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a b s t r a c t 

For model-free optimal control design, this paper proposes an approach based on optimizing the refer- 

ence model that is used in direct data-driven controller synthesis. Optimality is defined with respect to 

suitable cost functions reflecting desired performance and control objectives. We rely on the well-known 

Virtual Reference Feedback Tuning technique and on a direct control design approach that ensures stabil- 

ity of the resulting closed-loop system. The proposed design method leads to a non-convex optimization 

problem with a small number of variables that can be easily solved by a global optimizer, such as by par- 

ticle swarm optimization. The effectiveness of the proposed solution is illustrated in simulation examples. 

© 2020 European Control Association. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Control design based on experimental data has been a research 

opic of great interest over the last decades. The main goal of direct 

model-free) data-driven approaches is to avoid the need of deriv- 

ng a dynamical model of the process to be controlled from phys- 

cal laws, since this can be a difficult and time-consuming task, 

equiring one to trade off between the quality of the model and its 

implicity [16,20,28] . Indeed, direct methods only use very basic 

roperties of the process to define desired and achievable closed- 

oop dynamics and to select a suitable parametric controller family. 

ontrol design is then performed by minimizing a cost function, 

omputed from experimental data, that penalizes the discrepancy 

etween desired and achieved closed-loop dynamics. 

Several contributions and different data-driven design strate- 

ies are available in the literature (see, e.g., [1,4,6,10,17,18,26,29,30] , 

nd the books [2,21] for an extensive review and treatment on 

his topic). Specifically, Virtual Reference Feedback Tuning (VRFT) 

4,6,11,12,26] , is a direct data-driven technique that defines the de- 

ired complementary sensitivity (i.e., the desired tracking perfor- 

ance) in terms of a stable transfer function, and then minimizes 

 cost reflecting the discrepancy between the desired reference 

odel and the potential closed-loop behavior. 

While VRFT is computationally simple and can be quite 

traightforwardly extended to deal with issues such as disturbance 
∗ Corresponding author. 
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ejection [9] , it has no theoretical guarantees on the stability of the 

esulting closed-loop system, although techniques for data-driven 

ontroller certification [7,8,14] have been proposed to address the 

roblem of verifying whether a given controller is stabilizing for 

n unknown plant on the basis of input-output data collected in 

pen- or closed-loop configuration. Some research work on direct 

ata-driven techniques has accounted for stability requirements 

ithin the design procedure (see, e.g., [1,30] ). The approach 

n [30] defines the desired complementary sensitivity in terms 

f a stable transfer function and aims at designing a controller 

uch that the feedback interconnection with the actual process 

eproduces the desired reference behavior as closely as possible. 

urthermore, a sufficient condition is introduced which uses the 

ollected dataset to determine whether a candidate controller 

s stabilizing or not. This allows one to theoretically assess the 

tability of the feedback interconnection between a candidate 

ontroller and the unknown plant. However, in case of unstable or 

table but nonminimum phase plants, the technique in [30] only 

llows the refinement of a pre-determined stabilizing controller. 

he idea of using the collected dataset for both performance and 

tability purposes is also exploited, in a different way, in the ap- 

roach proposed in [1] . Such an approach relies on the definition 

f two reference models, in terms of two stable transfer functions, 

xpressing the desired input sensitivity and complementary (or 

utput) sensitivity. The rationale behind the need for two refer- 

nce models is that the desired complementary sensitivity defines 

utput performance objectives, whereas the desired input sensi- 

ivity is related to input performance and stability requirements. 

hen, the controller is designed by solving a multi-objective 
rved. 

al direct data-driven control with stability guarantees, European 
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1 When it is not possible to carry out an open-loop experiment, for example if 

the plant is unstable, the dataset can be collected by designing a (possibly low- 

performance) stabilizing controller and carrying out a closed-loop experiment. This 

case is not dealt in this paper, since it would complicate the notation without 

adding any substantial difference to our results. 
roblem, with the aim of minimizing the discrepancy between the 

otential output sensitivity and the desired reference one, as well 

s the discrepancy between the potential input sensitivity and 

he desired reference one. Furthermore, a sufficient a-posteriori 

tability test based on the collected data is also introduced in 

rder to determine whether a candidate controller is stabilizing 

r not. The approach of Battistelli et al. [1] is based on a slightly

ore complex architecture than the one of van Heusden et al. 

30] . However, it does not require any stabilizing controller in 

he case of stable, possibly nonminimum-phase plants. Moreover, 

he technique can be straightforwardly extended to the case 

f unstable plants by resorting to a simple cascaded control 

rchitecture. 

A critical step of all the aforementioned direct data-driven 

ontrol techniques is the choice of the reference model. This 

hould reflect the desired closed-loop behavior, but also account 

or the capability of the underlying unknown process to repro- 

uce such a behavior when the synthesized controller is used 

o close the loop. Guidelines for choosing a reference model for 

ultiple-input multiple-output (MIMO) plants with fixed-structure 

entralized or decentralized controllers are presented in [13] . 

hese guidelines only require basic information on the plant, 

uch as relative degree, vague knowledge of the dominant time 

onstants, and non-minimum phase zeros, if any. The case of 

ata-driven control design for single-input single-output (SISO) 

lants with unknown non-minimum phase zeros is addressed 

n [5] , where a flexible reference model with free numerator coef- 

cients is used. These coefficients are then optimized along with 

he controller in an iterative way. The work in [15] is extended to 

ontrol of MIMO plants using a parametrized decoupled reference 

odel. Further, [23] proposes a hierarchical architecture, in which 

n inner controller is first designed from data to match a simple 

ow-performance closed-loop reference model, that is then used as 

 prediction model in an outer model predictive controller (MPC) 

esigned to enhance tracking performance and enforce input 

nd output constraints. The same architecture is used in [22] , 

here the best model used by MPC to predict the behavior of 

he inner loop is chosen through iterative experiments. Although 

his architecture can achieve satisfactory outcomes, choosing a too 

ow-performing reference model for the inner loop could lead the 

uter MPC to exert aggressive control actions. 

In this paper we propose an alternative method to choose the 

eference model for direct model-free design. The goal is to deter- 

ine optimal reference models, where optimality is defined with 

espect to a cost function reflecting desired closed-loop perfor- 

ance and control objectives. Preliminary results, only related to 

he VRFT approach and not accounting for stability guarantees of 

he resulting closed-loop system, were presented in [27] . We high- 

ight that the proposed method is a general framework for the 

hoice of reference models, which is suitable to being used also 

n combination with other variants of the VRFT approach. Indeed, 

n this paper we consider only two direct data-driven design tech- 

iques just for example, namely VRFT (due to its simplicity) and 

he one proposed in [1] (because it allows one to explicitly account 

or closed-loop stability objectives). 

The paper is organized as follows. In Section 2 , after briefly de- 

cribing the VRFT approach, we will provide guidelines for the op- 

imal selection of the reference model. In Section 3 , we will focus 

n stability guarantees. In particular, we will consider the approach 

f [1] and, after briefly recalling this technique, we will propose a 

oint optimal selection of both input and output reference mod- 

ls. Section 4 will be devoted to the solution of the optimization 

roblems formulated in Sections 2 and 3 through particle swarm 

ptimization. In Section 5 , simulation results, carried out in differ- 

nt scenarios, will be presented. Finally, concluding remarks will 

e provided in Section 6 . 
2 
. Optimal selection of reference model 

Our aim is to design an optimal controller for an unmod- 

led process P with input u (t) and output y (t) , t = 0 , 1 , 2 , . . . .

or simplicity, we consider the SISO case u (t) , y (t) ∈ R . A

ataset of N input and output samples (u (0) , . . . , u (N − 1)) , 

y (0) , . . . , y (N − 1)) is obtained by means of a single open-

oop experiment on the plant 1 . We first address the model- 

ree optimal controller synthesis problem by means of the 

RFT method [6] . After briefly recalling the VRFT approach 

n the next section, we will introduce an optimality criterion for 

electing the required closed-loop reference model. 

.1. Virtual reference feedback tuning 

We want to design a linear discrete-time control law 

 (t) = C(ϕ, q )(r(t) − y (t)) + c 0 (ϕ) r(t) (1) 

here q is the forward shift operator (i.e., q u (t) = u (t + 1) ) and

(t) ∈ R is the reference signal to be tracked. Furthermore, we de- 

ote by C(ϕ, q ) the transfer function of a linear time-invariant (LTI) 

ontroller parameterized by vector ϕ ∈ �, � ⊆ R 

n ϕ . The parame- 

er vector ϕ must be tuned in order to comply with control spec- 

fications expressed in terms of a stable pre-determined reference 

odel M(q ) of the closed-loop system. Note that the feedforward 

erm c 0 (ϕ) could be set to 0 if C(ϕ, q ) is parameterized to contain

n integrator. 

Given the reference model M(q ) , the VRFT approach relies on 

he so-called virtual reference r v (t) , defined as the solution of 

y (t) = M(q ) r v (t) , (2) 

here M(q ) is assumed to be stably invertible. The virtual tracking 

rror corresponding to r v (t) is defined as 

 v (t) = r v (t) − y (t) (3) 

nd the virtual input u v (ϕ, t) obtained from e v (t) and r v (t)

hrough the controller C(ϕ, q ) , c 0 (ϕ) , as 

 v (ϕ, t) = C(ϕ, q ) e v (t) + c 0 (ϕ) r v (t) . (4)

linear-parameter varying (LPV) or nonlinear controller parameter- 

zations of the control laws could be also adopted here). 

