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Discrete-time Hybrid Modeling and Verification of the Batch
Evaporator Process Benchmark
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For hybrid systems described by interconnections of
linear discrete-time dynamical systems, automata, and
propositional logic rules, we recently proposed the
Mixed Logical Dynamical (MLD) systems formalism
and the language HYSDEL (Hybrid System Descrip-
tion Language) as a modeling tool. For MLD models,
we developed a reachability analysis algorithm which
combines forward reach set computation and feasibility
analysis of trajectories by linear and mixed-integer
linear programming. In this paper the versatility of the
overall analysis tool is illustrated on the batch
evaporator benchmark process.
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1. Introduction

Hybrid models describe processes which evolve
according to dynamic equations and logic rules [2].
The interest in hybrid systems has grown over the last
few years not only because of the theoretical chal-
lenges, but also because of their impact on applica-
tions, for instance in the automotive industry [6].
Although many physical phenomena are hybrid in

nature, the main interest here is directed to real-time
systems, where physical processes are controlled by
embedded controllers. For this reason, it is important
to have available tools to guarantee that this combi-
nation behaves as desired. Formal verification is
aimed at providing such a certification. This amounts
to solving the following reachability problem: For a
given set of initial conditions and disturbances, guar-
antee that all possible trajectories never enter a set of
unsafe states, or possibly provide a counterexample.
Unfortunately, it is well known that formal verifica-
tion is an undecidable problem [1,26], as many other
system theoretical problems such as stability [15] and
observability [7] analysis of hybrid systems. In spite of
this complexity, several tools for formal verification of
hybrid systems have been proposed in the literature
[4,14,20,22,35].

Any verification algorithm needs an abstraction of
the real process, namely a mathematical model of the
process. The model should not be too complicated in
order to efficiently define and run a verification
algorithm, but also not too simple, otherwise the
results are either too conservative or wrong.

Timed automata and hybrid automata have proved
to be successful modeling formalisms for verification,
and have been widely used in the literature. In the
theory of timed automata [5], the dynamic part is the
continuous-time flow _x � 1. Timed automata were
extended to linear hybrid automata [1], where the
dynamics is modeled by the differential inclusion
a � _x � b. On the other side, the control community*torrisi@aut.ee.ethz.ch.

ymorari@aut.ee.ethz.ch.
Correspondence and offprint requests to: A. Bemporad, Automatic
Control Laboratory, ETH Zentrum±ETL, CH-8092, ZuÈ rich,
Switzerland. Tel.: +41-1-632 6679; Fax: +41-1-632 1211;
Email: bemporad@aut.ee.ethz.ch.

Received 4 February 2001; Accepted in revised form 21 March 2001.
Recommended by O. Maler and B. Benveniste.

AQ: please
c h e c k t h e
corre spon-
dence adress



started studying the so-called hybrid dynamical
systems [2,18,34] where the switching between differ-
ent dynamics is governed by a finite state machine. A
special case where dynamic equations and switching
rules are linear functions of the state are the so-called
Piecewise Affine (PWA) systems [38]. These are
defined by partitioning the state space into polyhedral
regions, and associating with each region a different
linear state-update equation. PWA systems can model
a large number of physical processes, such as systems
with static nonlinearities (for instance actuator
saturation), and can approximate nonlinear dynamics
via multiple linearizations at different operating
points. The study of PWA systems is also motivated
by the stability and performance analysis of high-
performance controllers [32]. In particular, in [10] the
authors showed that a model predictive controller
(MPC) for constrained linear systems can be exp-
ressed explicitly in closed-form as a continuous and
piecewise affine state-feedback law. The resulting
closed-loop system is therefore PWA, and the criteria
for proving stability and robust stability against dis-
turbances and model uncertainties are of fundamental
importance [13].

PWA systems are equivalent to interconnections of
linear systems and finite automata, as pointed out by
Sontag [38]. Based on different arguments, a similar
result was proved constructively for discrete-time
hybrid models in [7] and extended in [21], where the
authors show that PWA systems, linear complemen-
tarity (LC)andextended linearcomplementarity (ELC)
systems, max-min-plus-scaling (MMPS) systems, and
mixedlogicaldynamical (MLD)systemsareequivalent.
In particular, the MLD framework [9] allows

specifying the evolution of continuous variables
through linear dynamic equations, of discrete
variables through propositional logic statements and
automata, and themutual interaction between the two.
The key idea of the approach consists of embedding the
logic part in the state equations by transforming Boo-
lean variables into 0±1 integers, and by expressing the
relations as mixed-integer linear inequalities. Such a
translation procedure is the core of the tool HYSDEL
(Hybrid Systems Description Language), which auto-
matically generates an MLD model from a high-level
textual description of the system [40].
MLD systems are formulated in discrete time.

Despite the fact that the effects of sampling can be
neglected in most applications, subtle phenomena
such as Zeno behaviors [25] cannot be captured in
discrete time. Although reformulating MLD systems
in continuous-time would be quite easy from a theo-
retical point of view, a discrete-time formulation
allows one to develop numerically tractable schemes

for solving complex analysis and synthesis problems.
Several questions related to MLD systems can indeed
be suitably formulated as mixed-integer linear/quad-
ratic optimization problems. For feedback control, in
[9] the authors propose a model predictive control
scheme which is capable of stabilizing MLD systems
on desired reference trajectories while fulfilling oper-
ating constraints, and possibly take into account
previous qualitative knowledge in the form of heur-
istic rules. Formal verification algorithms were
developed in [12] for MLD hybrid systems, extended
in [8] for solving scheduling problems using combined
reachability analysis and quadratic optimization, and
in [13] for stability and performance analysis of hybrid
control systems.

