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a b s t r a c t

A hierarchical method for the approximate computation of the consensus state of a network of agents is
investigated. The method is motivated theoretically by spectral graph theory arguments. In a first phase,
the graph is divided into a number of subgraphs with good spectral properties, i.e., a fast convergence
toward the local consensus state of each subgraph. To find the subgraphs, suitable clustering methods are
used. Then, an auxiliary graph is considered, to determine the final approximation of the consensus state
in the original network. A theoretical investigation is performed of cases for which the hierarchical
consensus method has a better performance guarantee than the non-hierarchical one (i.e., it requires a
smaller number of iterations to guarantee a desired accuracy in the approximation of the consensus state
of the original network). Moreover, numerical results demonstrate the effectiveness of the hierarchical
consensus method for several case studies modeling real-world networks.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of complex systems deals with the study of the
behavior of systems made of several agents (or units) that interact
among each other; typical examples are social (Del Vicario et al.,
2016) and economic (Battiston et al., 2016) networks, physical
systems made of interacting particles (Castellano et al., 2009), and
biological (Pastor-Satorras et al., 2015) and ecological (Vivaldo
et al., 2016) systems. In all these cases, one has often to deal with a
large number of units, which have no global knowledge about the
structure of the whole system, as their interactions are limited to
their neighbors in the network. Control problems on such systems
are strongly influenced by structural properties of their graph of
interconnections, described, e.g., in terms of a weighted/un-
weighted adjacency or graph-Laplacian matrix (Mesbahi and
Egerstedt, 2010; Liu et al., 2011). In particular, several studies (see,
e.g., Lovisari and Zampieri, 2012 for a tutorial) deal with the
analysis of the conditions under which a complex system has all
its agents reach asymptotically a common state, called consensus
state (i.e., they agree asymptotically with the same opinion) and,
in case of a positive answer, with investigating the rate of con-
vergence to the consensus state. It is well-known (see, e.g., Boyd
et al., 2004; Lovisari and Zampieri, 2012) that such a convergence
i),
rate is related to the spectral properties of the graph of inter-
connections (e.g., the ones of a transition probability matrix one
can associate to it). The work (Boyd et al., 2004) optimizes such
properties by solving a suitable convex optimization problem,
called Fastest Mixing Markov-Chain (FMMC) problem. In our pre-
vious work (Gnecco et al., 2015), we optimized a suitable trade-off
between the rate of convergence to the consensus state and the
sparsity of the graph of interconnections, which is a way to insert
in the model a possible cost of communication associated with
each link used. In more details, the optimization problem con-
sidered in Gnecco et al. (2015) (which is a substantial extension of
the conference paper, Gnecco et al., 2014) is an l1-norm (convex)
regularization of the FMMC problem, called FMMC- η( )l1 problem,
where η > 0 is a regularization parameter. Its main contributions
are some theoretical results about the choice of η to avoid triviality
of the resulting optimal solution, and an interpretation of the
FMMC- η( )l1 problem as a robust version of the FMMC problem, in
which one is allowed to select only nominal weights associated
with the edges of the graph, as such weights enter the model to-
gether with an intrinsic relative uncertainty, which cannot be re-
moved unless the nominal values are chosen to be equal to 0. A
(nonconvex) l0-pseudo-norm regularized version of the FMMC
problem is also analyzed in Gnecco et al. (2015). Some ways to
restrict the search for its optimal solution to suitable feasible so-
lutions are also investigated therein. Finally, numerical results
demonstrate the effectiveness of both regularized approaches
(with computational advantages for the convex case) in achieving
– as desired – a “good” trade-off between sparsity of the network
and its rate of convergence to the consensus state.
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1 Since in the paper we are dealing with undirected graphs, hence with sym-
metric transition probability matrices, the consensus state is the average of the
initial opinions of the agents. Without this assumption, the consensus state belongs
only to the convex hull of the set of such opinions. To distinguish between these
two situations, the consensus problem considered in this paper is sometimes called
“average” consensus problem (Lovisari and Zampieri, 2012).