In VRFT the parameter vector ϕ of the controller is synthesized 

y penalizing the error ε(ϕ, t) := u (t) − u v (ϕ, t) between the col-

ected input u (t) and the virtual input u v (ϕ, t) 

 

� = arg min 

ϕ 

N−1 ∑ 

t=0 

� (ε(ϕ, t)) , (5) 

here � : R → R is a loss function such that � (ε) > 0 , ∀ ε ∈ R , ε � =
 , and � (0) = 0 (for example, � (ε) = ε2 ). 

.2. Optimization problem for reference model selection 

The VRFT approach relies on choosing a-priori the reference 

odel M(q ) . In this section, we provide a simple formulation to 

elect M(q ) according to an optimality criterion. 

Let r (0) , . . . , r (N − 1) , be a representative reference signal that

e expect the controller will be asked to track within the ap- 

lication of interest (for example a collection of random steps, 
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amps, sinusoids, square waves, etc.). Let the reference model 

(q ) depend on a parameter vector θ to be optimized, i.e., 

(q ) = M(θ, q ) . For any θ, the corresponding optimal controller 

(ϕ 

� (θ ) , q ) , c 0 (ϕ 

� (θ )) can be determined by applying the VRFT

pproach: 

 

� (θ ) = arg min 

ϕ 

N−1 ∑ 

t=0 

(u (t) − u v (θ, ϕ, t)) 2 , (6) 

here u v (θ, ϕ, t) = C(ϕ, q ) e v (θ, t) + c 0 (ϕ) r v (θ, t) , r v (θ, t) is the

olution of y (t) = M(θ, q ) r v (θ, t) , and e v (θ, t) = r v (θ, t) − y (t) .

hen, the optimal parameter vector θ� is selected as 

� = arg min 

θ
J(θ ) , (7) 

here 

(θ ) = 

1 

N 

N−1 ∑ 

t=0 

W y (r(t) − y p (θ, t)) 2 + W �u �u 

2 
p (θ, t) 

+ W fit (u (t) − u v (θ, t)) 2 . (8) 

he first two terms in (8) are the typical penalties used in 

ptimization-based control such as MPC [3] and are used to reflect 

he performance that would be obtained if the reference model 

(θ, q ) were perfectly matched by the closed-loop system, i.e., if 

 (t) ≡ y p (θ, t ) , u (t ) ≡ u p (θ, t) , where 

 p (θ, t) = M(θ, q ) r(t) , (9) 

s the output that would result as the response of the reference 

odel M(θ, q ) to r(t) , and 

u p (θ, t) = u p (θ, t) − u p (θ, t − 1) 

s the corresponding input increment, with 

 p (θ, t) = C(ϕ 

� (θ ) , q )(r(t) − y p (θ, t)) + c 0 (ϕ 

� (θ )) r(t) . (10)

e point out that, in order to ensure numerical stability of the 

omputation of (10) , all the unstable poles of C(ϕ 

� (θ ) , q ) must be

eros of 1 − M(θ, q ) . This will be further discussed in Remark 3 in

ection 4.1 . Tracking error and actuation effort are traded-off via 

he nonnegative weights W y , W �u . The third term, weighted by 

he positive hyper-parameter W fit , expresses the ability of the pro- 

ess to match the reference model M(θ, q ) when the controller 

(ϕ 

� (θ ) , q ) , c 0 (ϕ 

� (θ )) is used. Without loss of generality, W y can

e set to 1, so that only W �u and W fit are left as tuning knobs of

he design procedure. 

Note that a penalty W u (u r (t) − u p (θ, t)) 2 on deviations from 

nput references has been omitted in (8) to leave the approach 

ompletely model-free, as often a static model of the open-loop 

rocess is used to generate an input reference u r (t) that is 

onsistent with r(t) in steady-state. 

The optimization problem (7) is in general nonlinear and 

onconvex, due to the presence of ϕ 

� (θ ) that makes it a bilevel 

rogramming problem. However, only a limited number of opti- 

ization variables are involved, namely the entries of the vector θ
efining the reference model M(θ, q ) . In Section 4 , we will solve

he problem by using particle swarm optimization for the outer 

ptimization layer. 

. Stability guarantees 

To take into account internal stability in the controller synthe- 

is procedure introduced in the previous section, we adopt the di- 

ect data-driven design approach of [1] . In this technique, an a- 

osteriori stability test is also included to ensure that the feedback 

nterconnection between the designed controller and the unknown 

lant P is stable. Performance and stability requirements are 

ointly addressed by considering two reference models, denoted by 
3 
 r (q ) and Q r (q ) , expressing the desired output and input sensi-

ivity, respectively. After briefly describing the approach of [1] , we 

ropose a method for the optimal joint design of M r (q ) and Q r (q ) .

.1. Stability-oriented design via unfalsified control 

Let C(ϕ, q ) be the transfer function of a LTI controller parame- 

erized by ϕ ∈ �. Let the process P be described by the (unknown) 

TI transfer function P (d) with noise 

 (t) = P (d) u (t) + n (t) . 

he design procedure of [1] selects ϕ to comply with control spec- 

fications expressed in terms of two stable reference models M r (q ) 

nd Q r (q ) . These need to be chosen a-priori by the designer so

hat M r (q ) reflects the desired output performance, but is in gen- 

ral not able to account for internal stability, while the desired in- 

ut performance, as well as stability requirements, is captured by 

 r (q ) . The multi-objective goal is to minimize both the discrepancy 

etween M r (q ) and the potential output sensitivity M(ϕ, q ) , and

he discrepancy between Q r (q ) and the potential input sensitivity 

(ϕ, q ) . While the potential maps M(ϕ, q ) and Q(ϕ, q ) are func-

ions of the controller C(ϕ, q ) and the unknown plant, and thus 

annot be directly computed, such discrepancies can be evaluated 

rom the experimental data as described next. 

Consider the fictitious reference r f (ϕ, t) defined as in [25] , i.e., 

 f (ϕ, t) = C(ϕ, q ) −1 u (t) + y (t) , t = 0 , . . . , N − 1 . (11)

t is easy to check that the collected data u (t ) , y (t ) , t = 0 , . . . ,

 − 1 , can also be expressed in terms of the fictitious reference 

s follows: 

 (t) = 

C(ϕ, q ) 

1 + P (q ) C(ϕ, q ) 
r f (ϕ, t) − C(ϕ, q ) 

1 + P (q ) C(ϕ, q ) 
n (t) 

= Q(ϕ, q ) r f (ϕ, t) − Q(ϕ, q ) n (t) 

y (t) = 

P (q ) C(ϕ, q ) 

1 + P (q ) C(ϕ, q ) 
r f (ϕ, t) + 

1 

1 + P (q ) C(ϕ, q ) 
n (t) 

= M(ϕ, q ) r f (ϕ, t) + (1 − M(ϕ, q )) n (t) , 

here the disturbance n (t) is independent of the input signal u (t) 

we recall that the input and output data are collected through an 

pen-loop experiment). Then, the discrepancies between M(ϕ, q ) , 

(ϕ, q ) and, respectively, M r (q ) and Q r (q ) , can be evaluated by

eans of the cost functions 

 N (ϕ) := 

N−1 ∑ 

t=0 

(u (t) − u 

◦(ϕ, t)) 2 (12) 

 N (ϕ) := 

N−1 ∑ 

t=0 

(y (t) − y ◦(ϕ, t)) 2 , (13) 

here the signals u ◦(ϕ, t) and y ◦(ϕ, t) are defined as 

 

◦(ϕ, t) := Q r (q ) r f (ϕ, t) 

y ◦(ϕ, t) := M r (q ) r f (ϕ, t) . 

n fact, in the noise-free case ( n (t) = 0 , ∀ t ≥ 0 ), we have 

 (t) − u 

◦(ϕ, t) = (Q(ϕ, q ) − Q r (q )) r f (ϕ, t) 

y (t) − y ◦(ϕ, t) = (M(ϕ, q ) − M r (q )) r f (ϕ, t) . 

Note that the computation of the fictitious reference is not 

eeded in order to obtain the cost functions (12) and (13) since 

e also have: 

 (t) − u 

◦(ϕ, t) = u (t) − Q r (q ) y (t) − C −1 (ϕ, q ) Q r (q ) u (t) (14) 
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 (t) − y ◦(ϕ, t) = [1 − M r (q )] y (t) − C −1 (ϕ, q ) M r (q ) u (t) . (15) 

ote that (14) and (15) have the same form of a predictor in an

utput-error method [20,28] , even if the best matching error is not 

 white noise. Moreover, the disturbance n (t) only appears in ad- 

itive terms that do not depend on ϕ in (14) and (15) . Finally, the

ransfer functions involved in the above computations can be made 

table by selecting the controller structure and the reference mod- 

ls in accordance with internal stability specifications. To this end, 

e consider controllers of the form 

(ϕ, q ) = 

S (ϕ, q ) S u (q ) 

R (ϕ, q ) R u (q ) 
, (16) 

here the polynomials S u (q ) and R u (q ) contain all unstable roots

thus allowing one to directly impose rejection and tracking objec- 

ives, e.g., through an integral action), and the polynomials S (ϕ, q ) 

nd R (ϕ, q ) have to be designed, with the constraint that S (ϕ, q )

ust be stable. Then, the recursive computation of (14) is numer- 

cally stable provided that the input sensitivity reference model 

 r (q ) is supposed to be factorized as Q r (q ) = S u (q ) Q r (q ) , with

 r (q ) stable. Similarly, the recursive computation of (15) is nu- 

erically stable when the output sensitivity reference model M r (q ) 

akes the form M r (q ) = S u (q ) M r (q ) , with M r (q ) stable. 

The design procedure relies on the idea of minimizing a 

ombination of the two cost functions Z N (ϕ) and V N (ϕ) . In fact,

inimization of V N (ϕ) alone would suffer from the same problem 

s VRFT, in that it does not account for the internal stability 

bjective. On the other hand, the discrepancy u − u ◦ is related 

o the internal stability requirements, but minimization of Z N (ϕ) 

lone would not account for the objective related to the desired 

utput performance. 

To see that minimization of Z N (ϕ) is related to the internal sta- 

ility requirements, consider the controller C r (q ) exactly achieving 

he reference model Q r (q ) for an unknown stable plant P (q ) , i.e.,

 r (q ) = 

Q r (q ) 

1 − P (q ) Q r (q ) 
. (17) 

t can be checked that, in the noise-free case, the input discrepancy 

an be also expressed as 

 (t) − u 

◦(ϕ, t) = �Q (ϕ, q ) Q r (q ) u (t) (18)

ith �Q (ϕ, q ) := C −1 
r (q ) − C −1 (ϕ, q ) . Hence, minimization of

 N (ϕ) tends to make the quantity �Q (ϕ, q ) Q r (q ) small. In turn, by

eans of small gain arguments, it can be shown that the condition 

 Q r (q )�Q (ϕ, q ) ‖ ∞ 

< 1 (19) 

s sufficient to ensure that the controller C(ϕ, q ) internally stabi- 

izes the unknown plant, provided that S (ϕ, q ) is stable (a formal 

roof is provided in [1] ). 

Finally, (18) and (19) are further exploited in order to derive an 

-posteriori stability test. In fact, in the ideal situation of a noise- 

ree infinite-length data set, from (18) it follows that 

 Q r (q )�Q (ϕ, q ) ‖ ∞ 

= sup 

ω∈ [ −π,π ] 

| ̂  u (ω) − ˆ u 

◦(ϕ, ω) | 
| ̂  u ( ω) | , (20) 

here ˆ u (ω) and ˆ u ◦(ϕ, ω) are the Discrete Fourier Transforms of 

 (t) and u ◦(ϕ, t) , respectively (assuming that | ̂  u (ω) | > 0 for any

 ∈ [ −π, π ] ). Then, a stability test can readily be defined by

pplying standard non-parametric identification techniques [20] , 

.g., the windowed Empirical Transfer Function Estimate (ETFE), 

o as to estimate ‖ Q r (q )�Q (ϕ, q ) ‖ ∞ 

from the input discrepancy

 (t) − u ◦(ϕ, t) . 
4 
.2. Optimal selection of Q r (q ) and M r (q ) 

We establish here a procedure for an “optimal” selection of 

oth M r (q ) and Q r (q ) , where optimality is defined in terms of a

riterion which accounts for both performance and stability. 

As in Section 2.2 , let r (0) , . . . , r (N − 1) , be a reference signal

hosen by the designer consistently with the specific application. 

et the desired output and input sensitivities depend on param- 

ter vectors θ and, respectively, ρ to be optimized, i.e., M r (q ) = 

 r (θ, q ) and Q r (q ) = Q r (ρ, q ) . Further, let C M 

(ϕ, q ) and C Q (ψ, q )

e two controllers depending on parameter vectors ϕ and ψ, re- 

pectively. Typically, the two controllers C M 

(ϕ, q ) and C Q (ψ, q ) will

ave the same parametric structure, but this is not strictly neces- 

ary for our developments. In the following we will assume that 

oth C M 

(ϕ, q ) and C Q (ψ, q ) have the form (16) , i.e., 

 M 

(ϕ, q ) = 

S M 

(ϕ, q ) S u,M 

(q ) 

R M 

(ϕ, q ) R u,M 

(q ) 
(21) 

 Q (ψ, q ) = 

S Q (ψ, q ) S u,Q (q ) 

R Q (ψ, q ) R u,Q (q ) 
, (22) 

ith S u,M 

(q ) , R u,M 

(q ) , S u,Q (q ) , and R u,Q (q ) containing all unsta-

le roots, and the polynomials S M 

(ϕ, q ) , R M 

(ϕ, q ) , S Q (ψ, q ) , and

 Q (ψ, q ) to be designed, under the condition that S M 

(ϕ, q ) and

 Q (ψ, q ) must be stable. For any choice of θ, the corresponding 

ptimal controller C M 

(ϕ 

� (θ ) , q ) can be determined by re-writing 

he output discrepancy (15) as 

 (t) − y ◦(θ, ϕ, t) = [1 − M r (θ, q )] y (t) − C −1 
M 

(ϕ, q ) M r (θ, q ) u (t) 

(23) 

nd then applying prediction-error methods (PEM) for output error 

odels to minimize the corresponding cost V N (θ, ϕ) with respect 

o ϕ. Similarly, for any ρ, the input discrepancy (14) is re-written 

s 

 (t) − u 

◦(ρ, ψ, t) = u (t) − Q r (ρ, q ) y (t) −C −1 
Q (ψ, q ) Q r (ρ, q ) u (t) .

(24) 

hen, by applying the output error method, the optimal controller 

 Q (ψ 

� (ρ) , q ) that minimizes Z N (ρ, ψ) with respect to ψ can be

ound. 

For what concerns the optimal parameter vectors θ� and ρ� , 

hey are determined by means of an optimization procedure 

ccording to the following criterion: 

θ� , ρ� ) = arg min 

(θ,ρ) 
J(θ, ρ) , (25) 

here 

(θ, ρ) := 

1 

N 

N−1 ∑ 

t=0 

{
W y (r(t) − y p (θ, t)) 2 + W �u �u 

2 
p (θ, t) 

+ W fit ,M 

(y (t) − y ◦(θ, ϕ 

� (θ ) , t)) 2 

+ W fit ,Q (u (t) − u 

◦(ρ, ψ 

� (ρ) , t)) 2 

+ W MQ (u p (θ, t) − u p (ρ, t)) 2 
}

. (26) 

t each iteration of the optimization procedure (25) , the current θ
nd ρ are employed in (23) and (24) in order to determine the pa- 

ameters ϕ 

� (θ ) and ψ 

� (ρ) . Similarly to the cost (8) in Section 2.2 ,

he first two terms in (26) reflect a trade off between tracking 

rrors and actuation effort s. The quantities 

 p (θ, t) = M r (θ, q ) r(t) , (27) 

 p (θ, t) = C M 

(ϕ 

� (θ ) , q )(r(t) − y p (θ, t)) 
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= C M 

(ϕ 

� (θ ) , q )(1 − M r (θ, q )) r(t) , (28) 

re related to the performance that would be obtained if the 

esired output sensitivity M r (θ, q ) were exactly achieved. The 

hird and fourth terms in (26) correspond to the cost functions 

13) and (12) introduced in Section 3.1 , where the discrepancies 

 (t) − u ◦(ρ, ψ 

� (ρ) , t) and y (t) − y ◦(θ, ϕ 

� (θ ) , t) are computed as

n (24) and (23) , respectively. Finally, the last term in (26) reflects 

he discrepancy between u p (θ, t) and 

 p (ρ, t) := Q r (ρ, q ) r(t) . (29) 

ecall that controller C Q (ψ 

� (ρ) , q ) is designed so as to achieve an

nput sensitivity close to Q r (ρ, q ) . As a result of the minimiza-

ion of V N (θ, ϕ) , controller C M 

(ϕ 

� (θ ) , q ) achieves an input sen-

itivity close to C M 

(ϕ 

� (θ ) , q )(1 − M r (θ, q )) . Hence, when the last

erm in the cost is small, the two controllers C Q (ψ 

� (ρ) , q ) and

 M 

(ϕ 

� (θ ) , q ) provide a similar control input for tracking the same

eference signal r(t) . Thus, the meaning of the last term in (26) is

o make the two controllers C Q (ψ 

� (ρ) , q ) and C M 

(ϕ 

� (θ ) , q ) per-

orm a similar action. 

The optimization of the cost function in (25) must be con- 

trained so that both M r (θ, q ) and Q r (ρ, q ) are stable. Moreover,

n order to ensure that the computation of cost J(θ, ρ) is numer- 

cally stable (namely, the involved signals do not diverge during 

ecursive computation of the terms in (26) ), the reference models 

 r (θ, q ) and Q r (ρ, q ) , and the parametric controllers C M 

(ϕ, q ) and

 Q (ψ, q ) have to be chosen so that: 

1. all unstable zeros of C M 

(ϕ, q ) are zeros of M r (θ, q ) ; 

2. all unstable poles of C M 

(ϕ, q ) are zeros of 1 − M r (θ, q ) ; 

3. all unstable zeros of C Q (ψ, q ) are zeros of Q r (ρ, q ) . 

Note that Conditions 1 and 3 are needed to ensure numerical 

tability of (23) and (24) , respectively, whereas Condition 2 re- 

uires that C M 

(ϕ, q ) and M r (θ, q ) are consistent with each other.

his issue will be further considered in Remark 5 in Section 4.2 . 

Once the optimization of criterion (25) terminates, two con- 

rollers are available, namely C M 

(ϕ 

� (θ� ) , q ) and C Q (ψ 

� (ρ� ) , q ) .

pecifically, C M 

(ϕ 

� (θ� ) , q ) is designed so that, if it is put in feed-

ack with the unknown process, the corresponding closed-loop 

ap matches M r (θ� , q ) as closely as possible (recall (23) ). On

he other hand, C Q (ψ 

� (ρ� ) , q ) is designed so that, if it is put

n feedback with the unknown process, the corresponding input- 

ensitivity map matches Q r (ρ� , q ) as closely as possible (recall 

24) ). Therefore, it is expected that C Q (ψ 

� (ρ� ) , q ) complies with

he stability test (see Section 3.1 ) 

sup 

∈ [ −π,π ] 

| ̂  u (ω) − ˆ u 

◦(ρ� , ψ 

� (ρ� ) , ω) | 
| ̂  u (ω) | < 1 . (30) 

f (30) does not hold, then the overall procedure has to be re- 

ised (e.g., the controller family is not rich enough, a different 

hoice for the weights in (26) is needed, etc.). On the other hand, 

hen (30) holds, C Q (ψ 

� (ρ� ) , q ) is a candidate controller for the

nknown process. 

The stability test can also be applied to C M 

(ϕ 

� (θ� ) , q ) ,

ince the last term in the cost tends to make Q r (ρ� , q ) and

 M 

(ϕ 

� (θ� ) , q )(1 − M r (θ� , q )) close to each other. In this case, the

nput discrepancy must be computed as 

 (t) − u (θ� , ρ� , t) = u (t) − Q r (ρ
� , q ) y (t) 

− C −1 
M 

(ϕ 

� (θ� ) , q ) Q r (ρ
� , q ) u (t) (31) 

nd the stability test becomes 

sup 

∈ [ −π,π ] 

| ̂  u (ω) − ˆ u (θ� , ρ� , ω) | 
| ̂  u (ω) | < 1 (32) 

f both controllers pass the corresponding stability tests, then 

 M 

(ϕ 

� (θ� ) , q ) is selected, as its performance is deemed to be closer

o the desired behavior expressed by M r (θ� , q ) . 
h

5 
emark 1. The left-hand side of both (30) and (32) can be esti- 

ated by means of non-parametric identification techniques (e.g. 

TFE). Then, in order to deal with the error in the estimation 

ue to non-ideal conditions (disturbances and finite-length exper- 

ment), the test will be assumed to be passed when such an esti- 

ate is less than 1 − ξ , where the positive scalar ξ < 1 is a design

arameter. 

emark 2. Condition (30) can be imposed for a generic ρ and 

irectly employed as an additional constraint within the op- 

imization problem (25) . In this case, the term W fit , Q (u (t) −
 

◦(ρ, ψ 

� (ρ) , t)) 2 could be removed from the cost (26) , i.e., W fit , Q 

an be set to 0. Similarly, (32) could also be imposed for any θ
s an additional constraint within the optimization problem (25) . 

his could possibly decrease the probability of getting a feasible 

olution. However, if a feasible solution is obtained, then both 

 Q (ψ 

� (ρ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) are stabilizing for the unknown

rocess, thus the latter can be selected. 

. Global optimization of reference models 

In this section, we discuss how to solve the optimization prob- 

ems (7) and (25) through particle swarm optimization (PSO). This 

echnique is well-suited for the problem of interest, which is for- 

ulated in terms of a limited number of optimization variables 

nd aims at finding a global optimizer. The reader interested in 

SO is referred, e.g., to [24] . 

.1. Global optimization of reference model in VRFT 

We first consider the framework described in Section 2 for an 

ptimal selection of the reference model M(θ, q ) within the VRFT 

pproach. Specifically, we consider the following parameterization 

or the reference model: 

(θ, q ) = K 

∏ n zr 

� =1 ( q − z � ) 
∏ n zr + n zc 

� = n zr +1 ( q − z � ) ( q − z ∗� ) ∏ n pr 

� =1 ( q − p � ) 
∏ n pr + n pc 

� = n pr +1 ( q − p � ) 
(
q − p ∗� 

) , (33) 

here ∗ denotes complex conjugate, and n zr , n zc , n pr , n pc denote 

he number of real zeros, complex conjugate zeros, real poles, 

nd complex conjugate poles, respectively. In defining (33) we set 
 � 2 
� = � 1 = 1 if � 1 > � 2 . The vector θ to be optimized is defined by

tacking the following parameters: 

 � , � = 1 , · · · , n zr ;
e { z � } , Im { z � } , � = n zr + 1 , · · · , n zr + n zc ;

p � , � = 1 , · · · , n pr ;
e { p � } , Im { p � } , � = n pr + 1 , · · · , n pr + n pc . 

The term K is only needed to enforce M(θ, 1) = 1 (i.e., unitary 

teady-state gain), and is not treated as an optimization variable. 

s discussed in Section 2.1 , VRFT requires the stability of both the 

eference model M(θ, q ) and of its inverse. In order to comply with 

hese requirements, a possible solution is to add a function b(·) 
o the computation of J(θ ) , with b : R → R , which penalizes the

iolation of such conditions. Among different possible choices for 

, the following piecewise-polynomial function will be used in the 

xamples shown in Section 5 : 

(h ) = 

⎧ ⎨ 

⎩ 

0 if h < 0 √ 

k h if 0 ≤ h < 1 √ 

k h 

2 if h ≥ 1 

(34) 

here k denotes the current PSO iteration, and h : R → R is such

hat 

 

z 
� (θ ) = | z � | 2 − 1 , � = 1 , . . . , n zr + n zc 

 

p 
� (θ ) = | p � | 2 − 1 , � = 1 , . . . , n pr + n pc . 

(35) 
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Algorithm 1 VRFT approach with reference model selection 

through PSO. 

Input : number of particles N part , maximum number of iterations 

k max ; positive weights W y , W �u 
, W fit ; penalty function b. 

1. Populate particle swarm θ i , i = 1 , . . . , N part , with random ini- 

tial values under constraints h z � (θ ) < 0 , � = 1 , . . . , n zr + n zc , and 

h 
p 
� 
(θ ) < 0 , � = 1 , . . . , n pr + n pc ; 

2. for k = 1 , . . . , k max do 

for i = 1 , . . . , N part do 

parametrize M(θ i , q ) as in (33); 

set K such that M(θ i , 1) = 1 ; 

compute C(ϕ 

� (θ i ) , q ) , c 0 (ϕ 

� (θ i )) through VRFT; 

set the cost function 

J(θ i ) = 

1 

N 

N−1 ∑ 

t=0 

{
W y (r(t) − y p (θ

i , t)) 2 

+ W �u �u 

2 
p (θ

i , t) + W fit (u (t) − u v (θ
i , t)) 2 

+ 

n zr + n zc ∑ 

� =1 

b(h 

z 
� (θ

i )) + 

n pr + n pc ∑ 

� =1 

b(h 

p 
� (θ

i )) 

}
(36) 

end for 

choose the best particle based on the computed cost 

functions J(θ i ) , i = 1 , . . . , N part ; 

update the position of particles as in [24, Algorithm 1]; 

end for 

Output : best particle (reference model parameters) θ� , controller 

parameters ϕ 

� (θ� ) . 
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In order to solve the optimization problem through PSO we 

onsider a certain number N part of particles (each one represented 

y a parameter vector θ i ) and compute the controller param- 

ters ϕ 

� (θ i ) associated to each particle through the VRFT ap- 

roach. The position of the particles is updated iteratively for a 

re-defined number of iterations k max according to common rules 

n PSO. When the algorithm terminates, the best particle θ� is pro- 

ided as the one corresponding to the minimum value of J(θ i ) , 

 = 1 , . . . , N part . Algorithm 1 summarizes the overall procedure. 

emark 3. When each M(θ i , q ) , i = 1 , . . . , N part , is parameterized

s in (33) with K such that M(θ i , 1) = 1 , numerical stability of the

omputation of u p (θ i , t) in (10) is ensured if C(ϕ 

� (θ i ) , q ) contains

t most one integrator and has all the other poles inside the unit 

ircle. 

.2. Global optimization of Q r (q ) and M r (q ) 

We address now the optimal design of the output and input 

eference maps within the framework described in Section 3 . For 

his purpose, we consider the following parameterization 

M r (θ, q ) 

= K M 

∏ n M zr 

� =1 ( q − z �,M 

) 
∏ n M zr + n M zc 

� = n M zr +1 
( q − z �,M 

) 
(
q − z ∗

�,M 

)
∏ n M pr 

� =1 ( q − p �,M 

) 
∏ n M pr + n M pc 

� = n M pr +1 
( q − p �,M 

) 
(
q − p ∗

�,M 

) (37) 

Q r (ρ, q ) 

= K Q 

∏ n Q zr 

� =1 ( q − z �,Q ) 
∏ n Q zr + n Q zc 

� = n Q zr +1 
( q − z �,Q ) 

(
q − z ∗

�,Q 

)
∏ n Q pr 

� =1 ( q − p �,Q ) 
∏ n Q pr + n Q pc 

� = n Q pr +1 
( q − p �,Q ) 

(
q − p ∗

�,Q 

) . (38) 

hile K Q in (38) is also an optimization variable, K M 

in (37) is 

nly needed to enforce M r (θ, 1) = 1 and thus it is not an optimiza-
6 
ion variable. Further, n M 

zr , n M 

zc , n M 

pr , and n M 

pc denote the number of

eal zeros, complex conjugate zeros, real poles, and complex con- 

ugate poles, respectively, of the reference map M r (θ, q ) . Then, the 

ector θ to be optimized is defined by stacking the following 

arameters: 

 �,M 

, � = 1 , · · · , n 

M 

zr ;
e { z �,M 

} , Im { z �,M 

} , � = n 

M 

zr + 1 , · · · , n 

M 

zr + n 

M 

zc ;
p �,M 

, � = 1 , · · · , n 

M 

pr , 

e { p �,M 

} , Im { p �,M 

} , � = n 

M 

pr + 1 , · · · , n 

M 

pr + n 

M 

pc . 

imilarly, n Q zr , n Q zc , n Q pr , and n Q pc in (38) denote the number of real

eros, complex conjugate zeros, real poles, and complex conjugate 

oles, respectively, of the reference map Q r (ρ, q ) . Then, the vector 

is defined by stacking the following parameters: 

 Q ;
 �,Q , � = 1 , · · · , n 

Q 
zr ;

e { z �,Q } , Im { z �,Q } , � = n 

Q 
zr + 1 , · · · , n 

Q 
zr + n 

Q 
zc ;

p �,Q , � = 1 , · · · , n 

Q 
pr ;

e { p �,Q } , Im { p �,Q } , � = n 

Q 
pr + 1 , · · · , n 

Q 
pr + n 

Q 
pc . 

A penalty function b(h ) of the form (34) is added to the com- 

utation of J(θ, ρ) in order to enforce M r (θ, q ) and Q r (ρ, q ) to be

table, with h : R → R such that 

 

p 
� (θ ) = | p �,M 

| 2 − 1 , � = 1 , . . . , n 

M 

pr + n 

M 

pc 

 

p 
� (ρ) = | p �,Q | 2 − 1 , � = 1 , . . . , n 

Q 
pr + n 

Q 
pc . 

(39) 

ecalling Remark 1 and Remark 2 , conditions (30) and (32) can 

lso be imposed as additional requirements, which in turn can be 

xpressed in terms of penalty functions b(h ) of the form (34) . In

his respect, we can denote by E Q the estimation of the left-hand 

ide of (30) , and by E M 

the estimation of the left-hand side of (32) ,

nd define 

 E ,Q (ρ) := E Q − 1 + ξ (40) 

 E ,M 

(θ ) := E M 

− 1 + ξ . (41) 

he overall procedure is summarized in Algorithm 2 . 

emark 4. In practice, it is reasonable to require that M r (θ, q ) and

 r (ρ, q ) share the same denominator. In this case, the actual pa- 

ameter vector to be optimized is composed by stacking the fol- 

owing terms: 

 �,M 

, � = 1 , . . . , n 

M 

zr ;
e { z �,M 

} , Im { z �,M 

} , � = n 

M 

zr + 1 , . . . , n 

M 

zr + n 

M 

zc ;
p �,M 

, � = 1 , . . . , n 

M 

pr ;
e { p �,M 

} , Im { p �,M 

} , � = n 

M 

pr + 1 , . . . , n 

M 

pr + n 

M 

pc ;
 Q ;
 �,Q , � = 1 , . . . , n 

Q 
zr ;

e { z �,Q } , Im { z �,Q } , � = n 

Q 
zr + 1 , . . . , n 

Q 
zr + n 

Q 
zc . 

ccordingly, the number of optimization variables in cost (26) is 

ctually reduced to n var := n M 

zr + n M 

zc + n M 

pr + n M 

pc + n Q zr + n Q zc + 1 . 

emark 5. When each controller C M 

(ϕ(θ i ) , q ) , i = 1 , . . . , N part ,

s equipped with an integral action, then Condition 2 of 

ection 3.2 holds thanks to the parameterization (37) with K M 

uch that M r (θ i , 1) = 1 . On the other hand, if some design spec-

fications require that R u,M 

(q ) in (21) contains additional unsta- 

le poles, then Condition 2 of Section 3.2 requires that they are 

lso zeros of 1 − M r (θ i , q ) , thus the parameterization (37) has to

e modified accordingly. Furthermore, if nonminimum-phase zeros 

eed to be included in S u,M 

(q ) , they also have to be imposed as
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Algorithm 2 Data-driven control design with guaranteed stability: 

selection of input and output maps through PSO. 

Input : number of particles N part , maximum number of iterations 

k max ; positive weights W y , W �u 
, W fit ,M 

, W fit ,Q , W MQ ; penalty func- 

tion b. 

1. Populate particle swarm col { θ i , ρ i } , i = 1 , . . . , N part ,with ran- 

dom initial values under constraints h 
p 
� 
(θ ) < 0 , � = 1 , . . . , n M 

pr + 

n M 

pc , and h 
p 
� 
(ρ) < 0 , � = 1 , . . . , n Q pr + n Q pc ; 

2. for k = 1 , . . . , k max do 

for i = 1 , . . . , N part do 

parametrize M r (θ i , q ) as in (37) and Q r (ρ i , q ) as in (38); 

set K M 

such that M r (θ i , 1) = 1 ; 

compute C M 

(ϕ 

� (θ i ) , q ) and C Q (ψ 

� (ρ i ) , q ) through out- 

put error method; 

set the cost function 

J(θ i , ρ i ) = 

1 

N 

N−1 ∑ 

t=0 

{ 

W y (r(t) − y p (θ
i , t)) 2 

+ W �u �u 

2 
p (θ

i , t) 

+ W fit ,M 

(y (t) − y ◦(θ i , ϕ 

� (θ i ) , t)) 2 

+ W fit ,Q (u (t) − u 

◦(ρ i , ψ 

� (ρ i ) , t)) 2 

+ W MQ (u p (θ
i , t) − u p (ρ

i , t)) 2 

+ 

n M pc + n M pr ∑ 

� =1 

b(h 

p 
� (θ

i )) + 

n Q pc + n Q pr ∑ 

� =1 

b(h 

p 
� (ρ

i )) 

+ b(h E ,Q (ρ
i )) + b(h E ,M 

(θ i )) 
} 

(42) 

end for 

choose the best particle based on the computed cost func- 

tions J(θ i , ρ i ) , i = 1 , . . . , N part ; 

update the position of particles as in [24, Algorithm 1]; 

end for 

Output : best particle (reference model parameters) 

col { θ� , ρ� } ,controller parameters ϕ 

� (θ� ) and ψ 

� (ρ� ) . 
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xed zeros in (37) by Condition 1 of Section 3.2 . Similarly, if it is

equired that C Q (ψ(ρ i ) , q ) in (22) is equipped with nonminimum- 

hase zeros (included in S u,Q (q ) ), they also have to be imposed as

xed zeros in (38) by Condition 3 of Section 3.2 . 

emark 6. We point out that the stability tests (30) and (32) are 

lways used, taking into account the considerations reported in 

emark 1 , as an additional a-posteriori check of the actual feasi- 

ility of the solution provided by Algorithm 2 . This check is par- 

icularly important when it is necessary to relax the optimization 

roblem by removing either one or both of the last two terms in 

he general cost (42) (for example, if no feasible solution has been 

ound by optimizing (42) ). We underline that the general form of 

he cost (42) has been used in all the simulation examples re- 

orted in Section 5 , leading to feasible solutions for Algorithm 2 . 

.3. Design guidelines and final remarks 

We conclude this section with some comments and design 

uidelines. First, it is important to highlight that the proposed 

ethod, as any model-free design technique, aims at providing an 

ffective alternative to classical model-based procedures when it 

s difficult or time-consuming to derive a model through identifi- 

ation which is simple and reliable enough for model-based con- 

roller synthesis. In fact, whenever it is possible to derive a pro- 
7 
ess model which achieves a good trade-off between simplicity 

nd reliability, classical design techniques based on the derived 

odel, such as the linear quadratic Gaussian control design, are 

ble to obtain very satisfactory results. On the other hand, the aim 

f the proposed method is to achieve similar performance even 

hen the conditions ensuring satisfactory outcomes for model- 

ased optimal techniques do not hold. It is important to underline 

hat, in model-free methods, any design choice has to be made 

n the basis of no (or limited) information about the process. In 

his respect, in our technique the choice of the order of both con- 

roller(s) and reference model(s) is made by means of a tuning 

rocedure. More in details, a low order is first selected for both 

ontroller(s) and reference model(s); then, the degrees of freedom 

re possibly increased on the basis of the achieved performance. 

hile starting from an initial setting and possibly increasing the 

egrees of freedom in order to achieve better results is quite a 

tandard procedure, it is worth underlining that such a procedure 

mplies to test the designed controller on the real process, and can 

hus be adopted in practical applications only if such controller 

s guaranteed to be stabilizing. Therefore, with specific focus on 

lgorithm 1 and Algorithm 2 , we underline that the above men- 

ioned procedure can be safely adopted, in practical applications, 

nly within Algorithm 2 . We further highlight that Algorithm 1 has 

o be considered as a first step towards an automatic and opti- 

al (in terms of a certain criterion) choice of the output reference 

odel for model-free control design techniques, such as the Virtual 

eference Feedback Tuning. On the other hand, the more complex 

lgorithm 2 is oriented to overcome the limitations of Algorithm 1 ; 

ince any feasible solution of Algorithm 2 corresponds to a stabi- 

izing controller, such controller can be safely put in feedback with 

he real process, therefore also allowing for an actual tuning of the 

esign parameters. 

In the next section concerning simulation results, we will 

iscuss the choice of the weights in (8) and (26) . 

. Simulation examples 

In this section, we test the proposed approach in three different 

imulation examples. In all the examples, we report the explicit 

orm of reference models and controllers, with their coefficients 

pproximated to the fourth decimal place; we point out that this 

ay reflect in some differences in the outcomes of simulation tests 

hen the approximated versions are used in place of the original 

ontrollers/reference models. 

.1. Example 1 

We consider a simple nonlinear Wiener process. Let f (·) : R → 

 be a static nonlinear function such that 

f (y L (t)) = | y L (t) | arctan (y L (t)) , (43) 

here y L (t) is obtained from the LTI, asymptotically stable, and 

inimum-phase process P described by the following transfer 

unction 

 (q ) = 

q − 0 . 45 

( q − 0 . 55)(q + 0 . 65) 
. (44) 

he model (44) and the nonlinear function f (·) are assumed to 

e unknown by our proposed model-free design procedure. Before 

ddressing the model-free control design problem on system (43) , 

e first discard the nonlinear part, i.e., we consider (44) as the 

ctual process to be controlled. This linear-only case has to be in- 

ended as a preliminary benchmark for testing the proposed design 

ethod in ideal conditions. In fact, we recall that the theoretical 

esults behind the proposed method hold for linear processes; on 

he other hand, the simulation analysis reported in this example 
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Fig. 1. Example 1. Reference signal r (t) used for the closed-loop experiment. 
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ims to show that our technique can also deal with simple nonlin- 

arities in the plant. For this purpose, in this example we are inter- 

sted in evaluating the outcome of the proposed design method in 

he linear-only case (44) and for the overall Wiener process (43) , 

sing the same algorithm settings in the two cases. 

Case 1 - A dataset of N = 50 0 0 input and output samples is

ollected via an open-loop experiment, carried out by exciting the 

rocess (44) with a white Gaussian signal u (t) with zero mean and 

tandard deviation σu = 1 . The measured output signal y (t) ≡ y L (t) 

s corrupted by a white Gaussian noise n (t) with zero mean and 

tandard deviation σn = 10 −2 . The sampling time T s is 0.1 s. A 

seudo-random binary signal taking values in {−1 , 1 } is used as 

he reference signal r(t) in both (8) and (26) . The specific set-up 

or Algorithm 1 and Algorithm 2 (chosen also in view of the gen- 

ral Wiener case) is detailed below. In Algorithm 1 , the number 

f particles is set to N part = 20 , and the maximum number of it-

rations to k max = 100 . The weights in (8) are W y = 1 , W �u = 1 . 5 ,

 fit = 30 . At any iteration k of Algorithm 1 , each reference model

(θ i , q ) is parametrized as in (33) , with n zr = 2 , n zc = 0 , n pr = 1 ,

 pc = 2 , and is constrained to be stable and minimum-phase via 

iecewise polynomial penalty functions as defined in (34) - (35) . For 

ach M(θ i , q ) , a third-order linear controller is designed through 

RFT, with feedforward term c 0 = 0 . Executing Algorithm 1 with 

hese settings provides the reference model 

(θ� , q ) = 

q 2 − 0 . 3462 q + 0 . 0256 

2 . 3840 q 3 − 1 . 2283 q 2 − 1 . 4089 q + 0 . 9327 

nd the controller 

(ϕ 

� (θ� ) , q ) = 

q (0 . 4194 q 2 − 0 . 1329 q − 0 . 0014) 

q 3 − 1 . 4553 q 2 + 0 . 4183 q + 0 . 0370 

. 

imilarly, in Algorithm 2 the number of particles is set to N part = 

0 , and the maximum number of iterations to k max = 100 . The

eights in (26) are W y = 1 , W �u = 1 . 5 , W fit ,Q = 0 , W fit ,M 

= 1 ,

 MQ = 10 . At any iteration k of Algorithm 2 , the reference models

 r (θ i , q ) and Q r (ρ i , q ) are parametrized as in (37) and (38) , re-

pectively, for each particle, with n M 

zr = 2 , n M 

zc = 0 , n M 

pr = 1 , n M 

pc = 2 ,

 

Q 
zr = 3 , n Q zc = 0 , n Q pr = 1 , n Q pc = 2 . As pointed out in Remark 4 , it is

easonable to require that M r (θ i , q ) and Q r (ρ i , q ) share the same

enominator, thus the number of optimization variables is reduced 

o 9. For any pair (M r (θ i , q ) , Q r (ρ i , q )) , two linear controllers 

 M 

(ϕ 

� (θ i ) , q ) = 

q 

q − 1 

C M 

(ϕ 

� (θ i ) , q ) (45) 

 Q (ψ 

� (ρ i ) , q ) = 

q 

q − 1 

C Q (ψ 

� (ρ i ) , q ) , (46) 

oth including a fixed integral action, are synthesized through 

23) and (24) , respectively, by applying the output error method. 

he transfer functions C M 

(ϕ 

� (θ i ) , q ) and C Q (ψ 

� (ρ i ) , q ) are both

hird-order. Problem (25) is constrained via piecewise polyno- 

ial penalty functions b(h ) , requiring that both reference models 

 r (θ i , q ) and Q r (ρ i , q ) are stable through (39) , and further im-

osing that conditions (30) and (32) are satisfied for any θ i and 

i through (40) –(41) (in accordance with Remark 1 , the left-hand 

ide of (30) and (32) is actually compared with 1 − ξ , where the 

hreshold ξ = 10 −2 ). In the proposed framework, a feasible solu- 

ion (θ� , ρ� ) is obtained for Algorithm 2 , specifically 

 r (θ
� , q ) = 

q 2 + 0 . 2766 q − 0 . 0523 

9 . 2593 q 3 − 13 . 1186 q 2 + 5 . 8311 q − 0 . 7475 

Q r (ρ
� , q ) = 

q 3 + 0 . 6105 q 2 + 0 . 0427 q − 0 . 0 0 02 

9 . 2593 q 3 − 13 . 1186 q 2 + 5 . 8311 q − 0 . 7475 

, 

eaning that both C Q (ψ 

� (ρ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) are compliant

ith the stability test. Thus, the latter is selected: 

 M 

(ϕ 

� (θ� ) , q ) = 

q (0 . 1080 q 3 + 0 . 0547 q 2 − 0 . 0336 q − 0 . 0152) 

q 4 − 1 . 8449 q 3 + 1 . 0519 q 2 − 0 . 2181 q + 0 . 0111 

. 
8 
he performance achieved by the feedback interconnection be- 

ween each one of the controllers C(ϕ 

� (θ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) ,

espectively, and the unknown process, is evaluated through a 

imulation test on the real process model (44) , whose output is 

orrupted by a white Gaussian noise n (t) with zero mean and 

tandard deviation σn = 5 · 10 −3 . The comparison is carried out in 

erms of the following cumulated cost 

 cl = 

1 

τ

τ−1 ∑ 

t=0 

{
W y ( r (t) − y (t)) 2 + W �u �u 

2 (t) 
}

. (47) 

pecifically, τ in (47) is set to 100 /T s and the reference signal r (t) 

o be tracked is depicted in Fig. 1 . 

The computation of the cost J cl in (47) is as follows: J cl ≈
 . 001401 for C(ϕ 

� (θ� ) , q ) , and J cl ≈ 0 . 001481 for C M 

(ϕ 

� (θ� ) , q ) .

e consider now the feedback interconnection of the process 

ith the model-based linear quadratic Gaussian (LQG) controller 

 LQG (q ) , obtained via standard combination of a Kalman filter 

nd a linear quadratic regulator with output feedback (the lat- 

er designed by using the same weights W y and W �u as set in 

lgorithm 1 and Algorithm 2 ). Specifically, a very accurate second- 

rder linear model of the process ˆ P (q ) is estimated using 30 0 0 

amples in the available dataset, while the remaining 20 0 0 sam- 

les are used to validate the model. The corresponding best fit rate 

BFR) is about 95%. We recall that the BFR is defined as follows: 

FR = 100 

(
1 − ‖ y − ˆ y ‖ 

‖ y − y m 

‖ 

)
% , (48) 

here ˆ y is the output trajectory obtained by simulating ˆ P (q ) 

n open-loop using inputs from the validation dataset composed 

f the remaining N − N f samples; y is the corresponding output 

ataset; and y m 

is the average of y . Then, C LQG (q ) is synthesized

y using the extended model ˆ P (q ) q 
1 −q : 

 LQG (q ) = 

q 2 (0 . 3560 q 2 + 0 . 2594 q − 0 . 0324) 

q 4 − 0 . 5223 q 3 − 0 . 5358 q 2 + 0 . 0640 q − 0 . 0058 

. 

he cost obtained in correspondence of C LQG (q ) is J cl ≈ 0 . 001377 . 

Case 2 - We consider now the nonlinear Wiener process (43) . 

s before, a dataset of N = 50 0 0 input and output samples is

ollected through an open-loop experiment carried out by ex- 

iting the process with a white Gaussian noise u (t) with zero 

ean and standard deviation σu = 1 . The measured output signal 

 (t) = f (y L (t)) + n (t) is corrupted by a measurement noise n (t)

ith zero mean and standard deviation σn = 10 −2 . The sampling 
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Fig. 2. Example 1. Closed-loop experiment: reference signal r (t) (black); output 

under the model-based optimal controller C LQG (q ) (blue), the data-driven con- 

troller C M (ϕ 
� (θ� ) , q ) obtained from Algorithm 2 (red), and the data-driven con- 

troller C(ϕ � (θ� ) , q ) obtained from Algorithm 1 (green). All the plots are almost 

overlapping. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

t  

p

t

A

S

M

a

C

W

M

B  

b

C  

S

i

P  

a

m

c

C

T

C  

b

l

i  

J  

W

o  

19 19.5 20 20.5 21
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 3. Example 1. Detail of Fig. 2 in the interval [19 , 21] s . 

Table 1 

Example 1. Algorithm 1 : variation of the cost J cl versus variation 

of each weight in (8) over large intervals, while keeping all the 

other weights fixed (see the simulation set-up for Example 1). 

Weights J cl 

W �u [10 −3 , 10 −1 ] [0 . 0 0 0803 , 0 . 0 0 0981] 

[1 , 10 4 ] [0 . 002110 , 0 . 055713] 

[10 5 , 10 7 ] [1 . 994582 , 10 . 50219] 

W fit 10 −6 unstable closed-loop 

[10 −5 , 10 −3 ] [4 . 067692 , 10 . 430503] 

[10 −2 , 10 4 ] [0 . 0 01749 , 0 . 0 02245] 

Table 2 

Example 1. Algorithm 2 : variation of the cost J cl versus variation 

of each weight in (26) over large intervals, while keeping all the 

other weights fixed (see the simulation set-up for Example 1). 

Weights J cl 

W �u [10 −3 , 10 3 ] [0 . 0 01186 , 0 . 0 020 03] 

[10 4 , 10 6 ] [0 . 574975 , 1 . 576577] 

W fit , M [10 −3 , 10 3 ] [0 . 0 01904 , 0 . 0 06573] 

[10 4 , 10 6 ] [0 . 574977 , 1 . 576578] 

W fit , Q [10 −6 , 10 4 ] [0 . 0 01977 , 0 . 0 02581] 

[10 5 , 10 6 ] [0 . 282629 , 0 . 448337] 

W MQ [10 −7 , 10 4 ] [0 . 0 01936 , 0 . 0 02248] 

[10 5 , 10 6 ] [0 . 120443 , 0 . 648837] 

10 7 no feasible solution 

c

T

f

o

v

c

r

t

a

m

5

c

[

t  
ime T s is 0.1 s. Our aim is to show in simulation that the pro-

osed design method is able to cope with simple nonlinearities in 

he process to be controlled. For this purpose, Algorithm 1 and 

lgorithm 2 are run with the same settings reported in Case 1. 

pecifically, Algorithm 1 provides the reference model 

(θ� , q ) = 

q 2 − 0 . 2334 q − 0 . 0542 

1 . 6216 q 3 − 0 . 2616 q 2 − 1 . 0355 q + 0 . 3879 

nd the controller 

(ϕ 

� (θ� ) , q ) = 

q (0 . 5396 q 2 − 0 . 2640 q − 0 . 0298) 

q 3 − 1 . 5611 q 2 + 0 . 5788 q − 0 . 0177 

. 

ith respect to Algorithm 2 , the reference models are as follows: 

 r (θ
� , q ) = 

q 2 − 0 . 7163 q + 0 . 0888 

2 . 5367 q 3 − 3 . 8095 q 2 + 1 . 9816 q − 0 . 3363 

Q r (ρ
� , q ) = 

q 3 − 0 . 2473 q 2 − 0 . 3695 q + 0 . 0819 

2 . 5367 q 3 − 3 . 8095 q 2 + 1 . 9816 q − 0 . 3363 

. 

oth C Q (ψ 

� (ρ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) are compliant with the sta-

ility test, thus the latter is selected: 

 M 

(ϕ 

� (θ� ) , q ) = 

q (0 . 3694 q 3 + 0 . 5979 q 2 + 0 . 2236 q − 0 . 0061) 

q 4 − 0 . 1065 q 3 − 1 . 0080 q 2 + 0 . 0968 q + 0 . 0176 

.

imilarly to Case 1, an LQG controller with output feedback C LQG (q ) 

s synthesized on the basis of a third-order linear estimated model 
ˆ 
 (q ) of the process, obtained from 30 0 0 samples in the avail-

ble dataset (the remaining 20 0 0 samples are used to validate the 

odel), corresponding to a BFR of about 80%. The resulting LQG 

ontroller is as follows: 

 LQG (q )= 

q 2 (0 . 2563 q 3 + 0 . 0404 q 2 − 0 . 1128 q + 0 . 0027) 

q 5 − 1 . 0714 q 4 − 0 . 3628 q 3 + 0 . 5538 q 2 − 0 . 1224 q + 0 . 0027 
. 

he performance achieved when each one of the controllers 

(ϕ 

� (θ� ) , q ) , C M 

(ϕ 

� (θ� ) , q ) , and C LQG (q ) , respectively, are in feed-

ack with the process (43) , is evaluated in terms of the cumu- 

ative cost (47) , where τ = 100 /T s and the reference signal r (t) 

s depicted in Fig. 1 . Specifically, J cl ≈ 0 . 002115 for C(ϕ 

� (θ� ) , q ) ;

 cl ≈ 0 . 001977 for C M 

(ϕ 

� (θ� ) , q ) ; finally, J cl ≈ 0 . 002373 for C LQG (q ) .

e show in Fig. 2 the output signals obtained in correspondence 

f the three controllers (a zoom is provided in Fig. 3 ) and the
9 
orresponding input increments in Fig. 4 . Finally, we show in 

ables 1 and 2 the outcome of a simulation analysis carried out 

or Algorithm 1 and, respectively, Algorithm 2 , by letting each one 

f the weights in (8) and, respectively, (26) , vary over large inter- 

als while keeping all the other weights fixed, and computing the 

umulated cost J cl corresponding to each case. This analysis is car- 

ied out for all the weights except for W y , which is always fixed 

o 1 for both Algorithm 1 and Algorithm 2 . From this simulation 

nalysis we can note that small differences in the achieved perfor- 

ance occur over large intervals of the weights. 

.2. Example 2 

We consider now the benchmark proposed for robust digital 

ontrol in [19] , namely a flexible transmission system. Following 

19] , in the unloaded case the system (obtained through discretiza- 

ion with sampling time T s = 0 . 05 s ) can be described by the fol-
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Fig. 4. Example 1. Closed-loop experiment: input increments under the model-based optimal controller C LQG (q ) (top), the data-driven controller C M (ϕ 
� (θ� ) , q ) obtained from 

Algorithm 2 (middle), and the data-driven controller C(ϕ � (θ� ) , q ) obtained from Algorithm 1 (bottom). 
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owing model: 

 (q −1 ) = 

q −2 B (q −1 ) 

A (q −1 ) 
(49) 

here 

 (q −1 ) = 0 . 28261 q −1 + 0 . 50 6 6 6 q −2 

 (q −1 ) = 1 − 1 . 41833 q −1 + 1 . 58939 q −2 − 1 . 31608 q −3 

+ 0 . 88642 q −4 . 

he process is stable and nonminimum-phase, and is assumed to 

e unknown by our model-free design procedure. Similarly to the 

revious examples, we collect a dataset of N = 50 0 0 input and

utput samples via an open-loop experiment, carried out by excit- 

ng the process with a white Gaussian signal u (t) with zero mean 

nd standard deviation σu = 1 . The output signal is corrupted by a 

hite Gaussian noise n (t) with zero mean and standard deviation 

n = 10 −2 . Within the considered simulation set-up, many differ- 

nt settings have been tried for Algorithm 1 , but none of them has

rovided a stabilizing controller. We underline that the considered 

ettings just cover a finite number of possibilities; however, this 

utcome is consistent with the absence of stability guarantees in 

lgorithm 1 . On the other hand, any feasible solution provided by 

lgorithm 2 corresponds to a stabilizing controller. Specifically, we 

how the results obtained by running Algorithm 2 with W y = 1 , 

 �u = 10 2 , W fit ,Q = 0 , W fit ,M 

= 1 , W MQ = 10 3 . At any iteration k

f Algorithm 2 , the reference models M r (θ i , q ) and Q r (ρ i , q ) are

arametrized as in (37) and (38) , respectively, for each particle, 

ith n M 

zr = 3 , n M 

zc = 2 , n M 

pr = 1 , n M 

pc = 4 , n Q zr = 3 , n Q zc = 2 , n Q pr = 1 ,

 

Q 
pc = 4 (as in the previous example, M r (θ i , q ) and Q r (ρ i , q ) are

equired to share the same denominator). A pseudo-random 

inary signal taking values in {−1 , 1 } is used as the reference
10 
ignal r(t) in (26) . The maximum number of iterations is set 

o k max = 150 , and the number of particles to N part = 20 . For

ny pair (M r (θ i , q ) , Q r (ρ i , q )) , two linear controllers of the form

45) –(46) are synthesized through (23) and (24) , respectively, by 

pplying the output error method, with both C M 

(ϕ 

� (θ i ) , q ) and 

 Q (ψ 

� (ρ i ) , q ) of the fourth order. The remaining settings are as in

xample 1. Algorithm 2 provides a feasible solution (θ� , ρ� ) ; the 

esulting reference models are as follows: 

 r (θ
� , q ) 

= 

0 . 0594 q 5 + 0 . 0328 q 4 − 0 . 1409 q 3 + 0 . 1072 q 2 + 0 . 1107 q − 0 . 0635 

D (q ) 

 r (ρ
� , q ) 

= 

0 . 0178 q 5 − 0 . 0331 q 4 + 0 . 0254 q 3 − 0 . 0047 q 2 − 0 . 0 0 06 q + 0 . 0 0 01 

D (q ) 
,

ith 

 (q ) = 1 . 4792 q 5 − 3 . 1216 q 4 + 2 . 4351 q 3 − 0 . 7760 q 2 + 0 . 1042 

q − 0 . 0151 . 

oth C Q (ψ 

� (ρ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) are compliant with the

tability test, thus the latter is selected: 

 M 

(ϕ 

� (θ� ) , q ) 

= 

q (0 . 1428 q 4 − 0 . 2039 q 3 + 0 . 2303 q 2 − 0 . 1899 q + 0 . 1273) 

q 5 − 1 . 8210 q 4 + 1 . 7040 q 3 − 1 . 3955 q 2 + 0 . 5933 q − 0 . 0808 

. 

imilarly to Example 1, an LQG controller with output feedback 

 LQG (q ) is synthesized on the basis of a an estimated fourth-order 

rocess model ˆ P (q ) , corresponding to a BFR of about 82%, and the 
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Fig. 5. Example 2. Closed-loop experiment: reference signal r (t) (black) and out- 

put under C LQG (q ) (blue) and the model-free controller C M (ϕ 
� (θ� ) , q ) obtained from 

Algorithm 2 (red). (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. 6. Example 2. Detail of Fig. 5 in the time interval [14 , 16] s . 

s

C

w

D

T

C

i  

r

o

(

a  

a

0 10 20 30 40 50 60 70 80 90 100
-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70 80 90 100
-0.1

0

0.1

0.2

Fig. 7. Example 2. Closed-loop experiment: input increments under C LQG (q ) (top) 

and the data-driven controller C M (ϕ � (θ� ) , q ) obtained from Algorithm 2 (bottom). 
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ame weights W y = 1 and W �u = 10 2 : 

 LQG (q ) 

= 

q 2 (0 . 0023 q 4 + 0 . 0158 q 3 − 0 . 0040 q 2 + 0 . 0139 q − 0 . 0057) 

D LQG (q ) 
, 

ith 

 LQG (q ) = q 6 − 2 . 5136 q 5 + 3 . 1720 q 4 − 3 . 1642 q 3 + 2 . 2328 q 2 

− 0 . 7960 q + 0 . 0691 . 

he performance achieved when the controllers C M 

(ϕ 

� (θ� ) , q ) and 

 LQG (q ) , respectively, are in feedback with the process, is evaluated 

n terms of the cumulative cost (47) , where τ = 100 /T s and the

eference signal r (t) is depicted in Fig. 5 , which also shows the 

utput signals obtained in correspondence of the two controllers 

a zoom is provided in Fig. 6 ). The corresponding input increments 

re shown in Fig. 7 . Specifically, J cl ≈ 0 . 021838 for C M 

(ϕ 

� (θ� ) , q )

nd J cl ≈ 0 . 017754 for C LQG (q ) . 
o

11 
.3. Example 3 

We consider now the LTI, asymptotically stable, nonminimum- 

hase process P described by the following transfer function 

 (q ) = −0 . 3 

q − 1 . 05 

(q − 0 . 9)(q − 0 . 85) 
(50) 

hich is unknown to the proposed direct data-driven design pro- 

edure. As in the previous examples, we collect a dataset of N = 

0 0 0 input and output samples via an open-loop experiment, car- 

ied out by exciting the process with a white Gaussian signal u (t) 

ith zero mean and standard deviation σu = 1 . The output signal 

s corrupted by a white Gaussian noise n (t) with zero mean and 

tandard deviation σn = 10 −2 . The sampling time T s is 0.1 s. 

In this simulation set-up, many different settings have been 

ried for Algorithm 1 . In all of them, the computed controller is not 

tabilizing (50) . On the other hand, any feasible solution provided 

y Algorithm 2 corresponds to a stabilizing controller. Specifically, 

e show the results obtained by running Algorithm 2 with W y = 1 ,

 �u = 10 2 , W fit ,M 

= 1 , W fit ,Q = 10 −3 , W MQ = 10 2 (all the other set-

ings are as in Example 1). The resulting reference models are as 

ollows: 

 r (θ
� , q ) = 

q 2 − 2 . 7193 q + 1 . 8432 

1617 . 1427 q 3 − 4481 . 7756 q 2 + 4125 . 0349 q − 1260 . 2780 

 r (ρ
� , q ) = 

q 3 − 1 . 3265 q 2 + 0 . 3909 q + 0 . 0096 

1617 . 1427 q 3 − 4481 . 7756 q 2 + 4125 . 0349 q − 1260 . 2780 
. 

oth C Q (ψ 

� (ρ� ) , q ) and C M 

(ϕ 

� (θ� ) , q ) turn out to be compliant

ith the stability test, thus the latter is selected: 

 M 

(ϕ 

� (θ� ) , q ) = 

q (0 . 0124 q 3 − 0 . 0199 q 2 + 0 . 0077 q + 0 . 0 0 03) 

q 4 − 1 . 8451 q 3 + 0 . 6964 q 2 + 0 . 2295 q − 0 . 0808 

.

s in the previous examples, an LQG controller is synthesized on 

he basis of a second-order identified process model ˆ P (q ) and the 

ame weights W y = 1 and W �u = 10 2 . In this case, the estimated

odel is not accurate and corresponds to a BFR of about 36%. The 

esulting LQG controller 

 LQG (q ) = 

q 2 (−0 . 0561 q 2 + 0 . 0473 q − 0 . 0123) 

q 4 − 2 . 2129 q 3 + 1 . 7863 q 2 − 0 . 6722 q + 0 . 0987 

urns out to be not stabilizing for the process (50) . On the 

ther hand, the tracking performance achieved by C (ϕ 

� (θ� ) , q ) 
M 



D. Selvi, D. Piga, G. Battistelli et al. European Journal of Control xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EJCON [m5G; November 23, 2020;15:9 ] 

0 100 200 300 400 500 600 700
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 8. Example 3. Closed-loop experiment: reference signal r (t) (black) and output 

under the model-free controller C M (ϕ 
� (θ� ) , q ) obtained from Algorithm 2 (red). (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 9. Example 3. Detail of Fig. 8 in the time interval [0 , 25] s . 
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Fig. 10. Example 3. Closed-loop experiment: input increments under the data- 

driven controller C M (ϕ � (θ� ) , q ) obtained from Algorithm 2 . 
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s shown in Fig. 8 (a zoom is provided in Fig. 9 ), reporting the

utput signal along with the reference signal r (t) . The correspond- 

ng input increments are shown in Fig. 10 . The cost J cl in (47) is

omputed for C M 

(ϕ 

� (θ� ) , q ) with τ = 700 /T s and takes value J cl ≈
 . 012109 . 

. Conclusions 

By optimizing the closed-loop reference models required by di- 

ect data-driven control design techniques, this paper has proposed 

n approach to synthesize optimal controllers from data without 

equiring the identification of an open-loop model of the process. 

ptimality has been defined with respect to suitable cost func- 

ions reflecting desired closed-loop stability and performance. The 

ptimization of the reference model used in the VRFT technique 

f [6] is more convenient in terms of computational burden, but 

oes not provide theoretical guarantees of stability of the resulting 

losed loop. Instead, by optimizing the two reference models used 

n the direct control design approach of [1] (one related to output 

erformance objectives and the other one to input performance 
12 
nd stability requirements), we can ensure stability of the resulting 

losed loop. Although our formulation leads to non-convex bi-level 

rogramming problems, due to the small number of variables to 

ptimize these can be solved relatively easily by particle swarm 

ptimization, but other global optimization methods could be em- 

loyed too. Although we did not take into account input and out- 

ut constraints, these can be included also in the proposed method 

s described in [27, Sec. III C] . The reported simulation examples 

ave shown the effectiveness of our approach. 
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