In this paper, we review the basics of MLD systems,
the specification language HYSDEL, the reachability
analysis algorithm described in [12], and we address
the formal verification problem of the batch eva-
porator benchmark [23,28,30]. We model the process
in HYSDEL (in particular, the subsystem defined in
[29]) to obtain an MLD system. This consists of three
continuous states, and of a finite state automaton
representing a programmable logic controller (PLC)
control sequence. For formal verification, we adopt
the algorithm in [12], where safety tests and reach set
computation are done via linear programming (LP),
switching detection via mixed-integer linear pro-
gramming (MILP), and where the reach sets are
approximated by using tools from computational
geometry. The overall modeling and verification
procedure is depicted in Fig. 1.

2. Mixed Logical Dynamical and
Piecewise Affine Systems

Several modeling frameworks were proposed in the
control literature. Two main categories were success-
fully adopted for analysis and synthesis [16]: hybrid
control systems [1,3,9,33,34], which consist of the
interaction between continuous dynamical systems

Process

HYSDEL Model

MLD +PWA Model

Reachability Analysis Safety PropertiesSafety Requirements

Fig. 1. Theoverall tool for verificationof hybrid systems:Thehybrid
dynamic model is specified in HYSDEL, translated into MLD and
PWA form, and used by the reachability analysis algorithm for
proving safety properties.
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and discrete/logic automata (Fig. 2a), and switched
systems [17,24,37], where the state space is partitioned
into regions, each one associated with a different
continuous dynamics (Fig. 2b).

Switched systems defined by a polyhedral partition
of the state-space and linear dynamic equations are
the so-called PWA systems

x�t� 1� � Ai�t�x�t� � Bi�t�u�t� � fi�t�,

i�t� s:t: x�t� 2 Ci �� fx : Hix � Kig, �1�

where x 2 X � Rn, u 2 U � Rm, fCigsÿ1i�0 is a poly-
hedral partition of the sets of states1 X, the matrices
Ai, Bi, fi, Hi, Ki are constant and have suitable
dimensions, and the inequality Hix � Ki should be
interpreted componentwise. Without additional
hypotheses on the continuity of the piecewise affine
state-update mapping, definition (1) is not well posed,
as the state-update function is twice (or more times)
defined over common boundaries of sets Ci (the
boundaries will also be referred to as guardlines). This
is a technical issue which can be avoided as in [37] by
dealing with open polyhedra and boundaries sepa-
rately, but it is not of practical interest for the
numerical approach taken in this paper.
In this paper we will adopt the MLD system frame-

work introduced in [9]. MLD systems are hybrid sys-
tems defined by the interaction of logic, finite state
machines, and linear discrete-time systems, as shown in
Fig. 2a. The ability to include constraints, constraint
prioritization, and heuristics adds to the expressiveness
and generality of theMLD framework.

The MLDmodeling framework relies on the idea of
translating logic relations into mixed-integer linear
inequalities [9,19,36,41,43,44]. By following standard
notation, we adopt capital letters Xi to represent
propositions, e.g. `̀ x � 0'' or `̀ Temperature is hot''. Xi

is commonly referred to as a literal, and has a truth
value of either TRUE or FALSE. Boolean algebra
enables propositions to be combined by means of
connectives: `̀^'' (AND), `̀_'' (OR), `̀ � '' (NOT), `̀ ! ''
(implies), `̀$'' (if and only if, IFF), `̀�'' (exclusive or,
XOR). A literal Xi can be associated with a logical
variable di 2 f0, 1g, which has a value of either 1 ifXi is
TRUE, or 0 otherwise. A propositional logic problem,
where a proposition X1 must be proved to be true
given a set of propositions involving literals
X1, . . . ,Xn, can be solved by means of a linear integer
program by suitably translating the original proposi-
tions into linear inequalities involving logical variables
di [19]. Some basic translations are reported in Table 1.

Such translation techniques can be adopted to
model logical parts of processes and heuristic knowl-
edge about plant operation as integer linear inequal-
ities. The link between logic propositions and
continuous dynamical variables, in the form of logic
propositions derived from conditions on physical
dynamics, is provided by properties (analog-to-digital
interface (ADI)), (digital-to-analog interface (DAI))
in Table 1, and leads to mixed-integer linear inequal-
ities, i.e. linear inequalities involving both continuous
variables of Rn and logical (or binary) variables in
f0, 1g. Consider, for instance, the proposition X ��
�a01x � b1�, where x 2 X � Rn and X is a given
bounded set, a 2 Rn, b 2 R, and let

Mi � sup
x2X
�a0ixÿ bi�, mi � inf

x2X
�a0ixÿ bi�,

i � 1, 2:

1 More generally, Ci are subsets the of state� input space Rn+m, for
instance when the PWA system is obtained as an equivalent
representation of an MLD system [7].
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Fig. 2. Hybrid models. (a) Hybrid control systems. Finite state machines and continuous dynamics interact through analog-to-digital (A/D)
and D/A interfaces. (b) Switched systems. For each region of the partition of the state space there is a different set of dynamic equations.
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By associating a binary variable d with the literal X,
one can transform X �� �a01x � b1� into the pair
of mixed-integer inequalities described in (AD1),
Table 1, where � is a small tolerance (typically the
machine precision), beyond which the constraint is
regarded as violated. Note that tolerances could be
avoided by defining the second inequality in (AD1)
as a0xÿ b > md. On the other hand, as we are
interested in developing numerical tools for
MLD models, strict inequalities a0x > b must be
approximated by a0x � b� � for some � > 0, with the
assumption that 0 < a0xÿ b < � cannot occur due to
the finite precision of the computer. Note also that
sometimes translations require the introduction of
auxiliary variables [44, p. 178]. For instance, according
to (DA1), a quantity which is either a01xÿ b1 if X is
true, or a02xÿ b2, requires the introduction of a real
variable z.

The rules of Table 1 can be generalized for relations
involving n literals X1, . . . ,Xn combined by arbitrary
connectives. Any Boolean expression of logical vari-
ables defined by the grammar

� ::�Xj � �1j�1 _ �2j�1 � �2j�1 ^ �2j�1
 �2j�1 ! �2j�1 $ �2j��1�, �2�

where X is a Boolean variable, can be translated into
the conjunctive normal form (CNF)

k̂

j�1

_
i2Pj

Xi

_
i2Nj

� Xi

0@ 1A,Nj,Pj � f1, . . . , ng,

by using standard methods [40]. As an example, the

proposition (L7) X3 $ X1 ^ X2 is equivalent to

�� X1_ � X2 _ X3� ^ �X1_ � X3� ^ �X2_ � X3�:
�3�

Subsequently, the CNF can be translated into the set
of integer linear inequalities

1 � P
i2P1

di �
P
i2N1

�1ÿ di�

..

.

1 � P
i2Pk

di �
P
i2Nk

�1ÿ di�:

8>>>><>>>>: �4�

For instance, one can verify that the CNF (3) maps to
the inequalities reported in Table 1 (L7). The state-
update law of finite state machines can be described by
logic propositions involving binary states, their time
updates, and binary signals. The automatized transla-
tion mentioned above can be directly applied to tran-
slate automata into a set of linear integer inequalities.
An example will be provided when modeling the PLC
control code of the batch evaporator process bench-
mark in Section 5.

By collecting the equalities and inequalities gener-
ated by the translation of the automata, ADI, DAI,
and by including the linear dynamic difference equa-
tions, we can model the hybrid system depicted in
Fig. 2a as the MLD system

x�t� 1� � �x�t� � G1u�t� � G2d�t� � G3z�t�,
�5a�

y�t� � Hx�t� � D1u�t� � D2d�t� � D3z�t�, �5b�

Table 1. Basic conversion of logic relations into mixed-integer inequalities. Relations involving the inverted literals �X can
be obtained by substituting (1ÿ d) for d in the corresponding inequalities.

Relation Logic (In)equalities

L1 AND (^) X1 ^ X2 d1 � 1, d2 � 1
L2 OR (_) X1 _ X2 d1 � d2 � 1
L3 NOT (�) � X1 d1 � 0
L4 XOR (�) X1 � X2 d1 � d2 � 1
L5 IMPLY (!) X1 ! X2 d1 ÿ d2 � 0
L6 IFF ($) X1 $ X2 d1 ÿ d2 � 0
L7 ASSIGNMENT X3 � X1 ^ X2 d1 � �1ÿ d3� � 1

(� ,$) X3 $ X1 ^ X2 d2 � �1ÿ d3� � 1
�1ÿ d1� � �1ÿ d2� � d3 � 1

AD1 EVENT �a0x � b� $ �d � 1� a0xÿ b �MÿMd
x, a 2 Rn, b 2 R a0xÿ b � �� �mÿ ��d

DA1 IF-THEN-ELSE IF X THEN z � a01xÿ b1 ELSE z � a02xÿ b2 �m2 ÿM1�d� z � a02xÿ b2
(�Product) (z � d�a01xÿ b1� � �1ÿ d��a02xÿ b2�� �m1 ÿM2�dÿ z � ÿa02x� b2

�m1 ÿM2��1ÿ d� � z � a01xÿ b1
�m2 ÿM1��1ÿ d� ÿ z � ÿa01x� b1

4 A. Bemporad et al.



E2d�t� � E3z�t� � E1u�t� � E4x�t� � E5: �5c�

where x 2 Rnc � f0, 1gn` is a vector of continuous
and binary states, u 2 Rmc � f0, 1gm` are the inputs,
y 2 Rpc � f0, 1gp` the outputs, d 2 f0, 1gr` , z 2 Rrc

represent auxiliary binary and continuous variables
respectively, which are introduced when transforming
logic relations into mixed-integer linear inequalities,
and �, G1ÿ3, H, D1ÿ3, E1ÿ5 are matrices of suitable
dimensions.Theinequalities(5c) includetheconstraints
obtainedby theD/AandA/Dparts of the system, logic,
and automata, as well as possible physical constraints
on states and inputs. The description (5) seems to be
linear, because the nonlinearity is concentrated in the
integrality constraints over binary variables.

We assume that system (5) is completely well-posed
[9], which means that for all x, u within a bounded set
the variables d, z are uniquely determined, i.e. there
exist functions F, G such that, at each time t, d(t)�
F(x(t), u(t)), z(t)�G(x(t), u(t))2. This allows assuming
that x(t� 1) and y(t) are uniquely defined once x(t),
u(t) are given, and therefore that x- and y-trajectories
exist and are uniquely determined by the initial state
x(0) and input signal u. In light of the transformations
of Table 1, it is clear that the well-posedness assump-
tion stated above is usually guaranteed by the proce-
dure used to generate the linear inequalities (5c), and
therefore this hypothesis is typically fulfilled by MLD
relations derived from modeling real-world plants.
Nevertheless, a numerical test for well-posedness is
reported in [9, Appendix 1].

3. HYSDEL

In the previous sections we have described a technique
for transforming the hybrid system into the set of
linear mixed-integer equalities and inequalities (5),
denoted as MLD system. The language HYSDEL
fully automatizes the translation procedure. Given a
textual description of the logic and dynamic parts of
the hybrid system, HYSDEL returns the matrices �,
G1ÿ3, H, D1ÿ3, E1ÿ5 of the corresponding MLD form
(5). A full description of HYSDEL is reported in [40].
The compiler is available at
http://control.ethz.ch/~hybrid/hysdel.

A HYSDEL description is composed of two parts:
The first one, called INTERFACE, contains the declara-
tion of all the continuous and binary state, input, and
output variables, and parameters. The second part,
IMPLEMENTATION, is composed of six specialized

sections where the relations among variables are
described, as detailed below. An example HYSDEL
code is reported in Appendix A.

3.1. AD and DA Sections

These two sections define the interactions among the
continuous and discrete variables. The AD section
defines the Boolean variables from linear-threshold
conditions over the continuous variables. For instance,
�d � 1� $ �a1x1 � a2x2 � b�, x1, x2, a1, a2 2 Rn, b 2 R,
d 2 f0, 1g, with �a1x1 � a2x2 ÿ b� 2 �min , max�. In
HYSDEL this condition is represented as:

ADfd � a1 � x1� a2 � x2ÿ b:

<� 0�max, min, e�;g:

The expression [max, min, e] denotes the upper and
the lower bounds of the function for which the thres-
hold is specified, and e is the tolerance mentioned in
Section 2. HYSDEL translates the AD section into
mixed-integer inequalities as in (AD1), Table 1. The
symmetric HYSDEL construct DA specifies rules of
the type `̀ if [d� 1] then z � a1x� b1 else z � a2x� b2'',
where �a1x� b1� 2 �min1, max1� and �a2x� b2� 2
�min2 , max2�:

DAfz � fIF d THEN a1 � xÿ b1 �max1, min1, 0�
ELSE a2 � xÿ b2 �max2,min2,0�g;g:

HYSDEL translates the DA section into mixed-integer
inequalities according to the equivalence (AD1),
Table 1.

3.2. LOGIC Section

This section specifies arbitrary functions Xn � f�X1,
X2, . . . ,Xnÿ1� of Boolean variables, where f is a Boo-
lean expression defined by the grammar (2).
For example, the formula d1 � d2 ^ �d3_ � d4� is
represented in HYSDEL as:

LOGICfd1 � d2 & �d3j�d4�; g
and translated into the mixed-integer inequalities by
computing the associated CNF and then using (4).

3.3. CONTINUOUS Section

This section describes linear dynamics as difference
equations. Consider, for instance, the first-order
linear dynamic equation _x�t� � ÿax�t� � bu�t� and its2 For a more general definition of well-posedness, see [9].
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equivalent discrete-time counterpart x�k� 1� �
eÿaTx�k� ÿ �1ÿ eÿaT�a=bu�k� where T is the sampling
time. In HYSDEL, this is described as:

CONTINUOUSf x � exp�ÿa � T� � x
��1ÿ exp�ÿa � T��=a � b � u; g

3.4. AUTOMATA Section

This section specifies the state transition equations of
automata, under the assumptions that transitions are
clocked and synchronous with the sampling time of
the continuous dynamical equations, and that the
automaton is well-posed according to the definition
recalled in Section 2. (Fig. 3).

The first step is to associate a Boolean representa-
tion with each of the ns logic states of the automata
(see Fig. 3). This can be done by defining a logic state
vector x` of size dlog2 nse (x` � x`1

x`2

h i
in the example).

Using standard tools from digital circuit design,
one can derive the state transition function for the
automaton:

x`�t� 1� � F�x`�t�, u`�t��,

where ul is the vector of Boolean signals defining the
transitions of the automaton. Therefore the auto-
maton is equivalent to a nonlinear discrete time
system where F is a purely Boolean function. The state
transition function is inserted in the HYSDEL section
AUTOMATA. The Boolean values of the states x` that are
not associated with any logic state of the automaton
can be explicitly ruled out in the MUST section of the
HYSDEL code.

An example is reported later in Section 5, where the
PLC code that handles the exceptions in the batch
evaporator system is modeled in HYSDEL.

3.5. MUST Section

This section allows to specify linear constraints on
continuous variables, and logic constraints of the type
`̀ F�X1, . . . ,XN� is TRUE'', where F is a Boolean
expression. For example: The variable x must remain
in the range �xmin, xmax�, and the binary signals u1, u2
are mutually exclusive. In HYSDEL these conditions
are represented as:

MUST f xÿ xmax <� 0;ÿx� xmin <� 0;

�u1 & �u2� j ��u1 & u2�;g:

The textual description of the hybrid model is pro-
cessed by the HYSDEL compiler, which generates the
matrices of the MLD system (5). Once the MLD
model is available, its equivalent PWA form (1) is
obtained by using the procedure suggested in [7].
In the next section, we will assume that both the
PWA and the MLD forms are available and discuss
their complementary role in the reachability analysis
algorithm.

4. Reachability Analysis

The reachability analysis of hybrid dynamical systems
allows the verification of safety properties: For a given
set of initial conditions and exogenous signals, verify
that the set of unsafe states cannot be entered, or
provide a counterexample. More precisely, we define
the following:

Reachability Analysis Problem Given a hybrid system
� (either in PWA form (1) or MLD (5)), a set of initial
conditions X�0�, a collection of disjoint target sets
Z1,Z2, . . . ,ZL, a bounded set of inputs U, and a time
horizon t � Tmax, determine (i) if Zj is reachable from
X�0� within t � Tmax steps for some sequence
fu�0�, . . . , u�tÿ 1�g � U of exogenous inputs; (ii) if
yes, the subset of initial conditions XZj

�0� of X�0�
from which Z j can be reached within Tmax steps; (iii)
for any x1 2 XZj

�0� and x2 2 Zj, the input sequence
fu�0�, . . . , u�tÿ 1�g � U, t � Tmax, which drives x1 to
x2 (Fig 4).

From now on, we will assume that X�0�, Zj, U are
polyhedral sets, and, without loss of generality, that
they are also convex.Wewill also denote byX�t,X�0��
the reach set at time t starting from any x 2 X�0� and

xl = [ ]0
0

xl = [ ]0
1

xl = [ ]1
0

u1 ∧ u
–

2

 u
–

2

u2
u2

Any

Fig. 3. Example of automaton with ns � 3 logic states, represented
with 2 � dlog2 nse logic variables and u` � �u1 u2�0 2 f0, 1g2.
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by applying any input u�k� 2 U, 0 � k � tÿ 1. The
reason for focusing on finite-time reachability is that
the time-horizon Tmax has a clear meaning, namely
that states which are not reachable in less than Tmax

steps are in practice unreachable. Although finite time
reachability analysis cannot guarantee certain liveness
properties (for instance, if Zi will be ever reached), the
reachability problem stated above is clearly decidable
[31,42].