2 The proof of (3) is as follows (see also Como et al., 2012). The matrix P has the
eigendecomposition λ= + ∑ =
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The approach followed in this paper is substantially different
from Gnecco et al. (2015), although the goal is similar. In more
details, the main idea of the present work is the following: for a
fixed network topology, we aim at speeding up consensus using a
“hierarchical” approach, whose theoretical motivation relies on
spectral properties of the agents’ network. Our approach is based
on dividing the original connected graph into many connected
subgraphs, which are expected (due to spectral graph theory ar-
guments, Chung, 1997) to have “good” spectral properties. In this
case, the rate of convergence to the “local” consensus state (i.e., the
consensus state of each subgraph) is faster than the one to the
“global” consensus state of the original graph. In a second phase,
the resulting approximations of the local consensus states of the
subgraphs are mixed to get (up to a certain tolerance) global
consensus on an auxiliary graph, whose nodes are selected nodes
of the subgraphs (one for each subgraph), and for which “good”
spectral properties are still expected (again, due to spectral graph
theory arguments). To generate the subgraphs, we apply both a
technique known as spectral clustering (von Luxburg, 2007), and a
second ad hoc technique that we call nearest supernode approach,
which are both expected to extract sufficiently “dense” subgraphs
(e.g., made of a single cluster of nodes, with each node connected
directly to several other nodes of the same cluster). For such
subgraphs, the rate of convergence to the local consensus state is
relatively fast (since the second-largest eigenvalue modulus of the
transition probability matrix associated with each such subgraph
is relatively small). In this way, in the hierarchical approach, one
fixes the sparsity of the graph, then speeds up the approximation
of its consensus state possibly even more than through the re-
solution of the FMMC problem, since the latter does not allow for a
hierarchical solution. It is worth noting that, in case the original
graph is not sparse, one can still apply the hierarchical consensus
method described in the paper after a preliminary step of edge
sparsification (this could be achieved, e.g., applying the algorithms
detailed in Batson et al., 2013), to construct another graph with a
very similar spectral behavior, but with a (typically much) smaller
number of edges. Then, the hierarchical consensus method could
be applied directly to this sparsified graph. It has to be remarked
that approaches similar to the one presented in this paper have
been proposed also in Epstein et al. (2008) and Li and Bai (2012).
In such works, the multi-agent system is also decomposed into a
hierarchical structure. Nevertheless, neither Epstein et al. (2008)
nor Li and Bai (2012) consider techniques that exploit spectral
graph theory arguments for the generation of the subgraphs.
Hence, compared with Epstein et al. (2008) and Li and Bai (2012),
the main original contribution of the present work lies on the
techniques we adopt to determine the different connected sub-
graphs, and on the theoretical motivations we provide for such
techniques, based on spectral graph theory arguments. In addition
to this, we perform an extensive numerical evaluation of the
hierarchical consensus method on several case studies modeling
real-world networks, achieving in most cases better performance
with respect to a non-hierarchical consensus method.

The paper is structured as follows. Section 2 presents an in-
troduction to the consensus problem, and provides an overview of
the hierarchical consensus method. Section 3 provides some the-
oretical arguments supporting the method, based on spectral
graph theory. Section 4 describes clustering techniques used by
the method, whereas Section 6 provides a study of its approx-
imation of the global consensus state. In Section 7, numerical ex-
amples are presented. Section 8 provides a refinement of the basic
setting, based on the results of the numerical examples. Finally,
Section 9 offers conclusions.
2. An overview of the hierarchical consensus method

Let = ( )G V E, be a connected undirected graph with = | |N V
nodes and | |E edges. In the context of the paper, the nodes re-
present agents (or units), which locally interact among each other.
Such an interaction is governed by non-negative weights asso-
ciated with the edges, which have to be chosen in a suitable way.
Assuming a linear time-invariant model and describing each agent
as a 1-dimensional dynamical system, the consensus problem re-
fers to the investigation of the convergence to the consensus state
(see the next formula (2)), for the following linear dynamical
system:

( + ) = ( ) ( )x t Px t1 , 1

where the column vector ( ) ∈ x t N contains the states (opinions)
of the N agents at a generic discrete time instant t, while ∈ ×P N N

is a symmetric doubly stochastic matrix (i.e., ≥P 0ij for all

= … =i j N P, 1, , , 1 1, and =P PT , where 1 is the N-dimensional
vector whose components are all equal to 1). Moreover, =P 0ij

when the two nodes i and j are different and are not linked by an
edge. Due to the stated assumptions, P can be interpreted as the
matrix of transition probabilities associated with a finite-states
Markov chain, possibly containing self-loops, since ≥P 0ii for all

∈ …i N1, , . If all the diagonal entries of P are positive and the
weighted graph associated with P is connected, then it is well-
known (see, e.g., Lovisari and Zampieri, 2012) that, for the ith
component ( )( )x ti of ( )x t , one has

( )⟶ ( ) ∀ = … ( )
( ) →∞

x t
N

x i N
1

1 0 , 1, , , 2
i t T

with ( )x 0 being the vector of the initial opinions of the agents. The
expression Σ = ( )x1 0

N
T1 , which is the average of the initial opinions

of the agents, is the consensus state of the system.1

It is well-known (see, e.g., Como et al., 2012; Fagnani, 2014)
that, at any discrete time instant t, the distance from the consensus
state can be bounded from above as a function of the second-
largest eigenvalue modulus μ( )P of the matrix P, in the following
way:

μ( ) − ( ) ≤ ( ) ( )
( )
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where ∥·∥2 denotes the l2 norm.2 For a given P, this rate of con-
vergence cannot be improved, since there exist choices of the in-
itial state ( )x 0 for which a better rate cannot be obtained. Using
(3), the rate of convergence to the consensus state was optimized
in Boyd et al. (2004) by solving a suitable convex optimization
problem, whose optimization variables are the entries of the ma-
trix P. Differently from that approach, in the paper we intend to
speed up consensus by considering local consensus subproblems
formulated on different subgraphs = ( )G V E,m m m of the original
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network, then by considering another consensus problem on an
auxiliary graph = ( )G V E,aux aux aux , whose nodes are selected nodes
of the subgraphs, each one representative of the associated sub-
graph (hence, called “supernode” in the method investigated in the
paper). In our approach, once the graph G is given, the choice of
the matrix P is fixed and is determined following the procedure
described in Garin et al. (2010) (see the Appendix for details). Such
a procedure, indeed, is guaranteed to generate a doubly stochastic
and symmetric matrix P for which (2) holds. The same procedure
of construction is used for the doubly stochastic and symmetric
matrices Pm and Paux associated, respectively, with the generic
subgraph Gm, and with the auxiliary graph Gaux.

