulated in Sections 2 and 3 through particle swarm
optimization. In Section 5, simulation results, carried out in differ-
ent scenarios, will be presented. Finally, concluding remarks will
be provided in Section 6.
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2. Optimal selection of reference model

Our aim is to design an optimal controller for an unmod-
eled process P with input u(t) and output y(t), t=0,1,2,....
For simplicity, we consider the SISO case u(t),y(t) eR. A
dataset of N input and output samples (u(0),...,u(N-1)),
(¥(0),...,y(N—1)) is obtained by means of a single open-
loop experiment on the plant!. We first address the model-
free optimal controller synthesis problem by means of the
VRFT method [6]. After briefly recalling the VRFT approach
in the next section, we will introduce an optimality criterion for
selecting the required closed-loop reference model.

2.1. Virtual reference feedback tuning

We want to design a linear discrete-time control law

u(t) =C(e, q)(r(t) —y(t)) + co@)r(t) (1)

where q is the forward shift operator (i.e., qu(t) =u(t+1)) and
r(t) e R is the reference signal to be tracked. Furthermore, we de-
note by C(g, q) the transfer function of a linear time-invariant (LTI)
controller parameterized by vector ¢ € ®, ® C R". The parame-
ter vector ¢ must be tuned in order to comply with control spec-
ifications expressed in terms of a stable pre-determined reference
model M(q) of the closed-loop system. Note that the feedforward
term co(¢) could be set to 0 if C(¢, q) is parameterized to contain
an integrator.

Given the reference model M(q), the VRFT approach relies on
the so-called virtual reference r,(t), defined as the solution of

y() = M(q)ry(t), (2)

where M(q) is assumed to be stably invertible. The virtual tracking
error corresponding to ry(t) is defined as

ey(t) =ry(t) — y(t) (3)

and the virtual input u,(¢,t) obtained from e,(t) and ry,(t)
through the controller C(¢, q), co(@), as

uy(@, t) = C(@, q)ey(t) + co(@)ry(t). (4)

(linear-parameter varying (LPV) or nonlinear controller parameter-
izations of the control laws could be also adopted here).

In VRFT the parameter vector ¢ of the controller is synthesized
by penalizing the error € (¢, t) :=u(t) — uy(@,t) between the col-
lected input u(t) and the virtual input u, (@, t)

N-1

" =argmin}_¢(¢(p.0)), (5)
t=0

where £ : R — R is a loss function such that ¢(¢) > 0, Ve e R, € #
0, and ¢(0) = 0 (for example, £(€) = €2).

2.2. Optimization problem for reference model selection

The VRFT approach relies on choosing a-priori the reference
model M(q). In this section, we provide a simple formulation to
select M(q) according to an optimality criterion.

Let r(0),...,r(N—1), be a representative reference signal that
we expect the controller will be asked to track within the ap-
plication of interest (for example a collection of random steps,

1 When it is not possible to carry out an open-loop experiment, for example if
the plant is unstable, the dataset can be collected by designing a (possibly low-
performance) stabilizing controller and carrying out a closed-loop experiment. This
case is not dealt in this paper, since it would complicate the notation without
adding any substantial difference to our results.
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ramps, sinusoids, square waves, etc.). Let the reference model
M(q) depend on a parameter vector 6 to be optimized, i.e.,
M(q) =M(8, q). For any 6, the corresponding optimal controller
C(¢*(09),q), co(¢*(@)) can be determined by applying the VRFT
approach:

N-1

¢*(0) = arg rrgn D () —uy(6, 9, 1))%, (6)
t=0

where uy (0, ¢,t) =C(@, Q)ey(0,t) + co(@)ry(0,t), ry(0,t) is the

solution of y(t) =M@, q)ry(8,t), and e,(0,t) =r,(8,t) —y(t).

Then, the optimal parameter vector 6* is selected as

9*=argm€in](9), (7

where
N-1

J(6) = & S Wy (r(©) ~ yp(6.0) + Wau A (6. )
t=0

+ Wee (u(t) — uy(0,£))2, (8)

The first two terms in (8) are the typical penalties used in
optimization-based control such as MPC [3] and are used to reflect
the performance that would be obtained if the reference model
M(0, q) were perfectly matched by the closed-loop system, i.e., if
y(t)=yp0,t), u(t) =uy(0,t), where

yp(gvt) :M(ev q)r(t), (9)

is the output that would result as the response of the reference
model M(@, q) to r(t), and

Aup(0,t) =up@,t) —up(0,t —1)
is the corresponding input increment, with
up(0.t) = C(e*(0). ) (r(t) —yp(0.1)) + co(e*(@)r(t).  (10)

We point out that, in order to ensure numerical stability of the
computation of (10), all the unstable poles of C(¢*(0), q) must be
zeros of 1 — M(#, q). This will be further discussed in Remark 3 in
Section 4.1. Tracking error and actuation effort are traded-off via
the nonnegative weights W), W,,. The third term, weighted by
the positive hyper-parameter Wy, expresses the ability of the pro-
cess to match the reference model M(6,q) when the controller
C(g*(0).q), co(@*(0)) is used. Without loss of generality, Wy, can
be set to 1, so that only Wy, and W, are left as tuning knobs of
the design procedure.

Note that a penalty Wi (ur(t) —up(6,t))? on deviations from
input references has been omitted in (8) to leave the approach
completely model-free, as often a static model of the open-loop
process is used to generate an input reference u,(t) that is
consistent with r(t) in steady-state.

The optimization problem (7) is in general nonlinear and
nonconvex, due to the presence of ¢*(6) that makes it a bilevel
programming problem. However, only a limited number of opti-
mization variables are involved, namely the entries of the vector 6
defining the reference model M(0, q). In Section 4, we will solve
the problem by using particle swarm optimization for the outer
optimization layer.

3. Stability guarantees

To take into account internal stability in the controller synthe-
sis procedure introduced in the previous section, we adopt the di-
rect data-driven design approach of [1]. In this technique, an a-
posteriori stability test is also included to ensure that the feedback
interconnection between the designed controller and the unknown
plant P is stable. Performance and stability requirements are
jointly addressed by considering two reference models, denoted by
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M:(q) and Qr(q), expressing the desired output and input sensi-
tivity, respectively. After briefly describing the approach of [1], we
propose a method for the optimal joint design of M:(q) and Q;(q).

3.1. Stability-oriented design via unfalsified control

Let C(p, q) be the transfer function of a LTI controller parame-
terized by ¢ € ®. Let the process P be described by the (unknown)
LTI transfer function P(d) with noise

y(t) = P(d)u(t) +n(t).

The design procedure of [1] selects ¢ to comply with control spec-
ifications expressed in terms of two stable reference models M;(q)
and Qr(q). These need to be chosen a-priori by the designer so
that M;(q) reflects the desired output performance, but is in gen-
eral not able to account for internal stability, while the desired in-
put performance, as well as stability requirements, is captured by
Qr(q). The multi-objective goal is to minimize both the discrepancy
between M;(q) and the potential output sensitivity M(¢, q), and
the discrepancy between Q-(q) and the potential input sensitivity
Q(¢, q). While the potential maps M(p, q) and Q(¢, q) are func-
tions of the controller C(¢, q) and the unknown plant, and thus
cannot be directly computed, such discrepancies can be evaluated
from the experimental data as described next.

Consider the fictitious reference r¢(¢p.t) defined as in [25], ie,

rr(@.t) =Clp. @) 'u(t) +y(t), t=0,....N-1. (11)

It is easy to check that the collected data u(t),y(t),t=0,...,
N —1, can also be expressed in terms of the fictitious reference
as follows:

- Ctead e
4O = e Y T Trrgce 9"

= Q(p.prp(p.t) —Q(p. g)n(t)

_ _P@Cle.q S S
YO = 7 @ce. 0 O Trgce o

= M(p. Q)r(@.t) + (1 - M(@.q)n(t).

where the disturbance n(t) is independent of the input signal u(t)
(we recall that the input and output data are collected through an
open-loop experiment). Then, the discrepancies between M(¢, q),
Q(¢,q) and, respectively, M;(q) and Qr(q), can be evaluated by
means of the cost functions

N-1

Zn(p) =Y (u(t) —w(p,1))? (12)

t=0

N-1

Va(9) == (0 -y (0. 0)?. (13)

t=0
where the signals u°(¢p,t) and y°(¢p, t) are defined as

u (e, t) = Q(qrs(e,t)

V(@ t) i= Mc(q)rp(e,t).

In fact, in the noise-free case (n(t) =0, Vt > 0), we have
u) —u(p.t) = (Qe. @) — G (@)re(e.t)

y(©) =y (@, t) = Mg, q) — M:(q@)re(p,t).

Note that the computation of the fictitious reference is not
needed in order to obtain the cost functions (12) and (13) since
we also have:

u(t) —u (. t) = ut) — Q(q)y(t) — C (¢ 9)Q-(qu(t) (14)
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yO) =y (9. t) = [1 = MA(@ly(t) = C (@, )M (Qu(t).  (15)

Note that (14) and (15) have the same form of a predictor in an
output-error method [20,28], even if the best matching error is not
a white noise. Moreover, the disturbance n(t) only appears in ad-
ditive terms that do not depend on ¢ in (14) and (15). Finally, the
transfer functions involved in the above computations can be made
stable by selecting the controller structure and the reference mod-
els in accordance with internal stability specifications. To this end,
we consider controllers of the form

_ S(p.9)Su(a)
Rp. DRu(q)

where the polynomials S,(q) and R,(q) contain all unstable roots
(thus allowing one to directly impose rejection and tracking objec-
tives, e.g., through an integral action), and the polynomials S(g, q)
and R(g. q) have to be designed, with the constraint that S(g, q)
must be stable. Then, the recursive computation of (14) is numer-
ically stable provided that the input sensitivity reference model
Q:(q) is supposed to be factorized as Qr(q) = Sy(q)Q,(q), with
Q,(q) stable. Similarly, the recursive computation of (15) is nu-
merically stable when the output sensitivity reference model M;(q)
takes the form M;(q) = S, (q)M;(q), with M;(q) stable.

The design procedure relies on the idea of minimizing a
combination of the two cost functions Zy(¢) and Vy(¢). In fact,
minimization of Vy(¢) alone would suffer from the same problem
as VRFT, in that it does not account for the internal stability
objective. On the other hand, the discrepancy u —u° is related
to the internal stability requirements, but minimization of Zy(¢)
alone would not account for the objective related to the desired
output performance.

To see that minimization of Zy(¢) is related to the internal sta-
bility requirements, consider the controller C-(q) exactly achieving
the reference model Q;(q) for an unknown stable plant P(q), i.e.,

Q(q)
1-P(@)Q(q) "

It can be checked that, in the noise-free case, the input discrepancy
can be also expressed as

u(t) —u (g, t) = A, )Q (qu(t) (18)

with  Aq(ep,q) := C7'(q) —C'(p.q). Hence, minimization of
Zn (@) tends to make the quantity Aq (¢, q)Qr(q) small. In turn, by
means of small gain arguments, it can be shown that the condition

Clp.9) (16)

Cr(q) = (17)

1 (@) Ag (@, Plloo < 1 (19)

is sufficient to ensure that the controller C(¢, q) internally stabi-
lizes the unknown plant, provided that S(g, q) is stable (a formal
proof is provided in [1]).

Finally, (18) and (19) are further exploited in order to derive an
a-posteriori stability test. In fact, in the ideal situation of a noise-
free infinite-length data set, from (18) it follows that

li(w) —0°(¢. @)

1 (@) Aq(@, Plloc = sup G@)] ,

we|-m, 7]

(20)

where ii(w) and @°(p, w) are the Discrete Fourier Transforms of
u(t) and u°(p,t), respectively (assuming that |i(w)| > 0 for any
w € [-m, m]). Then, a stability test can readily be defined by
applying standard non-parametric identification techniques [20],
e.g., the windowed Empirical Transfer Function Estimate (ETFE),
so as to estimate |[|Qr(q)Aq(¢.q) |l from the input discrepancy
u(t) —u°(p,t).
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3.2. Optimal selection of Q-(q) and M;(q)

We establish here a procedure for an “optimal” selection of
both M;(q) and Q;(q), where optimality is defined in terms of a
criterion which accounts for both performance and stability.

As in Section 2.2, let r(0),...,r(N—1), be a reference signal
chosen by the designer consistently with the specific application.
Let the desired output and input sensitivities depend on param-
eter vectors 6 and, respectively, p to be optimized, i.e., M;(q) =
M:(0,q) and Qr(q) = Qr(p, q). Further, let Cy(p,q) and Co (¥, q)
be two controllers depending on parameter vectors ¢ and y, re-
spectively. Typically, the two controllers Gy (¢, q) and Cqy (¥, q) will
have the same parametric structure, but this is not strictly neces-
sary for our developments. In the following we will assume that
both Cy (¢, q) and Cy (¥, q) have the form (16), i.e.,

Su(@. Q)Sum(q)

= (21)
Ru (@, 9Rum(q)

Cnlp.q) =

So(¥. DSua (@)
Ro(¥. @Ruo (@)

with Sy m(q), Rym(q@). Suq(q). and R, o(q) containing all unsta-
ble roots, and the polynomials Sy (¢, q), Ry(¢,q), So (¥, q), and
Ro(¥,q) to be designed, under the condition that Sy(¢,q) and
§Q(1ﬁ,q) must be stable. For any choice of 0, the corresponding
optimal controller Gy (¢*(#),q) can be determined by re-writing
the output discrepancy (15) as

y(t) =y (0. 9.t) =[1-M:O, Dlyt) — G, (¢, ) M (0. @) u(t)
(23)

and then applying prediction-error methods (PEM) for output error
models to minimize the corresponding cost Vy (6, ¢) with respect
to ¢. Similarly, for any p, the input discrepancy (14) is re-written
as

ut) —uw (o, ¥, ) =u(t) - Q (o, Py () -C5' (¥, 9) Q- (p, @) u(t).
(24)

Then, by applying the output error method, the optimal controller
Co(¥*(p), q@) that minimizes Zy(p, ¥) with respect to ¥ can be
found.

For what concerns the optimal parameter vectors 6* and p*,
they are determined by means of an optimization procedure
according to the following criterion:

GW.q = (22)

(0%, p*) = argminJ(@, p). (25)
©.p)
where
1 N1
JO.p) = ; Wy (r(6) =y, (0. 0))> + WauAup (6. 1)

+Weaem (V(£) = y° (0, ¢*(0),1))?
+Waeo (t) —u(p, ¥*(p), t))?
+Warg (t1p(8. £) — Ty (p. 1))2} (26)

At each iteration of the optimization procedure (25), the current 6
and p are employed in (23) and (24) in order to determine the pa-
rameters ¢*(0) and ¥*(p). Similarly to the cost (8) in Section 2.2,
the first two terms in (26) reflect a trade off between tracking
errors and actuation efforts. The quantities

ypO.8) = M (0, q)r(t), (27)

up(0,1) = Cu(@*(0). ) (r(t) —yp(0.1))
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= Cu(e* (@), (1 — M (0, q)r(t), (28)

are related to the performance that would be obtained if the
desired output sensitivity M;(68,q) were exactly achieved. The
third and fourth terms in (26) correspond to the cost functions
(13) and (12) introduced in Section 3.1, where the discrepancies
u(t) —u°(p, ¥*(p),t) and y(t) —y° (@, ¢*(0),t) are computed as
in (24) and (23), respectively. Finally, the last term in (26) reflects
the discrepancy between up(6,t) and

Up(p.t) 1= Q(p. r(t). (29)
Recall that controller Co (¥*(p), q) is designed so as to achieve an
input sensitivity close to Q:(p,q). As a result of the minimiza-
tion of Vy(8,¢), controller Cy(p*(0),q) achieves an input sen-
sitivity close to Cy(¢*(0),q)(1 — M; (6, q)). Hence, when the last
term in the cost is small, the two controllers Co(¥*(0),q) and
Cu(p* (@), q) provide a similar control input for tracking the same
reference signal r(t). Thus, the meaning of the last term in (26) is
to make the two controllers Cy (¥*(p),q) and Cy(¢*(6),q) per-
form a similar action.

The optimization of the cost function in (25) must be con-
strained so that both M;(6,q) and Qr(p,q) are stable. Moreover,
in order to ensure that the computation of cost J(@, p) is numer-
ically stable (namely, the involved signals do not diverge during
recursive computation of the terms in (26)), the reference models
M;(6,q) and Q(p, q), and the parametric controllers Cy;(¢, q) and
Co (¥, q) have to be chosen so that:

1. all unstable zeros of Cy (¢, q) are zeros of M, (0, q);
2. all unstable poles of Cy (¢, q) are zeros of 1 — M; (6, q);
3. all unstable zeros of Cy (v, q) are zeros of Qr(p, q).

Note that Conditions 1 and 3 are needed to ensure numerical
stability of (23) and (24), respectively, whereas Condition 2 re-
quires that Gy (¢, q) and M;(8,q) are consistent with each other.
This issue will be further considered in Remark 5 in Section 4.2.

Once the optimization of criterion (25) terminates, two con-
trollers are available, namely Cy(¢*(6*),q) and Co(¥*(p*),q).
Specifically, Cy (¢*(0*), q) is designed so that, if it is put in feed-
back with the unknown process, the corresponding closed-loop
map matches M:(0*,q) as closely as possible (recall (23)). On
the other hand, Cy(¥*(p*),q) is designed so that, if it is put
in feedback with the unknown process, the corresponding input-
sensitivity map matches Qr(p*,q) as closely as possible (recall
(24)). Therefore, it is expected that Co(*(0*),q) complies with
the stability test (see Section 3.1)

|ﬂ(a)) - ﬂo(p*s Ip*(lo’()a U))| <1
ld(w)| '

If (30) does not hold, then the overall procedure has to be re-
vised (e.g., the controller family is not rich enough, a different
choice for the weights in (26) is needed, etc.). On the other hand,
when (30) holds, Co(¥*(p*),q) is a candidate controller for the
unknown process.

The stability test can also be applied to GCy(¢*(6*),q),
since the last term in the cost tends to make Q;(p*,q) and
Cu(p*(@*),q)(1 — My(6*,q)) close to each other. In this case, the
input discrepancy must be computed as

u(t) —u@, p*,t) =u(t) - Q(p*, q) y(t)
=G (@ (6).9) Q(p*. @) u(t) (31)
and the stability test becomes
|d(w) — (6", p*, »)|
ld(w)]
If both controllers pass the corresponding stability tests, then

Cu(p*(6*), q) is selected, as its performance is deemed to be closer
to the desired behavior expressed by M;(6*, q).

sup (30)

we|-m, 7]

sup
wel[-m, ]

<1 (32)
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Remark 1. The left-hand side of both (30) and (32) can be esti-
mated by means of non-parametric identification techniques (e.g.
ETFE). Then, in order to deal with the error in the estimation
due to non-ideal conditions (disturbances and finite-length exper-
iment), the test will be assumed to be passed when such an esti-
mate is less than 1 — &, where the positive scalar & < 1 is a design
parameter.

Remark 2. Condition (30) can be imposed for a generic p and
directly employed as an additional constraint within the op-
timization problem (25). In this case, the term Wg q(u(t) —
u°(p, ¥*(p), t))? could be removed from the cost (26), i.e., Wheq
can be set to 0. Similarly, (32) could also be imposed for any 6
as an additional constraint within the optimization problem (25).
This could possibly decrease the probability of getting a feasible
solution. However, if a feasible solution is obtained, then both
Co(¥*(p*),q) and Cy(¢*(6*),q) are stabilizing for the unknown
process, thus the latter can be selected.

4. Global optimization of reference models

In this section, we discuss how to solve the optimization prob-
lems (7) and (25) through particle swarm optimization (PSO). This
technique is well-suited for the problem of interest, which is for-
mulated in terms of a limited number of optimization variables
and aims at finding a global optimizer. The reader interested in
PSO is referred, e.g., to [24].

4.1. Global optimization of reference model in VRFT

We first consider the framework described in Section 2 for an
optimal selection of the reference model M(6, q) within the VRFT
approach. Specifically, we consider the following parameterization
for the reference model:
=20l (4 - 20 = 2)
M(@©.9) =K —; =t :
22— POTT,Z, (@ = pe)(a - P))
where * denotes complex conjugate, and ngy, Nz, Npr, Npc denote
the number of real zeros, complex conjugate zeros, real poles,
and complex conjugate poles, respectively. In defining (33) we set
]'[ﬁzzél =1 if ¢; > ¢,. The vector 6 to be optimized is defined by
stacking the following parameters:

(33)

Ze, =1, Ny
Re{z,},Im{z,}, C=Ng+ 1, Ny + Ny
De, =1, ny;
Re{p.}, Im{p.}. =Ny +1,--- Ny + Npc.

The term K is only needed to enforce M(6,1) =1 (i.e., unitary
steady-state gain), and is not treated as an optimization variable.
As discussed in Section 2.1, VRFT requires the stability of both the
reference model M (9, q) and of its inverse. In order to comply with
these requirements, a possible solution is to add a function b(-)
to the computation of J(#), with b: R — R, which penalizes the
violation of such conditions. Among different possible choices for
b, the following piecewise-polynomial function will be used in the
examples shown in Section 5:

0 if h<o0
b(hy=4+vkh if 0<h<1 (34)
vkh? if h=>1

where k denotes the current PSO iteration, and h: R — R is such
that

hE©) = lz.> - 1,
h{(0) = [pel* -1,

C=1,..., Ny + Ny (35)
e=1,... Ny +Npc.
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Algorithm 1
through PSO.
Input: number of particles Npart, maximum number of iterations
kmax; positive weights Wy, Wy, Wg,; penalty function b.

VRFT approach with reference model selection

1. Populate particle swarm 61, i = 1,..., Npart, with random ini-
tial values under constraints hZ(0) <0, £ =1,..., 1z + Nz, and
hP(0) <0, ¢=1,...,np + Npc;

2. fork=1,..., kmax do

fori=1,..., Npat do
parametrize M (0, q) as in (33);
set K such that M(6%,1) = 1;
compute C(¢*(0Y), q), co(¢*(8')) through VRFT;
set the cost function
N-1

J@" = % > {Wy(r(t) —yp(6',1))?
t=0

+ Wauy Aup (07, ) + Wee (u(t) — uy(6',£))?
Ngr+Nge Mpr+1pe

+ Y O+ Y b(hf(@f»} (36)
=1 =1

end for

choose the best particle based on the computed cost

functions J(%), i=1,..., Npart;

update the position of particles as in [24, Algorithm 1];
end for

Output: best particle (reference model parameters) 6*, controller
parameters @*(6*).

In order to solve the optimization problem through PSO we
consider a certain number Npar¢ of particles (each one represented
by a parameter vector 6!) and compute the controller param-
eters @*(0') associated to each particle through the VRFT ap-
proach. The position of the particles is updated iteratively for a
pre-defined number of iterations kmax according to common rules
in PSO. When the algorithm terminates, the best particle 6* is pro-
vided as the one corresponding to the minimum value of J(6%),
i=1,..., Npart. Algorithm 1 summarizes the overall procedure.

Remark 3. When each M(#i,q), i=1,..., Npart, is parameterized
as in (33) with K such that M(6!, 1) = 1, numerical stability of the
computation of up(0,t) in (10) is ensured if C(¢*(8'), q) contains
at most one integrator and has all the other poles inside the unit
circle.

4.2. Global optimization of Q;(q) and M;(q)

We address now the optimal design of the output and input
reference maps within the framework described in Section 3. For
this purpose, we consider the following parameterization

Mr(97 q)

n nini!
o (@ = 2eaD) T ™, (@ = Zem) (4= 20 41)

= Ku M MM (37)
T2 (@ = P T2 (= Pean) (4= Pi )
Q(p.q)
g n2+nd s
Hz=1 (q - ZZ.Q)HAq:nQ‘_'_] (q - ZZ,Q) (q - Z[,Q)
=T nQ,A+Z;1QC : (38)
[T @ = Peo)T]” o, (@ = Pea)(d = Pio)

While K, in (38) is also an optimization variable, Ky in (37) is
only needed to enforce M;(6,1) =1 and thus it is not an optimiza-
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tion variable. Further, n}f, n}, nM. and n} denote the number of

real zeros, complex conjugate zeros, real poles, and complex con-
jugate poles, respectively, of the reference map M: (0, q). Then, the
vector 6 to be optimized is defined by stacking the following
parameters:

ZoMs e=1,...,nM
Re{z, m}. Im{zy 1}, e=nM4+1,... nM4nl;
PeMs e=1,--- . ni,

Re{p,m}, Im{p,m}.

Similarly, n%, n%, ng,, and n%c in (38) denote the number of real
zeros, complex conjugate zeros, real poles, and complex conjugate
poles, respectively, of the reference map Q-(p, q). Then, the vector
p is defined by stacking the following parameters:

—_nM M M
C=np+ 1,0y + 0y

Kqg;

Zi0, e=1,---,n%;

Re{z,}. Im{z, ¢}, e=n%+1, - . n%+n:
Pea; e=1, g

Re{peo}. Im{p.q}, e=n$+1,---.n% +n%.

A penalty function b(h) of the form (34) is added to the com-
putation of J(@, p) in order to enforce M; (6, q) and Q;(p.q) to be
stable, with h : R — R such that

h? (@) = |peml® -1,
h?(p) = |peql® - 1.

Recalling Remark 1 and Remark 2, conditions (30) and (32) can
also be imposed as additional requirements, which in turn can be
expressed in terms of penalty functions b(h) of the form (34). In
this respect, we can denote by &, the estimation of the left-hand
side of (30), and by &y the estimation of the left-hand side of (32),
and define

th(,O) =46 — 1 +§ (40)

_ M M
e_l,...,npr-i—npc (39)
Z:l,...,n%r-i-ngc.

hem@) :=u—-1+§&. (41)
The overall procedure is summarized in Algorithm 2.

Remark 4. In practice, it is reasonable to require that M; (6, q) and
Qr(p, q) share the same denominator. In this case, the actual pa-
rameter vector to be optimized is composed by stacking the fol-
lowing terms:

ZyM» Z=1,...,n’z‘¢;

Re{z, m}, Im{z, m}, e=nM4 1, nM4nl
Pems €=1,4..,nll‘f’r;

Re{pem}. Im{pem}.  €=nl+1.... nM +ni:
Kq;

Z0, e=1,...,n%;

Re{z,0}, Im{z. o}, e=n%+1,... . n%+nZ.

Accordingly, the number of optimization variables in cost (26) is
actually reduced to nar :=njf + ni + nbl + nl. + n +nZ +1.

Remark 5. When each controller Gy (@ (0Y),q), i=1,..., Npart,
is equipped with an integral action, then Condition 2 of
Section 3.2 holds thanks to the parameterization (37) with Ky
such that M;(6!,1) = 1. On the other hand, if some design spec-
ifications require that R, y(q) in (21) contains additional unsta-
ble poles, then Condition 2 of Section 3.2 requires that they are
also zeros of 1 —M; (6%, q), thus the parameterization (37) has to
be modified accordingly. Furthermore, if nonminimum-phase zeros
need to be included in S, ;(q), they also have to be imposed as
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Algorithm 2 Data-driven control design with guaranteed stability:
selection of input and output maps through PSO.

Input: number of particles Npart, maximum number of iterations
kmax; positive weights Wy, W, W p» Wit g, Wimg: penalty func-
tion b.

1. Populate particle swarm col{6!, o}, i=1,..., Npart,with ran-
dom initial values under constraints h‘;(@) <0,¢=1,..., n’,‘,”r +
nbl, and hf(p) <0, ¢=1,..., ngr + n%c;

2.fork=1,... knax do

fori=1,..., Npart do

parametrize M; (', q) as in (37) and Q;(p', q) as in (38);
set Ky, such that M,(61,1) =1;

compute Cy(¢*(6'),q) and Co(¥*(p'),q) through out-
put error method;

set the cost function

o 1 Nt )
1O = 3 {wy ) - yu(@'.02
+ WauAuz (67 t)
 Waen(0(©) —y* (0 ¢ (6), D))
+ Wieg(©) =1 (0!, 9 (p), )2
+ Wig (up(0',8) = Up(p', 1))?

ni +nll nd+n$.
Y bhP@ )+ S b (p))
=1 =1

+ b(he o (D) + b(hg,m(Qi))} (42)

end for

choose the best particle based on the computed cost func-

tions J(0, pi),i=1,..., Npart;

update the position of particles as in [24, Algorithm 1];
end for

Output:  best particle (reference  model
col{6*, p*},controller parameters ¢*(6*) and ¥*(p*).

parameters)

fixed zeros in (37) by Condition 1 of Section 3.2. Similarly, if it is
required that CQ(l//(,o"), q) in (22) is equipped with nonminimum-
phase zeros (included in S, (q)), they also have to be imposed as
fixed zeros in (38) by Condition 3 of Section 3.2.

Remark 6. We point out that the stability tests (30) and (32) are
always used, taking into account the considerations reported in
Remark 1, as an additional a-posteriori check of the actual feasi-
bility of the solution provided by Algorithm 2. This check is par-
ticularly important when it is necessary to relax the optimization
problem by removing either one or both of the last two terms in
the general cost (42) (for example, if no feasible solution has been
found by optimizing (42)). We underline that the general form of
the cost (42) has been used in all the simulation examples re-
ported in Section 5, leading to feasible solutions for Algorithm 2.

4.3. Design guidelines and final remarks

We conclude this section with some comments and design
guidelines. First, it is important to highlight that the proposed
method, as any model-free design technique, aims at providing an
effective alternative to classical model-based procedures when it
is difficult or time-consuming to derive a model through identifi-
cation which is simple and reliable enough for model-based con-
troller synthesis. In fact, whenever it is possible to derive a pro-
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cess model which achieves a good trade-off between simplicity
and reliability, classical design techniques based on the derived
model, such as the linear quadratic Gaussian control design, are
able to obtain very satisfactory results. On the other hand, the aim
of the proposed method is to achieve similar performance even
when the conditions ensuring satisfactory outcomes for model-
based optimal techniques do not hold. It is important to underline
that, in model-free methods, any design choice has to be made
on the basis of no (or limited) information about the process. In
this respect, in our technique the choice of the order of both con-
troller(s) and reference model(s) is made by means of a tuning
procedure. More in details, a low order is first selected for both
controller(s) and reference model(s); then, the degrees of freedom
are possibly increased on the basis of the achieved performance.
While starting from an initial setting and possibly increasing the
degrees of freedom in order to achieve better results is quite a
standard procedure, it is worth underlining that such a procedure
implies to test the designed controller on the real process, and can
thus be adopted in practical applications only if such controller
is guaranteed to be stabilizing. Therefore, with specific focus on
Algorithm 1 and Algorithm 2, we underline that the above men-
tioned procedure can be safely adopted, in practical applications,
only within Algorithm 2. We further highlight that Algorithm 1 has
to be considered as a first step towards an automatic and opti-
mal (in terms of a certain criterion) choice of the output reference
model for model-free control design techniques, such as the Virtual
Reference Feedback Tuning. On the other hand, the more complex
Algorithm 2 is oriented to overcome the limitations of Algorithm 1;
since any feasible solution of Algorithm 2 corresponds to a stabi-
lizing controller, such controller can be safely put in feedback with
the real process, therefore also allowing for an actual tuning of the
design parameters.

In the next section concerning simulation results, we will
discuss the choice of the weights in (8) and (26).

5. Simulation examples

In this section, we test the proposed approach in three different
simulation examples. In all the examples, we report the explicit
form of reference models and controllers, with their coefficients
approximated to the fourth decimal place; we point out that this
may reflect in some differences in the outcomes of simulation tests
when the approximated versions are used in place of the original
controllers/reference models.

5.1. Example 1

We consider a simple nonlinear Wiener process. Let f(-) : R —
R be a static nonlinear function such that

f®) =y (O] arctan(y,(£)) (43)
where y;(t) is obtained from the LTI, asymptotically stable, and
minimum-phase process P described by the following transfer
function

—0.45
P(q) = d

(q—0.55)(q+0.65)

The model (44) and the nonlinear function f(-) are assumed to
be unknown by our proposed model-free design procedure. Before
addressing the model-free control design problem on system (43),
we first discard the nonlinear part, i.e., we consider (44) as the
actual process to be controlled. This linear-only case has to be in-
tended as a preliminary benchmark for testing the proposed design
method in ideal conditions. In fact, we recall that the theoretical
results behind the proposed method hold for linear processes; on
the other hand, the simulation analysis reported in this example

(44)
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aims to show that our technique can also deal with simple nonlin-
earities in the plant. For this purpose, in this example we are inter-
ested in evaluating the outcome of the proposed design method in
the linear-only case (44) and for the overall Wiener process (43),
using the same algorithm settings in the two cases.

Case 1 - A dataset of N =5000 input and output samples is
collected via an open-loop experiment, carried out by exciting the
process (44) with a white Gaussian signal u(t) with zero mean and
standard deviation o, = 1. The measured output signal y(t) = y,(t)
is corrupted by a white Gaussian noise n(t) with zero mean and
standard deviation o, = 10~2. The sampling time T; is 0.1 s. A
pseudo-random binary signal taking values in {-1,1} is used as
the reference signal r(t) in both (8) and (26). The specific set-up
for Algorithm 1 and Algorithm 2 (chosen also in view of the gen-
eral Wiener case) is detailed below. In Algorithm 1, the number
of particles is set to Npart = 20, and the maximum number of it-
erations to kmax = 100. The weights in (8) are Wy =1, Wy, = 1.5,
Wy, = 30. At any iteration k of Algorithm 1, each reference model
M(#1, q) is parametrized as in (33), with nz =2, n, =0, npr =1,
npc =2, and is constrained to be stable and minimum-phase via
piecewise polynomial penalty functions as defined in (34)-(35). For
each M(@',q), a third-order linear controller is designed through
VRFT, with feedforward term ¢y = 0. Executing Algorithm 1 with
these settings provides the reference model

q% — 0.3462 g + 0.0256
2.3840¢3 — 1.2283¢% — 1.4089q + 0.9327

and the controller

. (0 41949~ - 0.1329 0.0014)
Cp*(6%).9) = i 1

—1.4553¢? +0.4183 ¢+ 0.0370

Similarly, in Algonthm 2 the number of particles is set to Npart =
20, and the maximum number of iterations to kmax = 100. The
weights in (26) are Wy =1, Wy, =15, Wgg=0, Wiy =1,
Wiq = 10. At any iteration k of Algorithm 2, the reference models
M:(0',q) and Qr(p',q) are parametrized as in (37) and (38) re-
spectlvely, for each particle, with n}f =2, n}l =0, njl =1, njl =2,
nzr 3, nzc =0, nQ =1, nQ = 2. As pointed out in Remalk 4, it is
reasonable to require that Mr(Of,q) and Q;(p!, q) share the same
denominator, thus the number of optimization variables is reduced
to 9. For any pair (M:(8',q), Q: (o', q)), two linear controllers

Cu(p* (8. q) = —Cm(so 6H.q) (45)

M(6*,q) =

G (p). @) = 7%(1# (). a). (46)

both including a ﬁxed integral action, are synthesized through
(23) and (24), respectively, by applying the output error method.
The transfer functions Cpy(¢*(6),q) and Cq(¥*(p'),q) are both
third-order. Problem (25) is constrained via piecewise polyno-
mial penalty functions b(h), requiring that both reference models
M:(0%,q) and Q;(p!,q) are stable through (39), and further im-
posing that conditions (30) and (32) are satisfied for any 6! and
p! through (40)-(41) (in accordance with Remark 1, the left-hand
side of (30) and (32) is actually compared with 1 — &, where the
threshold & = 1072). In the proposed framework, a feasible solu-

tion (6*, p*) is obtained for Algorithm 2, specifically
. q? +0.2766q — 0.0523
Mr(g ’ q) = 3 2
9.2593 ¢3 — 13.1186 ¢ + 5.8311 g — 0.7475
3 4+ 0.6105 g% + 0.0427 g — 0.0002
Q0" 9) = gom a 1

9.2593¢3 — 13.1186q2 + 5.8311q — 0.7475°
meaning that both Cy (¥*(p*), q@) and Cy(¢*(0*), q) are compliant
with the stability test. Thus, the latter is selected:

q (0.1080 g3 + 0.0547 > — 0.0336 g — 0.0152)
Cu(g"(07), @) = —1.8449¢3 +1.0519¢2 — 0.2181¢ + 0.0111 °
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Fig. 1. Example 1. Reference signal 7(t) used for the closed-loop experiment.

The performance achieved by the feedback interconnection be-
tween each one of the controllers C(¢*(6*),q) and Cy(¢*(6*),q).
respectively, and the unknown process, is evaluated through a
simulation test on the real process model (44), whose output is
corrupted by a white Gaussian noise n(t) with zero mean and
standard deviation o = 5-1073. The comparison is carried out in
terms of the following cumulated cost

-1
Jor= 7 Y (W) —y(0) + Wauu? )] (47)
t=0
Specifically, T in (47) is set to 100/T; and the reference signal 7(t)
to be tracked is depicted in Fig. 1.

The computation of the cost J,; in (47) is as follows: J, =~
0.001401 for C(¢*(0*),q), and ], ~ 0.001481 for Gy (¢*(6*),q).
We consider now the feedback interconnection of the process
with the model-based linear quadratic Gaussian (LQG) controller
Croc(q), obtained via standard combination of a Kalman filter
and a linear quadratic regulator with output feedback (the lat-
ter designed by using the same weights W), and W,, as set in
Algorithm 1 and Algorithm 2). Specifically, a very accurate second-
order linear model of the process P(q) is estimated using 3000
samples in the available dataset, while the remaining 2000 sam-
ples are used to validate the model. The corresponding best fit rate
(BFR) is about 95%. We recall that the BFR is defined as follows:

ly -7l ) (48)

BFR = 100
( Iy =yl

where § is the output trajectory obtained by simulating P(q)
in open-loop using inputs from the validation dataset composed
of the remaining N — Ny samples; y is the corresponding output
dataset; and yn, is the average of y. Then, Cioc(q) is synthesized
by using the extended model ﬁ(q)ﬁ

¢ (0.3560 g2 + 0.2594 g — 0.0324)
q* — 0.5223¢3 — 0.5358 g2 + 0.0640 g — 0.0058 °

The cost obtained in correspondence of Co¢(q) is J4 ~ 0.001377.
Case 2 - We consider now the nonlinear Wiener process (43).
As before, a dataset of N=5000 input and output samples is
collected through an open-loop experiment carried out by ex-
citing the process with a white Gaussian noise u(t) with zero
mean and standard deviation o, = 1. The measured output signal
y(t) = f(yL(t)) +n(t) is corrupted by a measurement noise n(t)
with zero mean and standard deviation o, = 10~2. The sampling

Croc(q) =
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Fig. 2. Example 1. Closed-loop experiment: reference signal 7(t) (black); output
under the model-based optimal controller Cog(q) (blue), the data-driven con-
troller Cy(¢*(6*),q) obtained from Algorithm 2 (red), and the data-driven con-
troller C(¢*(0*),q) obtained from Algorithm 1 (green). All the plots are almost
overlapping. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

time T; is 0.1 s. Our aim is to show in simulation that the pro-
posed design method is able to cope with simple nonlinearities in
the process to be controlled. For this purpose, Algorithm 1 and
Algorithm 2 are run with the same settings reported in Case 1.
Specifically, Algorithm 1 provides the reference model

q*> —0.2334q — 0.0542
1.6216¢3 — 0.2616 g2 — 1.0355 ¢ + 0.3879

and the controller
q(0.5396 > — 0.2640q — 0.0298)
C(p*(6* = .
@00 = 775611471 05788 0.0177
With respect to Algorithm 2, the reference models are as follows:

g% — 0.7163 q + 0.0888
2.5367¢3 — 3.8095¢2 + 1.9816¢ — 0.3363

M(6*,q) =

Mr(9*7 q) =

Q(pt.q) — 0= 02473¢ ~ 036950 +0.0819
P9 = 5536745 —3.8095¢% + 1.9816q — 0.3363 "

Both Co (¥*(p*). @) and Cy(¢*(8*), q) are compliant with the sta-
bility test, thus the latter is selected:

q(0.3694 ¢3 + 0.5979 ¢ + 0.2236 ¢ — 0.0061)
g% — 0.1065 3 — 1.0080 2 + 0.0968 g + 0.0176 °

Similarly to Case 1, an LQG controller with output feedback Cio¢(q)
is synthesized on the basis of a third-order linear estimated model
P(q) of the process, obtained from 3000 samples in the avail-
able dataset (the remaining 2000 samples are used to validate the
model), corresponding to a BFR of about 80%. The resulting LQG
controller is as follows:

¢ (0.2563 g3 + 0.0404 ¢ — 0.1128 ¢ + 0.0027)
5_1.0714¢% — 0.3628 g3 + 0.5538 g2 — 0.1224q + 0.0027

The performance achieved when each one of the controllers
C(p*(0%),q), Cu(p*(8*),q), and Cioc(q), respectively, are in feed-
back with the process (43), is evaluated in terms of the cumu-
lative cost (47), where t =100/T; and the reference signal 7(t)
is depicted in Fig. 1. Specifically, J; ~ 0.002115 for C(¢*(6*),q);
Jo = 0.001977 for Gy (¢*(0*), q); finally, J; ~ 0.002373 for Cioc(q).
We show in Fig. 2 the output signals obtained in correspondence
of the three controllers (a zoom is provided in Fig. 3) and the

Cu(e*(0").q) =

G =
106(q@) q
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Fig. 3. Example 1. Detail of Fig. 2 in the interval [19, 21]s.
Table 1

Example 1. Algorithm 1: variation of the cost J; versus variation
of each weight in (8) over large intervals, while keeping all the
other weights fixed (see the simulation set-up for Example 1).

Weights Ja

Way [10-3, 10-1] [0.000803, 0.000981]
[1, 104] [0.002110, 0.055713]
[10°, 107] [1.994582, 10.50219]

W 10-6 unstable closed-loop
[10-3, 10-3] [4.067692, 10.430503]
[10-2, 104] [0.001749, 0.002245]

Table 2

Example 1. Algorithm 2: variation of the cost J, versus variation
of each weight in (26) over large intervals, while keeping all the
other weights fixed (see the simulation set-up for Example 1).

Weights Ja
Wau [10-3, 10%] [0.001186, 0.002003]

[10%, 10] [0.574975, 1.576577]
Weem [10-3, 10%] [0.001904, 0.006573]
[10%, 10] [0.574977, 1.576578]
Wieo [10-5, 104] [0.001977, 0.002581]
[105, 106] [0.282629, 0.448337]
Wi [10-7, 104] [0.001936, 0.002248]
[10°, 10°] [0.120443, 0.648837]
107 no feasible solution

corresponding input increments in Fig. 4. Finally, we show in
Tables 1 and 2 the outcome of a simulation analysis carried out
for Algorithm 1 and, respectively, Algorithm 2, by letting each one
of the weights in (8) and, respectively, (26), vary over large inter-
vals while keeping all the other weights fixed, and computing the
cumulated cost J, corresponding to each case. This analysis is car-
ried out for all the weights except for W), which is always fixed
to 1 for both Algorithm 1 and Algorithm 2. From this simulation
analysis we can note that small differences in the achieved perfor-
mance occur over large intervals of the weights.

5.2. Example 2

We consider now the benchmark proposed for robust digital
control in [19], namely a flexible transmission system. Following
[19], in the unloaded case the system (obtained through discretiza-
tion with sampling time Ty = 0.05s) can be described by the fol-
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031 —— Aw(t) under Crgc(q) |
= 02f .
S
< 0.1F ‘ \ .
o 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
031 —— Au(t) under Cy(¢*(0%),q)] |
= 02F .
S
01 .
0 1 ; 1 1 ThA 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
031 —— Awu(t) under C(p*(0%),q)| |
= o02f .
S
g 041 1
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 80 90 100
time [s]

Fig. 4. Example 1. Closed-loop experiment: input increments under the model-based optimal controller Cioc(q) (top), the data-driven controller Gy (¢*(6*), q) obtained from
Algorithm 2 (middle), and the data-driven controller C(¢*(6*), q) obtained from Algorithm 1 (bottom).

lowing model:

q°B(q")

P@D =T

(49)

where

B(g') = 0.28261q " + 0.50666 q >
A(@") =1-1.41833q ' +1.58939¢9 7% — 1.31608 ¢ >
+0.88642q74.

The process is stable and nonminimum-phase, and is assumed to
be unknown by our model-free design procedure. Similarly to the
previous examples, we collect a dataset of N =5000 input and
output samples via an open-loop experiment, carried out by excit-
ing the process with a white Gaussian signal u(t) with zero mean
and standard deviation oy, = 1. The output signal is corrupted by a
white Gaussian noise n(t) with zero mean and standard deviation
on = 1072, Within the considered simulation set-up, many differ-
ent settings have been tried for Algorithm 1, but none of them has
provided a stabilizing controller. We underline that the considered
settings just cover a finite number of possibilities; however, this
outcome is consistent with the absence of stability guarantees in
Algorithm 1. On the other hand, any feasible solution provided by
Algorithm 2 corresponds to a stabilizing controller. Specifically, we
show the results obtained by running Algorithm 2 with W, =1,
Way =102, Wgeg =0, Wgey =1, Wyg = 10, At any iteration k
of Algorithm 2, the reference models M;(6%,q) and Q;(p',q) are
parametrized as in (37) and (38), respectively, for each particle,
with n =3, nM =2 nMl =1 nM =4 n§ =3 nk=2 nf =1,
ngc =4 (as in the previous example, M:(6%,q) and Q;(p',q) are
required to share the same denominator). A pseudo-random
binary signal taking values in {-1,1} is used as the reference

10

signal r(t) in (26). The maximum number of iterations is set
to kmax =150, and the number of particles to Npat = 20. For
any pair (M;(@',q), Q:(p',q)), two linear controllers of the form
(45)-(46) are synthesized through (23) and (24), respectively, by
applying the output error method, with both Cy(¢*(8!),q) and
fQ(w*(pi), q) of the fourth order. The remaining settings are as in
Example 1. Algorithm 2 provides a feasible solution (6*, p*); the
resulting reference models are as follows:

M; (6", q)
_0.0594¢° +0.0328 ¢* — 0.1409 ¢> + 0.1072 > + 0.1107 g — 0.0635
- D(q)
Qr (0™, q)
_0.0178¢° — 0.0331 ¢* +0.0254 ¢° — 0.0047 g> — 0.0006 q + 0.0001
a D(q) '
with

D(q) = 1.4792 ¢° — 3.1216 ¢* + 2.4351 ¢> — 0.7760 g% 4+ 0.1042
g —0.0151.
Both Co(¥*(p*).q) and Cy(¢*(6*),q) are compliant with the
stability test, thus the latter is selected:
Cu(p*(67).9)

 q(0.1428¢* — 0.2039¢° + 0.2303 ¢* — 0.1899 g + 0.1273)
~ ¢ —1.8210¢% + 1.7040 ¢ — 1.3955¢2 + 0.5933 ¢ — 0.0808 °

Similarly to Example 1, an LQG controller with output feedback
Croc(q) is synthesized on the basis of a an estimated fourth-order
process model P(q), corresponding to a BFR of about 82%, and the
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Fig. 5. Example 2. Closed-loop experiment: reference signal 7(t) (black) and out-
put under Cyoc(q) (blue) and the model-free controller Cy (¢*(6*), q) obtained from
Algorithm 2 (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

0.2F

7(t)
o1l —y(t) under Croole) ||
———y(t) under Cy(¢*(6%),q)
O ety b oty W"Aw“\,"v“ -
0.1 \ 1
__-02f ‘ 1
= |
-0.3 1 ‘ 8
-04r ‘ q
05 ‘\‘fh“‘ PP ey abitt
|
-0.6 q
07 s s s s s s s s s
14 142 144 146 1438 15 152 154 156 158 16
time [s]
Fig. 6. Example 2. Detail of Fig. 5 in the time interval [14, 16]s.
same weights Wy = 1 and Wy, = 10%:
Cac(q)
_ ¢%(0.0023 g* + 0.0158 g*> — 0.0040 ¢ + 0.0139 g — 0.0057)
Dioc(q) ’
with

Droc(q) = q° —2.5136¢° + 3.1720¢* — 3.1642 ¢* + 2.2328 ¢*
—0.7960q + 0.0691 .

The performance achieved when the controllers Cy (¢*(6*), q) and
Croc(q), respectively, are in feedback with the process, is evaluated
in terms of the cumulative cost (47), where t = 100/T; and the
reference signal 7(t) is depicted in Fig. 5, which also shows the
output signals obtained in correspondence of the two controllers
(a zoom is provided in Fig. 6). The corresponding input increments
are shown in Fig. 7. Specifically, J; ~ 0.021838 for Gy (¢*(6*),q)
and J; ~ 0.017754 for Cioc(q).

1
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Fig. 7. Example 2. Closed-loop experiment: input increments under Cyoc(q) (top)
and the data-driven controller Cy(¢*(6*), q) obtained from Algorithm 2 (bottom).

5.3. Example 3

We consider now the LTI, asymptotically stable, nonminimum-
phase process P described by the following transfer function

q—1.05
(q—0.9)(q—-0.85)

which is unknown to the proposed direct data-driven design pro-
cedure. As in the previous examples, we collect a dataset of N =
5000 input and output samples via an open-loop experiment, car-
ried out by exciting the process with a white Gaussian signal u(t)
with zero mean and standard deviation o, = 1. The output signal
is corrupted by a white Gaussian noise n(t) with zero mean and
standard deviation o, = 10~2. The sampling time T; is 0.1 s.

In this simulation set-up, many different settings have been
tried for Algorithm 1. In all of them, the computed controller is not
stabilizing (50). On the other hand, any feasible solution provided
by Algorithm 2 corresponds to a stabilizing controller. Specifically,
we show the results obtained by running Algorithm 2 with Wy, =1,
Way =102, Wge = 1. Wee g = 1073, Wy = 102 (all the other set-
tings are as in Example 1). The resulting reference models are as
follows:

P(q) = -0.3 (50)

g% —2.7193 q + 1.8432
1617.1427 @ — 4481.7756 ¢2 + 4125.0349 q — 1260.2780

Mr(0'> q) =

q® — 1.3265 2 + 0.3909 q + 0.0096
1617.1427 q° — 4481.7756 q* + 4125.0349 q — 1260.2780

Both Co (¥*(0*),q) and Cy(¢*(8*),q) turn out to be compliant
with the stability test, thus the latter is selected:

q(0.0124 ¢®> — 0.0199 g> + 0.0077 q + 0.0003)
q* —1.8451 ¢® + 0.6964 g2 + 0.2295 q — 0.0808
As in the previous examples, an LQG controller is synthesized on
the basis of a second-order identified process model P(q) and the
same weights W, = 1 and W,, = 102, In this case, the estimated
model is not accurate and corresponds to a BFR of about 36%. The
resulting LQG controller

q? (=0.0561 g% + 0.0473 q — 0.0123)
4_22129¢% + 1.7863 ¢ — 0.6722 q + 0.0987

turns out to be not stabilizing for the process (50). On the
other hand, the tracking performance achieved by Cy(¢*(6*),q)

Q(p*.q) =

Cu(p*(0").q) =

G =
106 (@) 7
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Fig. 8. Example 3. Closed-loop experiment: reference signal 7(t) (black) and output
under the model-free controller Gy (¢*(6*), q) obtained from Algorithm 2 (red). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 9. Example 3. Detail of Fig. 8 in the time interval [0, 25]s.

is shown in Fig. 8 (a zoom is provided in Fig. 9), reporting the
output signal along with the reference signal 7(t). The correspond-
ing input increments are shown in Fig. 10. The cost J, in (47) is
computed for Gy (¢*(6*),q) with T =700/T; and takes value J; ~
0.012109.

6. Conclusions

By optimizing the closed-loop reference models required by di-
rect data-driven control design techniques, this paper has proposed
an approach to synthesize optimal controllers from data without
requiring the identification of an open-loop model of the process.
Optimality has been defined with respect to suitable cost func-
tions reflecting desired closed-loop stability and performance. The
optimization of the reference model used in the VRFT technique
of [6] is more convenient in terms of computational burden, but
does not provide theoretical guarantees of stability of the resulting
closed loop. Instead, by optimizing the two reference models used
in the direct control design approach of [1] (one related to output
performance objectives and the other one to input performance

[m5G;November 23, 2020;15:9]

European Journal of Control xxx (Xxxx) XXX

0.03 T

——— Au(t) under CM(W*(G*)NI)‘

0.02 - b

0.01 [ 4

Au(t)

-0.01 [ 4

-0.02 - 1

-0.03 I I I I I I
0 100 200 300 400 500 600 700

time [s]

Fig. 10. Example 3. Closed-loop experiment: input increments under the data-
driven controller Gy (¢*(6*), q) obtained from Algorithm 2.

and stability requirements), we can ensure stability of the resulting
closed loop. Although our formulation leads to non-convex bi-level
programming problems, due to the small number of variables to
optimize these can be solved relatively easily by particle swarm
optimization, but other global optimization methods could be em-
ployed too. Although we did not take into account input and out-
put constraints, these can be included also in the proposed method
as described in [27, Sec. III C|. The reported simulation examples
have shown the effectiveness of our approach.
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