Nevertheless, the problem is NP-hard. To see this,
for simplicity consider that system� is piecewise linear
( fi � 0, for all i � 0, . . . , sÿ 1), and autonomous
(Bi � 0 for all i � 0, . . . , sÿ 1). Its evolution is

x�T � � Ai�Tÿ1�Ai�Tÿ2� . . .Ai�0�x�0�, �6�

where i�k� 2 f0, . . . , sÿ 1g is the index such that
Hi�k�x�k� � Ki�k�, k � 0, . . . ,Tÿ 1. The previous

questions of reachability can be answered once all the
switching sequences I�T � �� fi�0�, . . . , i�Tÿ 1�g, 8T �
Tmax leading to Z1, or Z2, . . ., or ZL from X�0� are
known. In fact, it is enough to check that the reach set
at time T, X�T,X�0�� �� Ai�Tÿ1�Ai�Tÿ2� . . .Ai�0�X�0�,
satisfies X�T,X�0�� \ Zj 6� ; for all admissible
switching sequences I(T). However, the number of
all possible switching sequences I(T) is combinatorial
with respect to T and the number of partitions s,
and any enumeration method would be impractical.
We recall the verification algorithm proposed in [12]
that will be used to avoid such an enumeration (see
Table 2).

4.1. Verification Algorithm

In order to determine admissible switching sequences
I(t), we need to exploit the special structure of the
PWA system (1). This allows an easy computation of
the reach set, as long as the evolution remains within a
single region Ci of the polyhedral partition. Whenever
the reach set crosses a guardline and enters a new
region Cj, a new reach set computation based on the j-
th linear dynamics is computed, as shown in Fig. 5a.
The Algorithm proposed in [12] is summarized by the
pseudo-code reported in Table 2, where we assume
that X�0� � Ci is a convex polyhedral set (more gen-
erally, we can consider all nonempty intersections
X�0� \ Ci, for all i � 1, . . . , s). The algorithm deter-
mines the reach set X�T,X�0�� for all T � Tmax (i.e.,
the reachable set).

Algorithm 4.1

Table 2 Reachability analysis algoritham.

(0)

   1(0)

 2(0)

 3(0)

Target Set 
  1

Target Set 
  2

Target Set 

    L

Fig. 4. Reachability analysis problem.
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4.1.1. Reach Set Computation

The reach set X�t,Rj� \ Ci is computed iteratively in
steps 4, 7, and 11. Note that the subset Si�t,X�0�� of
X�0� whose evolution lies in Ci for t steps is given by
the explicit representation

S�t,X�0�� �
(
x 2 Rn : S0x � T0,HiA

k
i x

� Si ÿHi

Xkÿ1
j�0

Aj
i�Biu�kÿ 1ÿ j� � fi�, k � 0, . . . , t

)
:

�7�

As S�t,X�0�� is a polyhedral set in the augmented
space of tuples �x, u�0�, . . . , u�tÿ 1��, the reach set
X�t,X�0�� \ Ci is a polyhedral set as well. A compact
representation of X�t,X�0�� \ Ci (as inequalities over
the final state x(t)) can be computed by projecting
S�t,X�0�� onto the affine subspace At

ix�
Ptÿ1

k�0 A
k
i

�Biu�tÿ 1ÿ k� � fi�, although this is not required by
Algorithm 4.1. Note that the set X�t,X�0��T Ci is a
polyhedral set.

4.1.2. Guardline Crossing Detection

Step 8 requires a switching detection, namely finding
all possible new regions Ch entered by the reach set
at the next time step, or, in other words, all the
nonempty sets Rh �� X�t,X�0��

T Ch, h 6� i. Rather
than enumerating and checking nonemptiness for
all h � 0, . . . , iÿ 1, i� 1, . . . , sÿ 1, we can exploit
the equivalence between PWA and MLD, and solve
the switching detection problem via mixed-integer
linear programming. In fact, switching detection
amounts to finding all feasible vectors d�t� 2 f0, 1gr`
which are compatible with the constraints in (5)
plus the constraint x�tÿ 1� 2 X�tÿ 1,X�0�� \ Ci.
Such a problem is a mixed-integer linear feasibility
test, and can be efficiently solved through standard
recursive branch and bound procedures. In the aver-
age case, the MLD form (through the branch and
bound algorithm) requires a number of feasibility tests
which is much smaller than enumerating and solving a
feasibility test for all the possible regions of the PWA
model.

4.1.3. Approximation of Intersection

The computation of the reach set proceeds in each
region Ch from each new intersection Rh. A new reach
set computation is started from Rh, unless Rh is

contained in some larger subset of Ch which was
already explored. As in principle the number of facets
of Rh grows linearly with time, we need to approx-
imate Rh in step 9, so that its complexity is bounded
(and therefore the reach set computation from Rh has
a limited complexity with respect to the initial region).
Hyper-rectangular approximations �Rh of Rh are the
best candidates, as checking for set inclusion between
hyper-rectangles reduces to a simple comparison of
the coordinates of the vertices. On the other hand, a
crude rectangular outer approximation of Rh might
lead to explore large regions which are not reachable
from the initial set X�0�, as they are just introduced
by the approximation itself. In [11] the authors pro-
pose an iterative method for inner and outer ap-
proximation which is based on linear programming,
and approximates with arbitrary precision polytopes
by a collection of hyper-rectangles, as depicted in
Fig. 5b.

4.1.4. Termination of Explorations

In Section 4.1.1 we showed how to compute the evo-
lution of the reach set X�t,Rj� inside a region Ci. The
computation is stopped (step 5) once one of the
following condition happens:

1. The set X�t,Rj� is empty. This means that the
whole evolution has left region Ci.

2. X�t,Rj� � Zj , j � 1, . . . ,L, the target set Zj has
been reached by all possible evolutions from Rj.

3. t > Tmax.

These conditions can be easily checked through
LP. Note that the termination condition 2 implies that
once a target set has been reached no further explo-
ration is performed.

4.1.5. Post-processing

The result of the exploration algorithm detailed in the
previous sections can be conveniently stored in a
graph G. The nodes of G represent sets from which a
reach set evolution is computed, and an oriented arc
of G connects two nodes if a transition exists between
the two corresponding sets. Each arc has an associated
weight which represents the time-steps needed for the
transition. The graph has initially no arc, and the
nonempty initial setX�0�andZ j, j � 1, . . . ,Lasnodes.
When a new intersection X�t,X�0�� \ Ch is detected, it
is approximated by a collection of hyper-rectangles, as
described in Section 4.1.3. Each hyper-rectangle
becomes a new node in G, and is connected by a
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weighted arc from X�0�. In addition, each hyper-
rectangle is pushed on a stack of sets to be explored.

Before starting a new reach set computation from a
set Rj extracted from the stack, we check for inclusion
of Rj in other nodes of G. If this happens, say Rj � R1

and Rj � R2, the node associated with Rj is removed
from G, and the arcs are redirected.

After Algorithm 4.1 terminates, the oriented paths
on G from initial node X�0� to terminal nodes Z j, j �
1, . . . ,L determine a superset of feasible switching
sequences I�t� � fi�0�, . . . , i�tÿ 1�g. In fact, because
of the outer approximation �Rh of new intersections Rh

(step 9), not all switching sequences are feasible.
Feasibility can be simply tested via LP over the sets of
linear inequalities generated by an explicit reach set
representation as in (7).

5. Verification of the Batch Evaporator
Process Benchmark

In this section we apply the tools proposed in the
previous sections to the benchmark problem proposed
within the ESPRIT-LTR Project 26270 VHS (Verifi-
cation of Hybrid Systems)3 as Case Study 1. The full
system consists of an experimental batch plant [28].
In this paper we will focus only on the evaporator
system, as proposed in [29], which is schematically
depicted in Fig. 6.

The considered subsystem is composed of three
parts: the upper tank 1 (labeled as B5 in Fig. 6), the
lower tank 2 (B7) and the condenser (K1). Tank 1
is equipped with a heating system (H), and is
connected to tank 2 by a pipe and a valve (V15), while

the outlet of tank 2 is controlled by valve V18. Both
the heating system and the valves can only have two
configurations: on (open) and off (closed). The levels
h1, h2 of the solution in the two tanks, and the tem-
perature T of tank 1 are detected by sensors. These
provide four logic signals: tank 1 empty, tank 2
empty, alarm, and crystallization. A tank is con-
sidered empty when its level is below 1 cm.

During normal operation of the plant, an aqueous
solution with a low concentration of salt enters tank 1.
The heating is turned on, and when the production of
steam begins, the concentration of salt in tank 1 starts
to rise. The outgoing steam flows through the con-
denser and is drained away from the system. When the
concentration of salt has reached a certain level, the
heating system is switched off, valve V15 is opened,
and the solution flows to tank 2, for post processing
operations. The plant is designed in such a way that
more than one batch can be produced at the same
time, so that tank 1 and tank 2 can process different
batches in parallel.

In this paper we focus on the exception handling
required when the condenser does not work properly.
Suppose that for some reason (e.g. lack of cooling
agent) the condenser malfunctions. In this case, the
steam cannot be cooled down and the pressure in tank
1 rises. The heating system should be switched off to
prevent damage to the plant due to over-pressure. On
the other hand, the temperature in tank 1 should not
get lower than a critical temperature Tc, otherwise the
salt may crystallize and expensive procedures would
be needed to restore the original functionality.

APLC controls the plant according to the finite state
machine depicted in Fig. 7, where the event alarm
occurs when T � Ta, and crystallization when T � Tc.

The control strategy can be explained as follows.
When a malfunction of the condenser is detected, the

(3,   (0))

i

h

(a)
j

(0)

(1,   (0))

(2,   (0))

(b)

Fig. 5. Reachability analysis. (a) Reach set evolution, guardline crossing, outer approximation of a new intersection, (b) Outer rectangular
approximation of a new region intersection.

3 http://www-verimag.imag.fr/VHS/
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controller enters the alarm mode and immediately
opens valve V18 to empty tank 2.During this phase, the
heater is still in the heating state. When the tempera-
ture in tank 1 reaches the alarm level Ta (alarm), the
heating is switched off and the controller enters the
state cooling. Finally, when tank 2 is empty, the con-
troller gets in the state draining, where valve V18 is
closed and valve V15 is opened, and the solution flows
from the upper tank to the lower tank. From draining,
the controller can either switch to the state won if tank
1 becomes empty, or to lost if the temperature in tank 1
becomes lower than the critical value Tc.
The aim is to verify that the controller satisfies the

following safety requirements: (i) if a malfunctioning
in the cooling system of the condenser occurs, the
heater must be turned off quickly enough to prevent
damages to the condenser, (ii) the solution in tank 1 is

drained to tank 2 before it solidifies, (iii) when the
valve V15 is open tank 2 is empty.

Certifying that the PLC code satisfies these speci-
fications amounts to verify that from all the initial
states in a given set X0 the system never reaches the
state lost, or, equivalently, that the system always
reaches the state won.

6. Modeling CS1 in MLD Form

In order to use the verification tools described in
Section 4, we need to obtain a hybrid model of the
batch evaporator process in MLD form. We consider
the model described in [39], which only takes into
account the dynamics of the levels h1, h2, and of the
temperature T of tank 1. The model developed in [39]

Fig. 6. Flowchart of the benchmark evaporator system.

Fig. 7. State transition diagram of the controller.
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is summarized in Table 3 (dynamic equations asso-
ciated with each logical state of the controller of
Fig. 7) together with the parameters reported in
Appendix B.1, and is based on the following simpli-
fying assumptions: (i) the pressure increase during the
evaporation in the heating phase is neglected, (ii) the
dynamics during the cooling phase is the same for
T><373K, (iii) average constants replace ranges of
physical parameters.

6.1. Continuous Dynamics

The dynamic equations described in Table 3 are
nonlinear and continuous-time. As MLDmodels only
deal with hybrid linear discrete-time dynamics, we
first approximate the static nonlinearity (square root)
with a piecewise linear function, and then sample the
resulting system.

The nonlinearity arises from Torricelli's law, which
models the liquid flow through the outlet of the tank,
namely _h � ÿk ���

h
p

where k depends on the geometry
of the tank and outlet pipe, and h is the height of the
liquid in the tank.

We partition the operating range of h and approx-
imate the square root by a linear function in three
intervals: [0, 0.01], (0.01, ht] and (ht, hmax], as in Fig. 8.
In the first interval [0, 0.01] the approximation is such
that h goes instantaneously to zero when the level is
lower that 0.01 (consistent with the PLC, which
assumes that the tank is empty if h< 0.01). In the
other two intervals, a straight line interpolates the
extreme points. The parameter ht can be chosen

� hmax=2. Figure 8 shows the square root and its
piecewise linear approximation for ht � 0:9 (left plot),
and compares the evolution of the original con-
tinuous-time system and its sampled (Ts� 60 s) pie-
cewise linear counterpart (right plot).

The piecewise linear approximation of the non-
linearity can be represented by introducing two logical
auxiliary variables li1, li0, i � 1, 2, defined by

li1�t� $ �hi�t� � hit�, li0�t� $ �hi�t� � 0:01�, �8�

where we use the shorthand notation li1 for �li1 � 1�,
and �li1 for �li1 � 0�. As hit > 0:01, the logic relation
�li1�t� _ �li0�t� � TRUE holds 8t, i� 1, 2. Then, the
piecewise linear approximation of the square root is
defined by

shi �
1 if li0,
a1hihi � b1hi if �li0 ^ li1 i � 1, 2,
a2hiT� b2hi otherwise,

8<: �9�

where the constants a1hi , a2hi , b1hi , b2hi are defined in
Appendix B.2.

6.2 A/D

As mentioned above, the level and temperature
sensors provide four logic signals: tank 1 empty, tank
2 empty, alarm, crystallization. We associate a 0/1
variable with each signal, namely l10, l20 introduced in
(8) for the tank levels, and t1, t2, for the temperature,

Table 3. Continuous dynamics associated with the different states of the FSM in Fig. 7.

Logic state Heating V15 V18 Dynamic behavior

Heating on closed open @T=@t � k3�qÿ k4�Tÿ te��
@h1=@t � 0
@h2=@t � ÿk2

�����
h2
p

8<:
Cooling off closed open

@T=@t � k5�Tÿ te�
@h1=@t � 0
@h2=@t � ÿk2

�����
h2
p

8<:
Draining off open closed @T=@t � k5�Tÿ te�

@h1=@t � ÿk1
�����
h1
p

@h2=@t � k2
�����
h1
p

8<:
Won off closed closed @T=@t � k5�Tÿ te�

@h1=@t � 0
@h2=@t � 0

8<:
Lost off closed close @T=@t � k5�Tÿ te�

@h1=@t � 0
@h2=@t � 0

8<:
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where

t1�t� $ �T�t� � Ta�, t2�t� $ �T�t� � Tc�, �10�
and T(t) is the temperature in tank 1. As Ta > Tc, the
logic condition �t1�t� _ �t2�t� � TRUE must be satisfied
for all t.

6.3. Automaton

The five states of the automaton in Fig. 7 representing
the PLC code for exception handling can be repre-
sented by the combination of three 0/1 logical states,
grouped in the binary vector x`, according to the
convention

x` �
0
0
0

24 35 � heating,
0
0
1

24 35 � cooling,

0
1
0

24 35 � won,
0
1
1

24 35 � lost,

and

1
0
0

24 35 � draining

As the combinations

1

0

1

264
375, 1

1

0

264
375, 1

1

1

264
375

are not used, the logic constraint x`1�t��x`2�t�_
x`3�t�� � FALSE must hold 8t. The transition map of
the automaton is expressed by 0/1 variables in Table 4.
Each update x`i�t� 1�, i� 1, 2, 3, can be rewritten as a
sum of products (SOP)4

x`1�t� 1� � ��x`1�x`2x`3l20� _ �x`1�x`2�x`3�ti2�l10�; �11�

x`2�t� 1� � �x`1�x`2�x`3l10� _ �x`1�x`2�x`3t2�
_ ��x`1x`2�x`3� _ ��x`1x`2x`3�; �12�

x`3�t� 1� � ��x`1�x`2�x`3t1� _ ��x`1�x`2x`3�l20�
_ �x`1�x`2�x`3t2� _ ��x`1x`2x`3�, �13�

by simply collecting all the rows of Table 4 where
x`i�t� 1� � 1 (in (11)±(13) the temporal index (t)
on the right hand side has been omitted for
brevity). For instance, the update law for x`1 is
obtained by collecting the rows where x`1�t� 1� is 1
(rows 3 and 5), and rewriting the conditions on lines 3
and 5 as in (11).

The control action produced in each logical state of
the controller is

h�t� � �x`1�t��x`2�t��x`3�t�, �14�
v15�t� � x`1�t��x`2�t��x`3�t�, �15�
v18�t� � ��x`1�t��x`2�t��x`3�t��

_ ��x`1�t��x`2�t�x`3�t�� �16�
and is obtained in a similar way from Table 5.

Fig. 8. Piecewise linear approximation of the square root (left), evolution of the approximated sampled system versus the continuous-time
nonlinear model (right).

4 This is equivalent to the disjunctive normal form (DNF).
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6.4. Sampling

Each linear continuous dynamics of the piecewise
linear approximations is sampled with sampling time
Ts � 60 s. Because of the resulting discrete-time
nature of the model, switches can only occur at sam-
pling steps. Although this clearly introduces a model
mismatch, the sampling time is short enough to render
the approximation negligible, or at least comparable
with the other approximations of the physics of the
model.

6.5. D/A

The continuous state-update law can be rewritten as
the linear set of difference equations

T�k� 1� � zT�k�, �17�

h1�k� 1� � zh11�k� � zh12�k� � zh13�k�, �18�
h2�k� 1� � zh21�k� � zh22�k� � zh23�k� � zh24�k�,

�19�
where zT and zhij are auxiliary continuous variables
defined in Table 6, together with the parameters
specified in Appendix B.3.

In summary, the state of the MLD system modeling
the batch evaporator process is

xc �
T
h1
h2

24 35 2 R3 x` �
x`1
x`2
x`3

24 35 2 f0, 1g3, �20�

d 2 f0, 1g18, z 2 R8 and the corresponding MLD
and PWA models are automatically obtained
by processing the HYSDEL system description
reported in Appendix A. The total number of MLD
inequalities is 127. The equivalent PWA system has 13
regions.

7. Verification Results

We aim to verify that after an exception occurs, the
PLC code based on the control logic of Fig. 7 safely
shuts down the plant to the won state for any initial
condition

x�0� � xc�0�
x`�0�
� �

2 X 0

� T, h1, h2, x` : T � 373, 0:2

8><>:
� h1 � 0:22, 0:28 � h2 � 0:3, x` �

0

0

0

264
375
9>=>;:

To this end, we apply the verification algorithm pre-
sented in Section 4, and label as target set Z1 the set of
safe states

x : x` �
0
1
0

24 358<:
9=;

(won), and as target set Z2 the set of unsafe states

x : x` �
0
1
1

24 358<:
9=;

Table 4. State transition function of the FSM.

x`1 x`2 x`3 t1 t2 l10 l20 x`1�t� 1� x`2�t� 1� x`3�t� 1�
0 0 0 1 * * * ! 0 0 1
0 0 0 0 * * * ! 0 0 0
0 0 1 * * * 1 ! 1 0 0
0 0 1 * * * 0 ! 0 0 1
1 0 0 * * 1 * ! 0 1 0
1 0 0 * 1 * * ! 0 1 1
1 0 0 * 0 0 * ! 1 0 0
0 1 0 * * * * ! 0 1 0
0 1 1 * * * * ! 0 1 1

Table 5. Output function of the automaton.

x`1�t� x`2�t� x`3�t� h�t� v15�t� v18�t�
0 0 0 ! 1 0 1
0 0 1 ! 0 0 1
1 0 0 ! 0 1 0
0 1 0 ! 0 0 0
0 1 1 ! 0 0 0
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(lost). The results of the algorithm are plotted in Fig. 9,
where the set evolution in the three-dimensional
continuous state space h1, h2, T from the initial
conditionsX�0� is depicted from different view angles.
Algorithm 4.1 was executed in 79 s on a PC Pentium II
running interpreted Matlab code.

The tool can also easily perform parametric
verification if the vector of parameters � enters
the model linearly, and its range is a polyhedral set �
(e.g. � is an interval). Constant parameters can in
fact be taken into account by augmenting the
state vector to x

�

� �
, adding constant dynamics

�(t� 1)� �(t) for the additional state �, and setting the
set of initial conditions toX�0� ��.Vice versa, varying
parameters with unknowndynamics can bemodeled as
additional inputs to the system, i.e. as disturbances.

We use parametric verification for checking varia-
tions of the alarm temperature Ta in the range
383K < Ta � 393K. As Ta is a constant parameter of
the PLC code, it is treated as an additional state.

The parametric verification produces the following
result: for Ta � 390:4902 the controller drives the
plant to the terminal state Z1 (won) for all the initial
heights and temperatures in X 0. The parametric ver-
ification requires 82 s of CPU time.

8. Conclusions

In this paper we have proposed a modeling framework
for hybrid systems described by the interaction of
discrete-time linear dynamic equations, logic rules,
and automata, and a general algorithm for safety
analysis based onLPandMILP.The versatility and the
computation feasibility of the approach have been
tested on the batch evaporator benchmark process.
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Appendix A. HYSDEL Code for the
Batch Evaporator Process
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Appendix B. Parameters

B.1. Model Parameters

B.2. Linearization Parameters

B.3. Sampled Dynamics

q � 5000 kW, te � 283K, k1� 2.2 � 10ÿ 3m(1/2)sÿ 1,
k2� 1.5 � 10ÿ 3m(1/2)sÿ 1, k3� 3.7 � 10ÿ 6K kWÿ 1, k4� 24KkWÿ 1,
k5� 8.9 � 10ÿ 4 sÿ 1, Tc� 338K.

h1t � 0:09m, h1max � 0:22m, a1h1 � 2:5, b1h1 � 0:057m,
a2h1 � 1:3003, b2h1 � 0:1830m, h2t � 0:15m, h2max � 0:3m,
a1h2 � 2:0521, b1h2 � 0:0795m, a2h2 � 1:0695, b2h2 � 0:2269m.

aT1 � 0:9481, bT1 � 25:4931K, aT 2 � 0:9480, bT 2 � 14:7158K,
ah11 � 0:7189, bh11 � ÿ0:0084m, ah12 � 0:8423, bh12 � ÿ0:0222m,
ah13 � 1, bh13 � 0m, ah21 � 0:1916, bh21 � 0:0057m,
ah22 � 0:8314, bh22 � ÿ0:0065m, ah23 � 0:1075, bh23 � 0:0151m,
ah24 � 0:9082, bh24 � ÿ0:0195m.
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