The hierarchical consensus method investigated in the paper is
made of the two following consecutive phases. In the first phase,
one divides the original graph into many connected subgraphs Gm,
each one evolving according to a state equation of the form (1).
This phase can be easily parallelized. The subgraphs are generated
in such a way to increase the rate of convergence to the local
consensus state, with respect to the rate of convergence to the
global convergence state of the original network G. The second
phase consists in determining an auxiliary graph Gaux that con-
nects, depending on the topology of the original graph, selected
nodes of the subgraphs above. The consensus state determined on
this auxiliary graph is the same, up to a certain tolerance, of the
one determined in the original network G (details are provided in
Section 6). In a similar way as in Boyd et al. (2004), we ground our
analysis on the upper bound (3) about the distance from the local/
global consensus state. Indeed, that formula is used to determine
the rate of convergence to the global/local consensus state on each
graph/subgraph considered, and on the auxiliary graph. In the last
two cases, of course, the matrix P, the number of nodes N and the
vectors ( )x 0 and ( )x t in (3) have to be replaced by the corre-
sponding expressions valid for each subgraph Gm and for the
auxiliary graph Gaux. In the remaining of the work, beside the al-
ready-introduced notation μ( )P , we use the notations μ( )Pm and
μ( )Paux to indicate, respectively, the second-largest eigenvalue
moduli of the transition probability matrices Pm and Paux. Some-
times, the short-hand notations μ, μm and μaux are used instead of
μ( )P , μ( )Pm , and μ( )Paux .

Concluding, we aim at exploiting (3) to find subgraphs with
“good” spectral properties, i.e., with fast convergence rate to each
local consensus state. A similar remark holds for the auxiliary
graph. In more details, starting from the connected agents’ net-
work G, we aim at dividing it into different connected subgraphs
Gm, with a smaller second-largest eigenvalue modulus μ( )Pm than
the one μ( )P associated with the original network. In fact, the
smaller μ( )Pm , the faster the convergence rate to the local con-
sensus state. In particular, on each subgraph we estimate the time
needed by the agents involved in that subgraph to reach the local
consensus state up to a certain tolerance, using the upper bound in
(3). After each subgraph has reached a sufficiently good approx-
imation of its local consensus state, an auxiliary network with a
number of nodes equal to the number of subgraphs previously
generated is created. To each node of the auxiliary graph, we as-
sociate an initial opinion proportional to the approximate local
consensus state previously computed, inserting the number of
nodes of the corresponding subgraph inside the proportionality
factor. The consensus problem is now considered on the auxiliary
graph, and the upper bound in (3) (stated in this case in terms of
the second-largest eigenvalue modulus μ( )Paux ) is used now to
evaluate the convergence rate to the consensus state of the aux-
iliary graph. The whole procedure is such that this is the same, up
to a certain tolerance, as the consensus state of the original graph
(see Section 6 for details).

It follows from spectral graph theory arguments that “good”
spectral properties needed for a successful application of the
hierarchical consensus method are expected in the case of “dense”
graphs/subgraphs (see Section 3 for the details). Concerning the
first phase, in Sections 5 and 5.1 we describe two clustering
techniques useful to divide the graph into many “dense” sub-
graphs; the first one consists in applying a technique known as
spectral clustering, which is briefly reviewed in Section 5, while
the second one, called nearest supernode approach, is proposed
specifically for the hierarchical consensus method. Before doing
this, in the next section we provide a more technical motivation of
such a method, using spectral graph theory arguments.
3. Spectral graph theory arguments supporting the hier-
archical consensus method

Spectral graph theory (Chung, 1996) is concerned with the
analysis of graphs in terms of spectral properties of associated
matrices, such as the adjacency matrix and the Laplacian matrix
(Chung, 1997). In particular, it studies the relation between graph
properties and the spectrum of the normalized Laplacian matrix
Lnorm, defined as follows. Given a matrix ∈ ×W N N of non-negative
weights (weight matrix), one defines at first the weighted degree
dW i, of the generic node i of the graph G as = ∑ =d W .W i j

N
ij, 1 The

weight matrix W possibly contains self-loops, i.e., there could be
indices i for which >W 0ii . In the following, we assume

> ∀ = …d i N0, 1, ,W i, . Then, the elements of the matrix Lnorm are
defined as follows:

=

− =

− ≠

⎧
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L

W
d

i j

W

d d
i j

1 , if ,

, if .
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ii

i

ij

i j

norm,

Equivalently, in terms of the diagonal weighted degree matrix DW

(whose diagonal elements are the dW i, 's), one has

= − ( )
− −

L I D WD . 4ij W Wnorm,

1
2

1
2

A basic property of the matrix Lnorm is that it is symmetric and
positive-semidefinite, and its eigenvalues, ordered non-decreas-
ingly, satisfy ξ ξ ξ≤ ( ) ≤ ( ) ≤ … ≤ ( ) ≤L L L0 2N1 norm 2 norm norm . Moreover,
the multiplicity of 0 as an eigenvalue of Lnorm is equal to the
number of connected components of the graph G. In the specific
case of the consensus problem, one has W¼P, and DW¼DP is the

×N N identity matrix. Hence, (4) reduces to = −L I Pijnorm, , and the
eigenvalues of the two matrices are related through

ξ λ( ) = − ( ) = … ( )−L P i N1 , for 1, , . 5i N inorm

Hence, the second-largest eigenvalue modulus μ( )P of the matrix P
can be expressed as

{ }μ ξ ξ( ) = − ( ) − ( ) ( )P L Lmax 1 , 1 . 6N2 norm norm

In practice, one can often simplify formula (6), restricting the at-
tention to the second-smallest eigenvalue ξ ( )L2 norm of the nor-
malized Laplacian matrix Lnorm. Indeed, when

ξ ξ− ( ) ≥ − ( )L L1 1N norm 2 norm (which is always the case when
ξ ( ) ≥L 12 norm ), one can define a new transition probability matrix ′P ,
whose elements are related to those of P as follows (see also
Chung, 1997, Section 1.5):

′ =
=

≠

⎧
⎨⎪
⎩⎪

P
P i j

P
i j

2 , if ,

2
, if .

ij

ii

ij

For the associated normalized Laplacian matrix ′Lnorm, one obtains



Fig. 1. For a simple example: the subgraphs and the auxiliary graph determined,
respectively, in the first phase and in the second phase of the hierarchical con-
sensus method investigated in the paper. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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ξ ( ′ ) = ξ ( )L L
2 norm 2

2 norm and ξ ( ′ ) = ξ ( )LN
L

norm 2
N norm , and finally, for the sec-

ond-largest eigenvalue modulus μ( ′)P of the matrix ′P , one gets the
expression

μ ξ ξ ξ

ξ

( ′) = − ( ′ ) − ( ′ ) = − ( ′ )

= −
( )

( )

⎧⎨⎩
⎫⎬⎭P L L L

L

max 1 , 1 1

1
2

. 7

N2 norm norm 2 norm

2 norm

Summarizing, apart from a possible replacement of P with ′P ,
formulas (6) and (7), combined with formula (3), show that the
rate of convergence to the consensus state increases when in-
creasing the second-smallest eigenvalue ξ ( )L2 norm of the normal-
ized Laplacian matrix. In the following, we report two basic results
from spectral graph theory that provide insights about graphs/
subgraphs for which ξ ( )L2 norm is large (“good” spectral properties)
or it is small (“bad” spectral properties). As explained later, such
insights are essential for the effectiveness of the hierarchical
consensus method.

The first basic result from spectral graph theory needed in the
following is Cheeger's inequality (Chung, 1996) (see the next for-
mula (9)), which provides lower and upper bounds on ξ ( )L2 norm .
Given a subset of nodes S (with ∅ ≠ ≠S V ) of the graph associated
with a weight matrix W, and the complementary set of nodes
′ = ⧹S V S, one denotes the sum of the weights of all the edges
joining nodes in S with nodes in ′S by ( ′) = ∑

′∈ ∈W S S W, i S j S ij, .

Moreover, one defines the volumes of S and ′S as
( ) = ∑ ( ′) = ∑

′∈ ∈S d S dvol , volW i S W i W j S W j, , (in the specific case W¼P,

one has ( ) =S SvolP and ( ′) = ′S SvolP ). Then, Cheeger's constant is
defined as

{ }Φ( ) = ( ′)
( ) ( ′) ( )≠∅

W
W S S

S S
min

,
min vol , vol

.
8S V W W,

Finally, Cheeger's inequality3 states the following:

Φ ξ Φ( ) ≤ ( ) ≤ ( ) ( )
W

L W
2

2 . 9

2

2 norm

Cheeger's inequality allows one to identify easily some kinds of
graphs for which ξ ( )L2 norm is small. This happens, e.g., when the
graph G is made of several “clusters” of nodes (i.e., subsets of nodes
for which the sum of the weights of the edges connecting nodes in
the same subset is large, but the sum of the weights of the edges
connecting nodes in different subsets is small), and these clusters
have comparable and sufficiently large volumes. Indeed, in this
case, choosing the set S of nodes to be equal to one of the clusters,
one gets a small value of ( ′)W S S, , whereas { }( ) ( ′)S Smin vol , volW W

is large. Hence, for this kind of graph, Cheeger's constant Φ( )W is
small, and ξ ( )L2 norm is small, due to (9). It is worth noting that this
argument does not apply when there is only one such cluster.

We now introduce the second basic result from spectral graph
theory, which is useful for the motivation of the hierarchical
consensus method. To do this, one defines at first the diameter

( )Gdiam of the graph G associated with the weight matrix W as the
maximum over the lengths of all the shortest paths between any
pair of nodes, where the length of each path is defined as the sum
of all its weights. Then, the second basic result is the following
lower bound on ξ ( )L2 norm (Chung, 1997, Chapter 1)4:
3 In Chung (1996), Cheeger's inequality is stated and proved at first for the case
of unweighted graphs without self-loops, then it is extended to the present case of
weighted graphs, possibly containing also self-loops.

4 Chung (1997, Chapter 1) provides the proof of the bound (10) for the case of
unweighted graphs without self-loops, but the proof technique and the result ex-
tend directly to the case of weighted graphs, possibly with self-loops.
ξ ( ) ≥
( ) ( ) ( )

L
G G
1

diam vol
.

10W W
2 norm

From (10), one can infer that, ( )GvolW being the same, ξ ( )L2 norm has
a larger lower bound when G is “dense”, i.e., it is a single “cluster” of
nodes, for which ( )GdiamW is small.

Concluding, Cheeger's inequality (9) and the bound (10), com-
bined with formulas (3), (6) and (7), show that, in order to achieve
a fast convergence to the global/local consensus state, one should
avoid, e.g., situations in which the graph/subgraph is made of two
or more clusters “poorly” connected (i.e., such that the sum of the
weights of the edges connecting them is small), since in this case,
the second-smallest eigenvalue of the Laplacian matrix (hence the
rate of convergence to the global/local consensus state) is small.
Conversely, a single cluster is more effective. The same kind of
considerations holds for the auxiliary graph.

Fig. 1 illustrates, by a simple example, how these ideas from
spectral graph theory can be applied to the hierarchical consensus
method investigated in this paper. In the situation described in the
figure, the convergence to the consensus state of the original
graph (the one in the upper left corner) is slow. In fact, the in-
formation related to the different opinions flows slowly, e.g., from
the group of agents in light blue and either the group of agents in
orange or the one in dark blue, since these groups are poorly
connected to the former (indeed, there is only one edge among the
dark blue/orange agents and the light blue ones). However, ex-
tracting a set of denser subgraphs may lead to a faster convergence
rate to the local consensus state in each subgraph, since in that
case the information would flow faster than in the original graph
(for the example considered, the ideal case would be associated
with the extraction of the three subgraphs shown with different
colors in Fig. 1). Then, in the specific case, the second phase deals
with a small and sufficiently dense auxiliary graph, for which the
rate of convergence to the associated consensus state is fast.
4. Clustering techniques used by the hierarchical consensus
method

In this section, we describe two techniques (i.e., spectral clus-
tering and the nearest supernode approach) that we exploit to
identify clusters of nodes, a problem whose importance for the
first phase of the hierarchical consensus method has been illu-
strated in Section 3. We introduce the following notation. We in-
dicate with M the number of subgraphs we intend to generate in
the first phase, using either spectral clustering or the nearest su-
pernode approach in the first phase of the method. Thus, from the
original network G, we determine M different subgraphs Gm with

= …m M1, , . As already mentioned, the goal of the hierarchical
consensus method is to generate the subgraphs Gm in such a way
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that the rate of convergence to the local consensus state inside
each subgraph is faster than the one to the global consensus state
in the original graph G. It is worth remarking that, by construction,
also the auxiliary graph Gaux is expected to be dense. Indeed, due to
(10), its volume is equal to the number of subgraphs (hence, it is
small when this number is small), whereas its diameter is ex-
pected to be small, due to the rule used for the construction of its
edges (which is detailed in Section 6).

The choice of the two clustering techniques described in the
following subsections reflects this goal, since they are expected to
generate dense subgraphs/auxiliary graph, and is motivated as
follows. In more details, spectral clustering has been chosen be-
cause of its connection with spectral graph theory, which moti-
vates the hierarchical consensus method itself, as shown in the
previous section. More precisely, the optimization problem solved
by spectral clustering (see, e.g., von Luxburg, 2007, formula (11)) is
a relaxation of another optimization problem (called Ncut mini-
mization, see, e.g., von Luxburg, 2007, formula (7)), which is
strongly related to properties of the normalized Laplacian matrix
of the graph, and is formulated in terms of quantities appearing,
e.g., in Cheeger's inequality (9). However, spectral clustering pre-
sents also some drawbacks in the case of a “large” graph, since it
requires the knowledge of the whole graph, and solving the as-
sociated optimization problem becomes increasingly difficult as
the size of the graph grows. Hence, the (less computationally ex-
pensive and more distributed) nearest supernode approach has
been adopted in the paper as a possible way to solve these nega-
tive issues.
5. Spectral clustering

Spectral clustering (see von Luxburg, 2007 for a tutorial) is a
method able to determine clusters inside a graph, by exploiting
the eigenvalues and eigenvectors of the normalized Laplacian
matrix Lnorm of the graph G.5 As shown in von Luxburg (2007), if a
connected component has a structure with k “apparent” clusters,
the first k eigenvalues of the normalized Laplacian matrix are close
to 0, while starting from the ( + )k 1 th eigenvalue, their values are
in general significantly larger than 0.6 Without going into details,
the algorithm works as follows. Starting from a weight matrix W
and the number k of clusters that are supposed to be present in the
graph, one computes orthogonal eigenvectors …u u, , k1 associated
with the first k eigenvalues ξ ξ( ) … ( )L L, , k1 norm norm of the normalized
Laplacian matrix. Then, one subsequently builds a matrix ∈ ×U N k

containing the vectors …u u, , k1 as columns and, for each
= …i N1, , , associates the ith node of the graph with the i-th row

of U. Finally, the points so-obtained are clustered through the k-
means clustering algorithm, which forms the last part of the
method.

Spectral clustering has found several applications in engineer-
ing (Frias-Martinez and Frias-Martinez, 2014; Langone et al., 2015).
For its specific application to the hierarchical consensus method,
spectral clustering requires ones to fix the number of clusters to be
detected, i.e., the number M of subgraphs to be generated in the
first phase of the hierarchical clustering method. If one has some
prior knowledge about the topology of the original graph, one can
5 There exists also one version of spectral clustering that uses the un-
normalized Laplacian matrix (von Luxburg, 2007), but the focus of the paper is on
the normalized case, due to the results from spectral graph theory presented in
Section 3.

6 This result can be proved, e.g., using matrix perturbation techniques, starting
from the “ideal case” in which the clusters are disconnected, and form k distinct
connected components of the graph (in this case, the eigenvalue 0 of the nor-
malized Laplacian matrix has multiplicity exactly equal to k).
provide to the algorithm the information about the number of
clusters that are expected to exist, and choose this as the number
M of subgraphs to be generated. For our investigation, we intend
to apply spectral clustering to the network of agents by evaluating
the effects of different numbers of subgraphs we require the
method to generate. In fact, in Secton 7, we test the method on
graphs with and without a clear cluster structure; thus, we try
different options for M, in order to find the ones that lead to the
best results.

5.1. Nearest supernode approach

Besides spectral clustering, in the paper we consider also an-
other clustering technique, which is more distributed and less
expensive from a computational point of view. Indeed, especially
for the case of networks with a huge number of agents, the ap-
plication of spectral clustering can be difficult, since this technique
requires the computation of selected eigenvectors of the normal-
ized Laplacian matrix, whose number of elements potentially
grows quadratically with the number of agents. Hence, here we
propose a second clustering method, which we call nearest su-
pernode approach, potentially able to overcome this issue, and to
produce results comparable with the ones achieved by spectral
clustering (a numerical comparison of the two methods, con-
firming this expectation, is reported later in Section 7).

The following rules are used by the proposed nearest super-
node approach to determine suitable subgraphs Gm of the original
connected graph G:

(a) starting from G, one fixes the number M of subgraphs to be
generated;

(b) M nodes, called supernodes, are generated; they are used to
create the subgraphs. These supernodes can be generated ac-
cording to one of the four following procedures: either they
are randomly sampled (without repetition) from the set of
nodes V, or they are selected according to their ranking with
respect to one of the three following node centrality measures.
More precisely, one can consider the first M nodes with the
highest degree, with the highest betweenness centrality, or
with the highest clustering coefficient (see Newman, 2010 for
a detailed description of these node centrality measures);

(c) the set of nodes V is partitioned into two disjoint subsets SN
and ON, where SN is the set of supernodes determined above,
while = ⧹ON V SN is the set containing all the other nodes of
the graph G;

(d) each node ∈i ON is assigned to one or more supernodes, ac-
cording to the following procedure. First, shortest paths (SPs)
(based on the unweighted adjacency matrix of the graph G)
between i and all the supernodes are determined. If i has

( ) =SPlength 1 to only one supernode, then it is assigned to
that supernode. Otherwise, if different supernodes with

( ) =SPlength 1 to i exist, then i is randomly associated with one
of such nearest supernodes. If no supernodes with

( ) =SPlength 1 to i exists, then i is either assigned to the nearest
supernode with ( ) >SPlength 1, if only one such nearest su-
pernode exists, or it is randomly assigned to one of the nearest
supernodes with ( ) >SPlength 1, if more than one such su-
pernode exist. In this situation, all the nodes belonging to the
selected shortest path are associated with the selected nearest
supernode.

It is worth remarking that the procedure presented above as-
signs all the nodes belonging to the set ON to at least one super-
node, since the graph G is connected. Moreover, there are no re-
strictions on the number of nodes assigned to the subgraph as-
sociated with a generic supernode. Thus, subgraphs with possibly
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different numbers of nodes are generated; in general, supernodes
with high centrality are expected to generate subgraphs with
larger numbers of nodes than supernodes with small centrality.
Finally, the procedure just described prevents the subgraphs
generated to be disconnected. This depends on the fact that it
allows some nodes to be possibly shared by different subgraphs.
6. Consensus on the subgraphs and on the auxiliary graph

For each connected graph G, one can apply either clustering
method described in Section 4 to extract the M subgraphs Gm.
Once the subgraphs have been generated, each subgraph evolves
independently according to formula (1) (with obvious changes in
notation, to adapt it to that subgraph7). This phase requires a
number of iterations of (1) sufficiently large to allow all the sub-
graphs to approximate the local consensus state within a desired
accuracy. This number of steps is approximately equal to the one
required by the subgraph ^Gm with the largest value μ( )^Pm among
the second-largest eigenvalue moduli μ( )Pm of all the subgraphs,
because such subgraph is the one with the smallest rate of con-
vergence to the local consensus state (see formula (3)). After the
subgraph ^Gm has reached the desired approximation of its local
consensus state, the second phase of the hierarchical consensus
method starts, by determining an auxiliary graph Gaux with a
number of nodes equal to M (one node for each subgraph). The
nodes in the auxiliary graph are connected depending on the
edges of the original graph. More precisely, two nodes i and j of
Gaux are connected by an edge in Gaux if and only if at least two
nodes of G belonging to the subgraphs associated, respectively,
with i and with j, are connected by an edge in G. Once the auxiliary
graph is built, it also evolves according to formula (1) (again, with
obvious changes in notation, to adapt it to the auxiliary graph),
and an approximation of its consensus state is determined, after
some number of iterations. With a proper initialization of the
states of the nodes belonging to the auxiliary graph (see Section
6.2), this is also an approximation, up to a desired tolerance, of the
global consensus state of the original graph G.

It is worth remarking that when the nearest supernode ap-
proach is used in the first phase of the hierarchical consensus
method, all the subgraphs Gm and the auxiliary graph Gaux are
guaranteed to be connected. Spectral clustering, instead, does not
provide such a guarantee. Nevertheless, when spectral clustering
is used, preliminary experiments have shown that the subgraphs
Gm and the auxiliary graph Gaux are usually connected, at least for
small choices of M.

In the next subsections, we provide a detailed analysis of
conditions under which, the desired approximation of the global
consensus state of G being the same, the hierarchical consensys
method requires a total number of iterations smaller than the one
required by the direct evaluation of formula (1) on the original
graph G. Hereafter, this second procedure is called non-hierarchical
consensus method. Due to the discussion above, we assume in the
analysis that all the graphs/subgraphs are connected.8

6.1. Approximation of the global consensus state through the
7 The possible presence of nodes in common among different subgraphs does
not create problems for the independent evolution of each subgraph according to
the corresponding form of formula (1), since one can associate with each subgraph
an independent copy of each shared node.

8 There is no loss in generality in assuming this because, due to formula (5), for
a disconnected graph/subgraph, the second-largest eigenvalue modulus of the as-
sociated transition probability matrix is equal to 1, which corresponds to a rate of
convergence to the global/local consensus state equal to 0 (i.e., no convergence in
general to such state).
hierarchical consensus method

Since the graphs and subgraphs involved in the hierarchical
consensus method have in general different numbers of nodes, it is
useful to consider in the analysis the ∞l -norm rather than the l2-
norm of the vectors of initial opinions. In this way, the elements of
such vectors are more easily comparable. Moreover, as it is shown
later in Section 6.3, using the ∞l -norm also allows one to translate
some upper bounds valid for the graph G to upper bounds valid for
Gm and Gaux. In order to perform the approximation error analysis
using the ∞l -norm, we recall that, given a generic vector ∈ z N , its
l2-norm and ∞l -norm are related by the following inequalities:
∥ ∥ ≤ ∥ ∥ ≤ ∥ ∥∞ ∞z z N z2 . This, combined with the bound (3),
provides

μ( ) − ( ) ≤ ( )| | ( )
( )∞

∞x t
N

x P V x
1

11 0 0 ,
11

T t
2

2 2

which is the main tool used for the next approximation error
analysis (with obvious changes in notations, similar bounds hold
for each Gm, and for Gaux).

The time needed to reach a desired accuracy in the approx-
imation of the consensus state of the graph G through both the
non-hierarchical and the hierarchical consensus methods is esti-
mated in the following way:

(a) A tolerance ε > 0 is fixed; this tolerance represents, for both
methods, the desired accuracy in the approximation, in the

∞l -norm, of the consensus state of the original graph G.
(b) The number of iterations needed by formula (1) applied to the

original graph G to reach the consensus state up to the
tolerance ε is bounded from above by choosing the smallest
value T of t for which

μ ε( )| | ( ) ≤ ( )∞P V x 0 12t2 2 2

(see formula (11)). Note that, to compute T, here we are
assuming that ∥ ( )∥∞x 0 is known, but we are not assuming
the values of every single element of the vector ( )x 0 to be also
known. This assumption could be relaxed replacing ∥ ( )∥∞x 0 in
(12) with an upper bound. However, as shown later in Section
6.3, this relaxation is not essential for the analysis.

(c) A similar kind of analysis is applied to every single subgraph,
evaluating an upper bound °t1 phase on the number of iterations
needed to reach the local consensus state, in this case up to the
tolerance ε

2
, still with respect to the ∞l -norm. In fact, since the

hierarchical consensus method is made of two consecutive
phases (the first one with each subgraph evolving independently
according to formula (1), and the second one involving the
auxiliary graph), and since the ∞l -norm is used in the analysis,
one can fix a tolerance equal to ε

2
for each of the two phases of

the method, in order to achieve the desired accuracy ε in the
approximation of the global consensus state of the original graph
G. Without a significant loss of generality, as it is detailed later in
Section 6.3, the upper bound °t1 phase can be computed consider-
ing only the behavior of the subgraph with the largest μm.

(d) At time °t1 phase, the auxiliary graph is considered, then the
matrix Paux and the corresponding second-largest eigenvalue
modulus μaux are determined, and an upper bound °t2 phase on
the number of iterations needed to reach the accuracy ε

2
in the

approximation of its consensus state is computed similarly to
items (b) and (c), still with respect to the ∞l -norm. The vector
of initial opinions of the agents associated with the nodes of
the auxiliary graph is constructed in such a way that the
consensus state of such a graph approximates the global
consensus state of the graph G within the accuracy ε

2
(see

Section 6.2 for the precise construction of such a vector of
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initial opinions).

Summarizing, the time needed by the first phase of the hier-
archical consensus method to terminate is equal to °t1 phase, and
depends mainly on the expression μ μ≔ { }= …maxm M mmax 1, , , whereas
the time needed by the second phase to terminate is equal to

°t2 phase, and depends mainly on μaux. It follows that the hierarchical
consensus method has a better performance guarantee than the
non-hierarchical consensus method if the following condition is
met:

+ < ( )° °t t T . 131 phase 2 phase

More details about this comparison are provided in Section 6.3.

6.2. Construction of the vectors of initial opinions, and asymptotic
analysis

In this subsection, we aim at studying the solution computed
by the hierarchical consensus method when the numbers of
iterations of both its phases are sufficiently large (ideally, when
both °t1 phase and °t2 phase tend to infinity, or equivalently, when the
tolerance ε tends to 0), to verify that it can really provide a good
approximation of the global consensus state of the graph G, if the
initial opinions of the nodes belonging to the subgraphs and to the
auxiliary graph are chosen properly.

Since the first phase of the hierarchical consensus method al-
lows for the presence of overlaps of nodes, i.e., it may happen that
the same node is shared by different subgraphs, it is important to
deal with such shared nodes properly (this issue is present only if
the nearest supernode approach is applied in the first phase, since
there are no shared nodes when the spectral clustering is applied).
In the following, we suppose that when evolving each subgraph,
one knows which nodes are shared with other subgraphs, and the
number of such node-sharing subgraphs (this is a mild assump-
tion, since this information could be provided by the agents as-
sociated with the nodes). Denoting by = | |N Vm m the number of
nodes of each subgraph Gm, we define the vectors ( ) ∈ x 0m

Nm

( = …m M1, , ) of initial opinions of the agents belonging to the
subgraphs in the following way. If a component of ( )x 0m (say the p-
th component, denoted by ( )( )x 0m

p ) refers to a node of G which is
not shared with other subgraphs (say the node q), then we set

( ) = ( ) ( )( ) ( )x x0 0 , 14m
p q

where the right-hand side refers to the q-th component of ( )x 0 . It
the node p is shared, say, by Mp subgraphs, then we set

( ) = ( )
( )

( )
( )

x
x

M
0

0
.

15
m
p

q

p

In this way, the opinions of the agents associated with nodes
shared by various subgraphs are rescaled. Now, at the end of the
first phase, when °t1 phase is sufficiently large, one has, for all

= …m M1, , , and for each ith component of ( )°x tm 1 phase ,

( ) ≃
| |

( )
( )

( )
°x t

V
x

1
1 0 ,

16m
i

m
m
T

m1 phase

where 1m denotes a vector of all 1 s, of the same dimension | |Vm as
( )x 0m , and formula (16) holds since (2) can be applied in the

analysis. Hence, the local consensus state of each subgraph is equal
to the average of the initial opinions of the agents associated with
that subgraph, possibly rescaling the values of the opinions of the
agents associated with nodes shared by different subgraphs.9
9 Thus, the local consensus state of a subgraph that shares some nodes with
other subgraphs may be different from its local consensus state in case of no shared
Without loss of generality, in the following we assume that the
supernodes are associated with i¼1 in formula (16).

At this point, at the beginning of the second phase of the
hierarchical consensus method (i.e., at time = °t t1 phase), we define

the vector ( ) ∈° x t M
aux 1 phase of initial opinions of the agents as-

sociated with the nodes of the auxiliary graph as follows:

( ) = | | ( ) … | | ( )
( )°

( )
°

( )
°

⎡
⎣⎢

⎤
⎦⎥x t V

M
N

x t V
M
N

x t, , ,
17M M

T

aux 1 phase 1 1
1

1 phase
1

1 phase

i.e., the opinion of the agent associated with the mth supernode is
rescaled by the factor | |Vm

M
N
. Finally, by a similar analysis, the

consensus state of the auxiliary graph (which is achieved within
an arbitrary accuracy if °t2 phase is sufficiently large) is the average

of such opinions, and is equal to ≃
∑ | | ( )=

( )
°V

M
N

x t

M

m
M

m m1
1

1 phase

= ( )
∑ | |

| |
( )=

x1 0 ,
V

M
N V

x

M N
T

1
1 0

1m
M

m
m

m
T

m1
where the last expression is just

the desired global consensus state of the original graph G.

6.3. Non-asymptotic performance analysis

In this subsection, we provide a non-asymptotic performance
analysis of the hierarchical consensus method (i.e., considering a
finite number of iterations), comparing it with the non-hier-
archical consensus method, and expressing condition (13) in terms
of spectral properties of the graphs and subgraphs involved in the
method. A similar analysis was made in Epstein et al. (2008) for an
analogous hierarchical consensus method developed therein, but
in that case, no spectral graph arguments like the ones provided in
Section 3 of this work were presented as a motivation.

In the following, we investigate the number of iterations nee-
ded by the hierarchical consensus method to reach an approx-
imation of the global consensus state up to the tolerance ε > 0. The
following discussion refers to any among the graphs G, Gm, and
Gaux, although we exemplify it at first by considering the graph G.
Using (11), the minimal number of iterations of formula (1) that
guarantees an approximation of the consensus state up to the
desired tolerance ε > 0 is equal to

( )

ε

μ
=

| | ( )

( )

∞

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
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⎞
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⎫

⎬
⎪⎪

⎭
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V x
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log
.
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Since μ < 1, one gets ( )μ <log 02 , while ε

| | ( ) ∞
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⎝

⎞
⎠log

V x 0

2

2 could either

be positive or negative. In particular, its numerator is positive

when ε > | | ∥ ( )∥∞V x 0 , fromwhich it follows ( ) <

ε

μ

| |∥ ( ) ∥∞

⎛
⎝
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⎟⎟

0
V x

log
0

log

2

2
and

T¼0. Moreover, for the case of a sufficiently small value of ε, one
has ε < | | ