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a b s t r a c t 

This paper introduces a novel model-free approach to synthesize virtual sensors for the estimation of 

dynamical quantities that are unmeasurable at runtime but are available for design purposes on test 

benches. After collecting a dataset of measurements of such quantities, together with other variables 

that are also available during on-line operations, the virtual sensor is obtained using machine learning 

techniques by training a predictor whose inputs are the measured variables and the features extracted 

by a bank of linear observers fed with the same measures. The approach is applicable to infer the value 

of quantities such as physical states and other time-varying parameters that affect the dynamics of the 

system. The proposed virtual sensor architecture — whose structure can be related to the Multiple Model 

Adaptive Estimation framework — is conceived to keep computational and memory requirements as low 

as possible, so that it can be efficiently implemented in embedded hardware platforms. 

The effectiveness of the approach is shown in different numerical examples, involving the estimation of 

the scheduling parameter of a nonlinear parameter-varying system, the reconstruction of the mode of a 

switching linear system, and the estimation of the state of charge (SoC) of a lithium-ion battery. 

© 2021 European Control Association. Published by Elsevier Ltd. All rights reserved. 

1

t

a

t

v

o

s

a

s

s

v

�

s

t

d

w  

t

R  

t

e

f

o

c

a

o

t

c

a

h

0

. Introduction 

Most real-world processes exhibit complex nonlinear dynamics 

hat are difficult to model, not only because of nonlinear inter- 

ctions between input and output variables, but also because of 

he presence of time-varying signals that change the way the in- 

olved quantities interact over time. A typical instance is the case 

f systems subject to wear of components, in which the dynamics 

lowly drift from a nominal behavior to an aged one, or systems 

ffected by slowly-varying unknown disturbances, such as unmea- 

ured changes of ambient conditions. Such systems can be well de- 

cribed using a parameter-varying model [30] that depends on a 

ector ρk ∈ R 

S of parameters, that in turn evolves over time: 

P � 

{ 

x k +1 = f (x k , u k , ρk ) 
ρk +1 = h (ρk , k, u k ) 

y k = g(x k , ρk ) 
(1) 
� This paper was partially supported by the Italian Ministry of University and Re- 

earch under the PRIN’17 project “Data-driven learning of constrained control sys- 

ems”, contract no. 2017J89ARP. 
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here x k ∈ R 

n x is the state vector, y k ∈ R 

n y is the output vec-

or, u k ∈ R 

n u is the input vector, f : R 

n x × R 

n u × R 

S → R 

n x , g : R 

n x ×
 

S → R 

n y and h : R 

S × R 

n u × R → R 

S . In this paper we assume that

he mappings in (1) are unknown . 

Special cases of (1) widely studied in the literature are lin- 

ar parameter-varying (LPV) systems [53] , in which f , g are linear 

unctions of x k , u k , and switched affine systems [52] , in which ρk 

nly assumes a value within a finite set. 

Inferring the value of ρk in real time from input/output data 

an be useful for several reasons. In predictive maintenance and 

nomaly/fault detection [18,44,55] , detecting a drift in the value 

f ρk from its nominal value or range of values can be used first 

o detect a fault and then to isolate its nature. In gain-scheduling 

ontrol [39,51] , ρk can be used instead to decide the control law to 

pply at each given time instant. 

Due to the importance of estimating ρk , various solutions have 

een proposed in the literature to estimate it during system op- 

rations. If the model in (1) were known, even if only approx- 

mately, nonlinear and robust state estimators could be success- 

ully applied [13] . On the other hand, if the mechanism regulating 

he interaction between ρk and the measurable quantities (usu- 

lly u k and y k ) is not known, but a dataset of historical data is

vailable, the classical indirect approach would be to identify an 
rved. 

https://doi.org/10.1016/j.ejcon.2021.06.005
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1 Usually Kalman filters (KF) are employed, but exceptions exist [3] . 
verall model of �P using nonlinear system identification tech- 

iques [24,33] and then build a model-based observer to estimate 

k . The drawbacks of such an indirect approach are that it can be a 

ery time-consuming task and that the resulting model-based ob- 

erver can be complex to implement. This issue is especially cum- 

ersome if one is ultimately interested in just getting an observer 

nd have no further use for the model itself. 

Virtual sensors [38,42] provide an alternative approach to solve 

uch a problem: the idea is to build an end-to-end estimator for 

k by directly learning from data the mapping from measured in- 

uts and outputs to ρk itself. The approach is interesting because 

t does not require identifying a full model of the system from 

ata, nor it requires simplifying an existing model (such as a high- 

delity simulation model) that would be otherwise too complex 

or model-based observer design. Similar estimation problems have 

een tackled in the context of novelty detection [32] and of time- 

eries clustering [2,40] . 

.1. Contribution 

The goal of this paper is to develop an approach to synthesize 

irtual sensors that can estimate ρk when its measurements are 

ot available by using data acquired when such a quantity is di- 

ectly measurable. Such a scenario often arises in serial production, 

n which the cost of components must be severely reduced. The 

urpose of the proposed approach is to enable replacing physical 

ensors with lines of code. 

The method developed in this paper is loosely related to Mul- 

iple Model Adaptive Estimation [3] (MMAE) and consists of three 

ain steps: 

1. Learn a finite set of simple linear time-invariant (LTI) models 

from data that roughly covers the behavior of the system for 

the entire range of values of ρk of interest; 

2. Design a set of standard linear observers based on such models; 

3. Use machine-learning methods to train a lightweight predictor 

that maps the estimates obtained by the observers and raw in- 

put/output signals into an estimate ˆ ρk of ρk . 

To do so, this paper extends the preliminary results presented 

n Masti et al. [35] in several ways: it formulates the problem for 

onlinear systems; it explores the performance of the approach for 

ode-discrimination of switching systems and it provides a thor- 

ugh performance analysis of various lightweight machine-learning 

echniques that can be used to parameterize the virtual sensor ar- 

hitecture. In doing so, it also provides an entirely off-line alterna- 

ive strategy for identifying the local linear models required to syn- 

hesize the bank of observers based on an interpretation of well- 

nown decision tree regressors as a supervised clustering scheme. 

The intuition behind our approach is that, in many cases of 

ractical interest, the dynamics of ρk are slower than the other dy- 

amics of the system. This fact suggests that a linear model identi- 

ed on a dataset in which ρk is close to a certain value ρ̄ will well

pproximate �P for all ρk ≈ ρ̄ . Following this idea, we envision a 

cheme in which N θ values ρ̄i , i = 1 , . . . , N θ are automatically se-

ected and, for each value ρ̄i , a linear model is identified and a 

orresponding linear observer synthesized. A machine-learning al- 

orithm is then used to train a predictor that consumes the perfor- 

ance indicators constructed from such observers, together with 

aw input and output data, to produce an estimate ˆ ρk of ρk at each 

iven time k . 

The paper is organized as follows: in Section 2 we recall the 

MAE framework and introduce the necessary steps to bridge 

uch a model-based technique to a data-driven framework. In 

ection 3 , we detail the overall virtual sensor architecture and 

he internal structure of its components. Section 4 is devoted to 

tudying the quality of estimations and the numerical complexity 
41 
f the synthesized virtual sensor on some selected nonlinear and 

iecewise affine (PWA) benchmark problems, including the prob- 

em of estimating the state of charge of a battery, to establish 

oth the estimation performance of the approach and the influ- 

nce of its hyper-parameters. Finally, some conclusions are drawn 

n Section 5 . 

. Multiple model adaptive estimation 

Following the formulation in Alsuwaidan et al. [5] , Bar-Shalom 

t al. [7] , this section recalls the main concept of the MMAE ap- 

roach. Consider the dynamical system 

� 

{
x k +1 = f (θk , x k , u k ) 

y k = h (θk , x k , u k ) 
(2) 

n which θk ∈ R 

n θ is a generic parameter vector. The overall idea 

f MMAE is to use a bank of N θ state estimators 1 — each one as- 

ociated to a specific value θi ∈ � := { θ1 , . . . , θN θ
} — together with 

 hypothesis testing algorithm to infer information about (2) , e.g.: 

o build an estimate ˆ x k of x k . In this scheme, the intended pur- 

ose of the latter component is to infer, from the behavior of each 

bserver, which one among the different models (“hypotheses”) is 

losest to the underlying process, and use such information to con- 

truct an estimate ˆ x of the state of �. For linear time-invariant 

LTI) representations, a classical approach to do so is to formulate 

he hypothesis tester as an appropriate statistical test, exploiting 

he fact that the residual signal produced by a properly matched 

F is a zero-mean white-noise signal. 

MMAE is a model-based technique in that it requires a model 

f the process, a set � of parameter vectors, and a proper char- 

cterization of the noise signals supposed to act on the system. 

mong those requirements, determining � is especially crucial to 

et reliable results as, at each time, at least one value θ j ∈ � must 

escribe the dynamics of the underlying system accurately enough. 

n many practical situations, it is not easy to find a good tradeoff

etween keeping N θ large enough to cover the entire range of the 

ynamics and, at the same time, small enough to limit the compu- 

ational burden manageable and avoid the tendency of MMAE to 

ork poorly if too many models are considered [25] . Another diffi- 

ulty associated with MMAE schemes is the reliance on models to 

ynthesize the hypothesis tester. Moreover, many approaches re- 

uire sophisticated statistical arguments, which can hardly be tai- 

ored to user-specific needs. 

. Data-driven determination of linear models 

The first step to derive the proposed data-driven virtual-sensor 

s to reconcile the MMAE framework with the parameter-varying 

odel description in (1) . Assume for the moment that f and g

n (1) are known and differentiable. Then, in the neighborhood of 

n arbitrary tuple ( ̄ρ, ̄x , ū ) it is possible to approximate (1) by 

 k +1 − x̄ ≈ f ( ̄x , ̄u , ρ̄) − x̄ + ∇ x f ( ̄x , ̄u , ρ̄)(x k − x̄ ) + ∇ u f ( ̄x , ̄u , ρ̄)(u k − ū ) 

y k ≈ g( ̄x , ρ̄) + ∇ x g( ̄x , ̄u , ρ̄)(x k − x̄ ) (3) 

n (3) the contributions of the Jacobians with respect to ρ is ne- 

lected due to the fact that, as mentioned earlier, ρk is assumed 

o move slowly enough to remain close to ρ̄ within a certain time 

nterval, meaning the neglected Jacobians would be multiplied by 

k − ρ̄ ≈ 0 . Hence, from (3) we can derive the following affine 

arameter-varying (APV) approximation of (1) 

 k +1 ≈ A (ρk ) x k B (ρk ) u k + d(ρk ) 

y k ≈ C(ρk ) x k + e (ρk ) (4) 
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n which the contribution of the constant terms x̄ , ū is contained 

n the bias terms d(ρk ) , e (ρk ) . In conclusion, if �P were known,

 MMAE scheme could be used to compute the likelihood that 

he process is operating around a tuple ( ̄x , ū , ρi ) , where ρi ∈ �ρ �
 ρ1 , . . . , ρN θ

} is used in place of the parameter vector θk in (2) . 

.1. Learning the local models 

As model (1) is not available, we need to identify the set of lin-

ar (affine) models in (4) from data. Assuming that direct measure- 

ents of the state x k of the physical system are not available, we 

estrict affine autoregressive models with exogenous inputs (ARX) 

f a fixed order, each of them uniquely identified by a parameter 

ector γ ∈ R 

n γ . 

Learning an APV approximation of �P amounts to train a func- 

ional approximator M LPV : R 

S → R 

n γ to predict the correct vector 

i corresponding to any given ρ̄i . Given a dataset D N := { u k , y k , ρk } , 
k = 1 , . . . , N, of samples acquired via an experiment on the real

rocess, such a training problem is solved by the following opti- 

ization problem 

min 

M LPV 

N ∑ 

k = k 1 
L M LPV 

( ̂  y k , y k ) 

subject to 

ˆ y k = [ −y k −M 

, . . . , −y k −1 , u k −M 

, . . . , u k −1 1] γk

γk = M LPV (ρk ) 
k = k 1 , . . . , N 

(5) 

where k 1 � M + 1 , and L M LPV 
is an appropriate loss function. Note

hat, as commonly expected when synthesizing virtual sensors, we 

ssume that measurements of ρk are available for training, al- 

hough they will not be during the operation of the virtual sen- 

or. Moreover, note that problem M LPV is solved offline, so the 

omputation requirements of the regression techniques used to 

olve (5) are not of concern. 

Compared to adopting a recursive system identification tech- 

ique to learn a local linear model of the process at each time k ,

nd then associate each γk to its ρk (e.g., by using Kalman filtering 

echniques [28,35] ), the approach in (5) does not require tuning 

he recursive identification algorithm and takes into account the 

alue of ρk at each k . This prevents that similar values of ρ are 

ssociated with very different values of γ , assuming that the re- 

ulting function M LPV is smooth enough. 

.1.1. An end-to-end approach to select the representative models 

By directly solving (5) , a set � � { γi } i = M+1 , ... ,N of local models 

s obtained. Using � = �ρ in an MMAE-like scheme would result 

n an excessively complex scheme. To address this issue, a smaller 

et of models could be extracted by running a clustering algorithm 

n the dataset �, and the set �ρ of representative models se- 

ected as the set of the centroids of the found clusters. A better 

dea comes from observing that some regression techniques, such 

s decision-tree regressor [20] (DTRs), naturally produce piece- 

ise constant predictions, which suggests the following alternative 

ethod: ( i ) train a DTR to learn an predictor ˆ M LPV : R 

S → R 

n γ × R 

S 

in an autoencoder-like fashion [14,21] ), possibly imposing a limit 

n its maximum depth; ( ii ) set � as the leaves γ̄ j of the grown

ree ˆ M LPV . 

Compared to using a clustering approach like K-means [8,29] , 

he use of DTRs does not require selecting a fixed number of clus- 

ers a priori and also actively takes into account the relation be- 

ween ρ and γ . In fact, with the proposed DTR-based approach, 

he regression tree will not grow in regions where ρ is not infor- 

ative about γ , therefore aggregating a possibly large set of values 

f γ with the same representative leaf-value γ̄ j . This latter aspect 
42 
s important for our ultimate goal of exploiting the resulting set of 

odels to build a bank of linear observers. 

Once the set �ρ = { ̄γ j } N θj=1 
of local ARX models has been se- 

ected, each of them is converted into a corresponding minimal 

tate-space representation in observer canonical form [37] 

j := 

{
ξ j 

k +1 
= A j ξ

j 

k 
+ B j u k + d j 

y k = C j ξ
j 

k 
+ e j 

j = 1 , . . . , N θ (6) 

s all vectors γ̄ j have the same dimension n γ , we assume that all 

tates ξ j have the same dimension v . The models � j in (6) are 

sed to design a corresponding linear observer, as described next. 

.2. Design of the observer bank 

For each model � j , we want to design an observer providing 

n estimate ˆ ξ j 

k 
of the state ξ j 

k 
of � j . Let i 

j 

k 
∈ R v be the informa- 

ion vector generated by the observer at time k , which includes ˆ ξ j 

k 
nd possibly other information, such as the covariance of the out- 

ut and state estimation error in the case of time-varying Kalman 

lters are used. As the goal is to use i 
j 

k 
, together with u k , y k , to

stimate ρk , it is important to correctly tune the observers associ- 

ted with the N θ models in � to ensure that each i 
j 

k 
is meaningful. 

or example, a slower observer may be more robust against mea- 

urement noise, but its “inertia” in reacting to changes may com- 

romise the effectiveness of the resulting virtual sensor. 

The computational burden introduced by the observers also 

eeds to be considered. As it will be necessary to run the full bank 

f N θ observers in parallel in real-time, a viable option is to use the 

tandard Luenberger observer [50] 

ˆ ξ j 

k +1 
= A j ̂

 ξ j 

k 
+ d j + B j u k − L j ( ̂  y j 

k 
− y k ) 

ˆ y j 
k 

= C j ̂  ξ j 

k 
+ e j 

(7) 

here L j is the observer gain, and set i 
j 

k 
= 

ˆ ξ j 

k 
. Since minimal 

tate-space realizations are used to define � j , each pair (A j , C j ) 

s fully observable, and the eigenvalues of A j − L j C j can arbitrarily 

e placed inside the unit circle. Note also that any technique for 

hoosing L j can be employed here, such as stationary Kalman fil- 

ering. 

.3. A model-free hypothesis testing algorithm 

After the N θ observers have been synthesized, we now build 

 hypothesis testing scheme based on them using a discrimi- 

ative approach [45] . To this end, the initial dataset D is pro- 

essed to generate the information vectors i 
j 

k 
, k ∈ [ k 1 , N] . Let

 aug := { i 1 
k 
, . . . , i 

N θ
k 

, u k , y k , ρk } , k = k 1 , . . . , N, denote the resulting

ugmented dataset that will be used to train a predictor f θ : R 

v ×
 . . × R 

v × R 

n u × R 

n y → R 

S such that 

ˆ k = f θ (i 1 k , . . . , i 
1 
k −	 

, . . . , i 
N θ
k 

, . . . , i 
N θ
k −	 

, u k , y k ) (8)

s a good estimate of ρk , where 	 ≥ 0 is a window size to be cali-

rated. Consider the minimization of a loss function L : R 

S × R 

S → 

 that penalizes the distance between the measured value ρk and 

ts reconstructed value ˆ ρk , namely a solution of 

in 

θ

N ∑ 

k = 	 +1 

L (ρk , f θ (i 1 k , . . . , i 
N θ
k −	 

, u k , y k )) (9) 

Solving the optimization problem (9) directly, however, may be 

xcessively complex, as no additional knowledge about the relation 

etween ρk and { i 1 
k 
, . . . , i 

N θ
k −	 

, u k , y k } is taken into account. In order

o model such a relation, one can rewrite f θ as the concatenation 

f two maps g θ and e FE 
θ

such that 
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Fig. 1. Virtual sensor architecture: bank of linear observers, feature extraction map 

e FE 
θ

, and prediction function g θ . 
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ˆ k = g θ (I k ) 
I k = e FE 

θ (i 1 k , i 
1 
k −	 

, . . . , i 
N θ
k 

, . . . , i 
N θ
k −	 

, u k , y k ) (10) 

here I k is a feature vector constructed by a given feature extrac- 

ion (FE) map e FE 
θ

: R 

v × . . . × R 

v × R 

n u × R 

n y → R 

n I from i 1 
k 
, i 1 

k −	 
,

 . . , i 
N θ
k 

, . . . , i 
N θ
k −	 

, u k , and y k , and g θ : R 

n I → R 

S is the prediction

unction to learn from the dataset D aug . 

We propose the following two alternatives for the FE map, 

amely 

 

FE 
θ (I k ) = { ̂  e 1 k , ̂  e 1 k −	 

, . . . , ̂  e 
N θ
k 

, . . . , ̂  e 
N θ
k −	 

, u k , y k } (11a)

here ˆ e 
j 
m 

� ( ̂  y 
j 
m 

− y m 

) and, to further reduce the number of fea- 

ures, the more aggressive and higher compression FE map 

 

FE 
θ (I k ) = { ν1 

k , . . . , ν
N θ
k 

, u k , y k } (11b) 

here 

i 
k = 

√ 

1 

	 

k ∑ 

r= k −	 

m (r − 	 )( ̂  y i r − y r ) ′ ( ̂  y i r − y r ) 

nd m : Z → R is an appropriate weighting function. 

The rationale for the maps in (11) is that one of the most com-

on features used in hypothesis testing algorithms is the esti- 

ate of the covariance of the residuals produced by each observer. 

hus, this approach can be thus considered a generalization of the 

indow-based hypothesis-testing algorithms explored in the liter- 

ture, such as in Alsuwaidan et al. [5] , Hanlon and Maybeck [19] .

he FE map (11b) brings this idea one step further so that e FE 
θ

(I k )
as only n I = ( N θ + 1) n y + n u components. This means that the in-

ut to g θ , and therefore the predictor itself, can get very compact. 

Note that both the window-size 	 and the weighting function 

 are hyper-parameters of the proposed approach. In particular, 

he value of 	 must be chosen carefully: if it is too small the time

indow of past output prediction errors may not be long enough 

or a slow observer. On the other hand, if 	 is too large the virtual

ensor may become excessively slow in detecting changes of ρk . 

he weighting function m acts in a similar manner and can be used 

or fine-tuning the behavior of the predictor. 

Note also that our choices for e FE 
θ

in (11) are not the only pos-

ible ones, nor necessarily the optimal ones. For example, by set- 

ing e FE 
θ

(I k ) = I k , and therefore f θ = g θ , one recovers the general

ase in (9) . Finally, note that our analysis has been restricted to a 

re-assigned function e FE 
θ

, although this could also be learned from 

ata. To this end, the interested reader is referred to [15,17,33] and 

he references therein. 

.3.1. Choice of learning techniques 

As highlighted in Masti and Bemporad [34] , in order to target 

n embedded implementation, it is necessary to envision a learn- 

ng architecture for g θ that has a limited memory footprint and 

equires a small and well predictable throughput. To do so, in- 

tead of developing an application-specific functional approxima- 

ion scheme, we resort to well-understood machine-learning tech- 

iques. In particular, three possible options are explored in this 

ork, all well suited for our purposes and which require a number 

f floating-point operations (flops) for their evaluation which is in- 

ependent of the number of samples used in the training phase, in 

ontrast for example to K-nearest neighbor regression [20] . 

Remark: Such choices are not the only possible ones and other 

pproaches may be better suitable for specific needs. For example, 

f one is interested in getting an uncertainty measure coupled to 

he predictions, the use of regression techniques based on Gaussian 

rocesses [43] could be more suitable. 
43 
.3.2. Compact artificial neural networks 

Artificial neural networks (ANN) are a widely used machine- 

earning technique that has already shown its effectiveness in 

ther MMAE-based schemes [54] . An option to make ANN very 

ightweight is to resort on very compact feed-forward topologies 

omprised of a small number of layers and a computationally 

heap activation function in their hidden neurons [23] , such as the 

ectified Linear Unit (ReLU) [41] 

f ReLU (x ) = max { 0 , x } (12) 

s we want to predict real-valued quantities, we consider a linear 

ctivation function for the output layer of the network. 

.3.3. Decision-tree and random-forest regression 

DTRs of limited depth are in general extremely cheap to evalu- 

te yet offer a good approximation power [36] . Other advantages of 

TRs are that they can also work effectively with non-normalized 

ata, they can be well interpreted [31] , and the contribution pro- 

ided by each input feature is easily recognizable. The main disad- 

antage of DTRs is instead that they can suffer from high variance. 

or this reason, in this work, we also explore the use of random- 

orest regressors (RFRs) [9] , which try to solve the issue by bagging 

ogether multiple trees at the cost of both a more problematic in- 

erpretation and higher computational requirements. 

.4. Hyper-parameters and tuning procedures 

The overall architecture of the proposed virtual sensor is shown 

n Fig. 1 . Its main hyper-parameters are: 

1. the number N θ of local models to learn from experimental data, 

related to the number of leaves of the DTR (see Section 3.1.1 ); 

2. the order M of the local models (see Section 3.1 ); 

3. the window size 	 of the predictor, which sets the number of 

past/current input features provided to the predictor at each 

time to produce the estimate ˆ ρk (see Section 3.3 ). 

From a practical point of view, tuning M is relatively easy, as 

ne can use as the optimal cost reached by solving (5) an indi- 

ect performance indicator to properly trade-off between the qual- 

ty of fit and storage constraints. Feature selection approaches such 

s the one presented in Breschi and Mejari [10] can also be used. 

he window size 	 of the predictor is also easily tunable by using 

ny feature selection method compatible with the chosen regres- 

ion technique. A more interesting problem is choosing the cor- 

ect number of local models N θ , especially if one considers that 

MAE-like schemes often do not perform well if too many models 

re considered [26] . Finally, we mention that the proposed method 

lso requires defining the feature extraction map and the predictor 

tructure. 
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As with most black-box approaches, and considering the very 

ild assumption we made on the system �P that generates the 

ata, the robustness of the virtual sensor with respect to noise 

nd other sources of uncertainty can only be assessed a posteriori . 

or this reason, Section 4.2 below reports a thorough experimental 

nalysis to assess such robustness properties. 

. Numerical results 

In this section, we explore the performance of the proposed vir- 

ual sensor approach on a series of benchmark problems. All tests 

ere performed on a PC equipped with an Intel Core i7 4770k CPU 

nd 16 GB of RAM. The models introduced in this section were 

sed only to generate the training datasets and to test the vir- 

ual sensor and are totally unknown to the learning method. We 

eport such models to facilitate reproducing the numerical results 

eported in this section. 

.1. Learning setup 

All the ANNs involved in learning the virtual sensors were de- 

eloped in Python using the Keras framework [12] and are com- 

osed of 3 layers (2 ReLU layers with an equal number of neurons 

nd an linear output layer), with overall 60 hidden neurons. The 

NNs are trained using the AMSgrad optimization algorithm [49] . 

uring training, 5% of the training set is reserved to evaluate the 

topping criteria. 

Both DTR and RFR are trained using scikit-learn [11] and, 

n both cases, the max depth of the trees is capped to 15. RFRs 

onsist of 10 base classifiers. The DTR used to extract the set of 

ocal models, as shown in Section 3.1.1 , is instead constrained to 

ave a maximum number of leaves equal to the number N θ of lin- 

ar models considered in each test. The loss function L M LPV 
used is 

he well known mean absolute error [46] . In all other cases, the 

tandard mean-squared error (MSE) [47] is considered. 

The performance of the overall virtual sensor is assessed on the 

esting dataset in terms of the following fit ratio ( FIT ) and normal- 

zed root mean-square error (NRMSE) 

IT = max 

{
0 , 1 − ‖ ρT − ˆ ρT ‖ 2 

‖ ̄ρ − ρT ‖ 2 

}
(13a) 

RMSE = max 

{
0 , 1 − ‖ ρT − ˆ ρT ‖ 2 √ 

T | max (ρT ) − min (ρT ) | 
}

(13b) 

omputed component-wise, where ρ̄ is the mean value of the test 

equence ρT = { ρi } T i =1 
of the true values and ˆ ρT is its estimate. 

For each examined test case, we report the mean value and 

tandard deviation of the two figures in (13) over ten different 

uns, each one involving different realizations of all the excitation 

ignals u k , p k , and measurement noise. 

.2. A synthetic benchmark system 

We first explore the performance of the proposed approach and 

nalyze the effect of its hyper-parameters on a synthetic multi- 

nput single-output benchmark problem. Consider the nonlinear 

ime-varying system 

S = 

{ 

x k +1 = Hx k + 

α
2 

atan (x k ) + log (ρk + 1) F u k 

ρk +1 = h (ρk , u k , k ) 

y k = −(1 + e ρk ) 
[

0 0 0 0 1 

]
x k 

(14a) 
44 
here x ∈ R 

5 , atan is the arc-tangent element-wise operator, 

, ρk ∈ R , matrices H and F are defined as 

 = 

⎡ 

⎢ ⎢ ⎣ 

0 . 0 0 . 1 0 . 0 0 . 0 0 . 0 

0 . 0 0 . 0 −1 . 0 0 . 0 0 . 0 

0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 

0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 

−0 . 00909 0 . 0329 0 . 29013 −1 . 05376 1 . 69967 

⎤ 

⎥ ⎥ ⎦ 

(14b) 

 = 

⎡ 

⎢ ⎢ ⎣ 

−0 . 71985 −0 . 1985 

0 . 57661 0 . 917661 
1 . 68733 −0 . 68733 

−2 . 14341 2 . 94341 
1 . 1 . 

⎤ 

⎥ ⎥ ⎦ 

(14b) 

nd function h is defined by 

 (ρk , u k , k ) = 

{
p k if p k ∈ [ −0 . 95 , 0 . 95] 
p k 
2 

otherwise 
(14c) 

p k = 0 . 999 ρk + 0 . 03 ω k , ω k ∼ N (0 , 1) (14d) 

imicking the phenomenon of a slow parameter drift. Unless oth- 

rwise stated, in the following we consider α = 1 . 

Training datasets of various sizes (up to 25,0 0 0 samples) and 

 dataset of 5,0 0 0 testing samples are generated by exciting the 

enchmark system (14) with a zero-mean white Gaussian noise in- 

ut u k with unit standard deviation. All signals are then normal- 

zed using the empirical average and standard deviation computed 

n the training set and superimposed with a zero-mean white 

aussian noise with a standard deviation of 0.03 to simulate mea- 

urement noise. 

We consider local ARX linear models involving past M = 5 in- 

uts and outputs and solve Problem (5) via a fully connected feed- 

orward ANN. In the feature extraction process, we set the win- 

ow 	 = 7 on which the feature extraction process operates. In all 

ests we also assume m (i ) ≡ 1 , ∀ i ∈ Z . Unless otherwise noted, we

onsider deadbeat Luenberger observers, i.e., we place the observer 

oles in z = 0 using the Scipy package [22] . 

.3. Dependence on the number N of samples 

We analyze the performance obtained by the synthesized vir- 

ual sensor with respect to the number N of samples acquired for 

raining during the experimental phase. Assessing the scalability of 

he approach with respect to the size of the dataset is extremely 

nteresting because most machine learning techniques, and in par- 

icular neural networks, often require a large number of samples 

o be effectively trained. 

Table 1 shows the results obtained by training the sensor with 

arious dataset sizes when N θ = 5 observers and an ANN pre- 

ictor are used both using the proposed high-compression FE 

ap (11b) and using the map in (11a) . It is apparent that good 

esults can already be obtained with 15,0 0 0 samples. With smaller 

atasets, fit performance instead remarkably degrades, especially 

hen using the less aggressive FE map (11a) . 

.4. Robustness toward measurement noise 

We analyze next the performance of the proposed approach 

n the presence of various levels of measurement noise. In par- 

icular, we test the capabilities of the virtual sensor with N θ = 5 

eadbeat observers when trained and tested using data obtained 

rom 14a and corrupted with a zero-mean additive Gaussian noise 

ith different values of standard deviation σN . As in the other 

ests, noise is applied to the signal after normalization. The train- 

ng dataset contains 25,0 0 0 samples. 
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Table 1 

Accuracy of the virtual sensor using datasets of different size K. 

No. of acquired samples N 50 0 0 15,0 0 0 25,0 0 0 50 0 0 15,0 0 0 25,0 0 0 

FE map (11b) FE map (11a) 

average FIT (13a) 0.711 0.783 0.796 0.695 0.773 0.794 

standard deviation 0.062 0.028 0.023 0.072 0.030 0.028 

average NRMSE (13b) 0.937 0.954 0.956 0.934 0.952 0.956 

standard deviation 0.014 0.004 0.002 0.016 0.003 0.002 

Table 2 

Average FIT (13a) (standard deviation) for the three proposed 

learning architectures different sensor noise intensity. 

Predictor 

Standard deviation σN of additive noise 

0.01 0.03 0.06 

DTR 0.752 (0.026) 0.736 (0.031) 0.698 (0.036) 

RFR 0.804 (0.021) 0.787 (0.023) 0.755 (0.029) 

ANN 0.815 (0.018) 0.796 (0.023) 0.764 (0.032) 

Table 3 

Average FIT (13a) (standard deviation) for the three proposed learning architectures 

for different numbers K of samples in the training dataset. 

Predictor FE map Number N of acquired samples 

50 0 0 15,0 0 0 25,0 0 0 

DTR (11b) 0.593 (0.161) 0.713 (0.041) 0.736 (0.031) 

RFR 0.663 (0.145) 0.766 (0.033) 0.787 (0.023) 

ANN 0.711 (0.062) 0.783 (0.028) 0.796 (0.023) 

DTR (11a) 0.376 (0.158) 0.568 (0.061) 0.615 (0.042) 

RFR 0.568 (0.168) 0.715 (0.046) 0.740 (0.024) 

ANN 0.695 (0.072) 0.773 (0.030) 0.794 (0.028) 
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Fig. 2. Example of reconstruction of ρk by the virtual sensor based on N θ = 5 local 

models, using deadbeat observers and a RFR predictor. The figure reports the actual 

value of ρk (orange line) and its estimate ˆ ρk (blue line). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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The results, reported in Table 2 , show a very similar trend for 

ll three functional approximation techniques and, in particular, 

 very steep drop in performance when moving from σN = 0 . 03 

o σN = 0 . 06 . This fact suggests that a good signal-to-noise ratio 

s necessary to achieve good performance with the proposed ap- 

roach. This finding is not surprising, as our method is entirely 

ata-driven, it has more difficulties in filtering noise out compared 

o model-based methods. 

Performance of ANN, RFR, and DTR is similar to what observed 

n the previous tests. 

.5. Dependence on the prediction function 

We analyze the difference in performance between the three 

roposed learning models for function g θ when using N θ = 5 lin- 

ar models. The corresponding results are reported in Table 3 , 

here it is apparent that as soon as enough samples are avail- 

ble, both RFRs and ANNs essentially perform the same, especially 

hen using the more aggressive FE map (11b) . For smaller train- 

ng datasets, the ANN-based predictor performs slightly better, es- 

ecially in terms of variance. Regression trees show worst perfor- 

ance but they are still able to produce acceptable estimates. 

Regarding the results obtained using the FE map (11a) , ANNs 

re remarkably more effective than the other two methods. In par- 

icular, while RFRs still show acceptable performance, DTRs fail al- 

ost completely. 

.6. Dependence on the observer dynamics 

The dynamics of state-estimation errors heavily depend on the 

ocation of the observer poles set by the Luenberger observer (7) , 

uch as due to the chosen covariance matrices in the case station- 

ry KFs are used for observer design. In this section, we analyze 
45 
he sensitivity of the performance achieved by the virtual sensor 

ith respect to the chosen settings of the observer. 

Using N θ = 5 models again, the Luenberger observers were 

uned to have their poles all in the same location z ∈ C inside the

nit disk and vary such a location in different tests. In addition, 

e also consider stationary Kalman filters designed assuming the 

ollowing model 

ξ j 

k +1 
= A j ξk + B j u k + d j + w k 

y j 
k 

= C j ξk + e j + v k 
(15) 

here w k ∼ N (0 , I) and v k ∼ N (0 , λI) are uncorrelated white noise

ignals of appropriate dimensions and λ ≥ 0 . 

The resulting virtual sensing performance figures are reported 

n Table 4 for a training dataset of N = 25 , 0 0 0 samples and RFR-

ased prediction. While performance is satisfactory in all cases, 

ast observer poles allow better performance when pole placement 

s used. Nevertheless, in all but the deadbeat case, KFs provide bet- 

er performance regardless of the chosen covariance term λ. 

.7. Dependence on the number N θ of local models 

To explore how sensitive the virtual sensor is with respect 

o the number N θ of local LTI model/observer pairs employed, 

e consider the performance obtained using N θ = 2 , 3 , 4 , 5 , 7 lo-

al models on the 25,0 0 0 sample dataset. The results obtained us- 

ng RFR based virtual sensors are reported in Table 5 and show 

hat performance quickly degrades if too few local models are em- 

loyed. At the same time, one can also note that a large number of 

odels is not necessarily more effective. This finding suggests that 

he proposed virtual sensor can be easily tuned by increasing the 

umber of models until the accuracy reaches a plateau. 
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Table 4 

Average prediction performance with respect to observer settings. 

Pole placement Kalman filter 

observer settings z = 0 . 0 z = 0 . 4 z = 0 . 8 λ = 1 λ = 10 λ = 0 . 1 

average FIT (13a) 0.787 0.708 0.467 0.785 0.777 0.787 

standard deviation 0.023 0.030 0.053 0.021 0.022 0.024 

average NRMSE (13b) 0.954 0.937 0.886 0.954 0.952 0.954 

standard deviation 0.002 0.003 0.005 0.002 0.002 0.002 

Table 5 

Prediction performance of the virtual sensor with respect to the 

number N θ of LTI models. 

N 2 3 5 7 

average FIT (13a) 0.684 0.781 0.787 0.793 

standard deviation 0.033 0.023 0.023 0.024 

average NRMSE (13b) 0.932 0.953 0.954 0.956 

standard deviation 0.005 0.001 0.002 0.001 

Table 6 

Average accuracy of the virtual sensor employing var- 

ious kind of prediction functions when both training 

and testing data are generated by using (16) . 

Predictor DTR RFR ANN 

average FIT (13a) 0.842 0.876 0.873 

standard deviation 0.005 0.004 0.003 

average NRMSE (13b) 0.953 0.963 0.962 

standard deviation 0.001 0.001 0.001 

Table 7 

Average accuracy of the virtual sensor for differ- 

ent prediction functions with training data generated 

from (14d) and testing data from (16) . 

predictor DTR RFR ANN 

average FIT (13a) 0.753 0.801 0.844 

standard deviation 0.066 0.046 0.009 

average NRMSE (13b) 0.924 0.939 0.952 

standard deviation 0.020 0.014 0.003 
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Table 8 

Accuracy of the virtual sensor employing different predictors for 

the switching linear system in (18) . 

N θ 2 3 4 5 

average FIT (13a) 0.800 0.938 0.951 0.950 

standard deviation 0.030 0.014 0.007 0.009 

average NRMSE (13b) 0.925 0.977 0.982 0.981 

standard deviation 0.011 0.005 0.003 0.003 
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Fig. 2 shows the estimates of ρk obtained by the virtual sen- 

or for N θ = 5 , using deadbeat observers and a RFR predictor, for a

iven realization of (14d) . 

.8. Dependence on the dynamics of ρk 

Let us consider a different model than (14c) –(14d) to generate 

he value of p k that defines the signal ρk , namely the deterministic 

odel 

p k = cos 

(
1 

β
k 

)
(16) 

ith β = 200 . In this way, it is possible to test the effectiveness

f our approach in a purely parameter-varying setting and its ro- 

ustness against discrepancies between the way training data and 

esting data are generated. 

The results reported in Tables 6 and 7 are obtained by using 

 θ = 5 models and 25,0 0 0 samples using all the three different

rediction functions and deadbeat observers. While (16) is used 

o generate both training and testing data to produce the results 

hown in Table 6 , Table 7 shows the case in which the train-

ng dataset is generated by (14c) –(14d) while the testing dataset 

y (16) . It is apparent that the proposed approach is able to work 

ffectively also in the investigated parameter-varying context in all 

ases and able to cope with sudden changes of ρ . 
k 

46 
.9. A mode observer for switching linear systems 

An interesting class of systems which can be described 

y (1) are linear switching systems [27] , a class of linear param- 

ter varying systems in which ρk can only assume a finite number 

 of values ρ1 , . . . , ρs . In this case, model (1) becomes the follow- 

ng discrete-time switching linear system 

:= 

{
x k +1 = A ρk 

x k + B ρk 
u k 

y k = C ρk 
x k 

(17) 

or switching systems, the problem of estimating ρk from in- 

ut/output measurements is also known as the mode-reconstruction 

roblem. In order to test our virtual sensor approach for mode re- 

onstruction, we let the system generating the data be a switching 

inear system with s = 4 modes obtained by the scheduling signal 

k +1 = 

1 

2 

⌊
4 k 

N 

⌋
(18) 

here N is the number of samples collected in the experiment and 

·� is the downward rounding operator. For this test, the measure- 

ents about the mode acquired during the experiment are noise- 

ree. As we are focusing on linear switching systems, we set α = 0 . 

As in Section 4.7 , we test the performance of the RFR-based vir- 

ual sensor trained on 25,0 0 0 samples to reconstruct the value of 

k when equipped with a different number N θ of local models. The 

orresponding results are reported in Table 8 and show that the 

erformance of the sensor again quickly saturates once the number 

f local models matches the actual number of switching modes. 

The time evolution of the actual mode and the mode recon- 

tructed by the virtual sensor is shown in Fig. 3 . 

.9.1. Performance obtained using a classifier in place of a regressor 

The special case of mode reconstruction for switching systems 

an be also cast as a multi-category classification problem. Table 9 

eports the F1-score [48] obtained by applying a virtual sensor 

ased on a Random Forest Classifier (RFC) and 5 deadbeat ob- 

ervers to discern the current mode of the system. We consider 

nly the case of samples correctly labeled, with the RFC subject 

o the same depth limitation of the non-categorical hypothesis 

ester. Table 9 also reports the classification accuracy of the non- 

ategorical virtual sensor when coupled with a minimum-distance 

lassifier (i.e., at each time k the classifier will predict the mode i 

ssociated with the value ρi that is closest to ˆ ρk ). The results refer 

o a virtual sensor equipped with RFR and 5 deadbeat observers. 
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Fig. 3. Mode reconstruction for switching linear systems (17) : actual value of the 

mode ρk (orange line) and its estimate ˆ ρk (blue line) provided by a RFR-based vir- 

tual sensor with a bank of 5 deadbeat observers. (For interpretation of the refer- 

ences to color in this figure legend, the reader is referred to the web version of this 

article.) 

Table 9 

F1-score [48] obtained by the RFC-based virtual sensor (RFC) 

and by the RFR-based virtual sensor + minimum-distance 

classifier (RFR) on the 4-mode switching linear system (18) 

over 10 runs. 

F1-score / mode # 1 2 3 4 

RFC 0.997 0.995 0.996 0.998 

standard deviation 0.001 0.002 0.001 0.001 

RFR 0.997 0.995 0.996 0.998 

standard deviation 0.001 0.001 0.001 0.002 

Fig. 4. Mode reconstruction for switching linear systems (17) : actual value of the 

mode ρk (orange line) and its estimate ˆ ρk (blue line) provided by a RFC-based vir- 

tual sensor and 5 deadbeat observers. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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1  
t is interesting to note that the classifier architecture is also very 

ffective with respect to the FIT metric (13a) , achieving an average 

core of 0.946 with a standard deviation of 0.011. 

The time evolution of the actual mode and the mode recon- 

tructed by the classifier-based virtual sensor is shown in Fig. 4 . 

.10. Nonlinear state estimation 

This sections compares the proposed approach with standard 

odel-based nonlinear state-estimation techniques on the problem 
47 
f estimating the state of charge (SoC) of a lithium-ion battery, us- 

ng the model proposed in Ali et al. [4] . 

In [4] , the battery is modeled as the following nonlinear third- 

rder dynamical system 

Battery = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ x 1 (t) = 

−i (t) 

C c 

˙ x 2 (t) = 

−x 2 (t) 

R ts (x 1 (t)) C ts (x 1 (t)) 
+ 

i (t) 

C ts (x 1 (t)) 

˙ x 3 (t) = 

−x 3 (t) 

R tl (x 1 (t)) C tl (x 1 (t)) 
+ 

i (t) 

C tl (x 1 (t)) 
y (t) = E 0 (x 1 (t)) − x 2 (t) − x 3 (t) − i (t ) R s (x 1 (t )) 

(19) 

where x 1 (t) is the SoC (pure number ∈ [0 , 1] representing the 

raction of the battery rated capacity that is available [1] ), y (t) [V]

he voltage at the terminal of the battery, i (t) [A] the current flow- 

ng through the battery, 

E 0 (x 1 ) = −a 1 e 
−a 2 x 1 + a 3 + a 4 x 1 − a 5 x 

2 
1 + a 6 x 

3 
1 

R ts (x 1 ) = a 7 e 
−a 8 x 1 + a 9 

R tl (x 1 ) = a 10 e 
−a 11 x 1 + a 12 

C ts (x 1 ) = −a 13 e 
−a 14 x 1 + a 15 

C tl (x 1 ) = −a 16 e 
−a 17 x 1 + a 18 

R s (x 1 ) = a 19 e 
−a 20 x 1 + a 21 

nd the values of the coefficients a i j correspond to the estimated 

alues reported in Tables 1 , 2, 3 of [4] . 

We analyze the capability of the proposed synthesis method 

f virtual sensors to reconstruct the value ρ = x 1 in compari- 

on to a standard extended Kalman filter (EKF) [6] based on 

odel (19) and assuming the process noise vector w k ∈ R 

3 en- 

ering the state equation, w k ∼ N (0 , Q ) , and measurement noise 

 k ⊥ w k ∼ N (0 , R ) on the output y for various realization of R ∈
 

3 ×3 , Q ∈ R . Model (19) is integrated by using an explicit Runge–

utta 4 scheme. 

The simulated system is sampled at the frequency f s = 

1 
5 Hz, 

tarting from a fully charged state x (0) = [1 , 0 , 0] ′ and excited

ith a variable-step current signal i (t) with constant amplitude 

 (t) = 

1 

5 

max 

{
0 , cos 

(
k 

100 

)
+ cos 

(
k 

37 

)}
+ u k (20) 

uring the k -th sampling steps, with u k drawn from the uniform 

istribution U(0 , 0 . 4) . 

As the battery will eventually fully discharge, every time the 

oC falls below the value 0.05 the whole state is reset to the ini- 

ial condition x (0) . The signals y (t) and i (t) , once normalized, are

rocessed as described in Section 4.1 . 

For this benchmark, an RFR-based virtual sensor with N θ = 5 

ocal linear models is selected. The corresponding KFs are also de- 

igned as described in Section 4.6 with λ = 0 . 1 , and FE map (11b) .

raining is performed over 25,0 0 0 samples. 

The results obtained by the virtual sensor and EKFs designed 

ith different values of the covariance matrices Q, R of process and 

easurement noise, respectively, are reported in Fig. 5 . While EKF 

s, in general, more effective in tracking and denoising the true 

alue of the SoC, it performs poorly in terms of bandwidth com- 

ared to the proposed virtual sensor, whose performance in terms 

f filtering noise out remains anyway acceptable. While both tech- 

iques are successful in estimating the SoC of the battery, we re- 

ark a main difference between them: EKF requires a nonlinear 

odel of the battery, the virtual sensor does not . 

.11. Computation complexity of the prediction functions 

The ANNs used in our tests require approximately between 

0 0 0 and 30 0 0 weights to be fully parameterized. While this num-
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Fig. 5. Estimation of the SoC of the battery: true value ρk (orange line), value ˆ ρk 

estimated by the virtual sensor (blue line), values ˆ ρk estimated by EKF for different 

settings of Q and R (green, red, violet, and brown lines). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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er is fixed by the network topology and depends on the num- 

er of inputs to the network, regularization techniques such as 

 1 -norm sparsifiers could be used here to reduce the number of 

onzero weights (see for instance [16] and the reference therein), 

o to further reduce memory footprint. 

Regarding the tree-based approaches, practical storage require- 

ents are strongly influenced by the specific implementation and, 

n general, less predictable in advance due to their non-parametric 

ature. In any case, evaluating the prediction functions on the en- 

ire 50 0 0 sample test set on the reference machine only requires a 

ew tens of milliseconds, which makes the approach amenable for 

mplementation in most modern embedded platforms. 

The training procedure for all the proposed architectures is sim- 

larly affordable: on the reference machine, the whole training pro- 

ess is carried out in a few tens of seconds for a training set of

5,0 0 0 samples with negligible RAM occupancy. 

. Conclusions 

This paper has proposed a data-driven virtual sensor synthe- 

is approach, inspired by the MMAE framework, for reconstructing 

ormally unmeasurable quantities such as scheduling parameters 

n parameter-varying systems, hidden modes in switching systems, 

nd states of nonlinear systems. 

The key idea is to use past input and output data (obtained 

hen such quantities were directly measurable) to synthesize a 

ank of linear observers and use them as a base for feature- 

xtraction maps that greatly simplify the learning process of 

he hypothesis testing algorithm that estimates said parameters. 

hanks to its low memory and CPU requirements, the overall ar- 

hitecture is particularly suitable for embedded and fast-sampling 

pplications. 
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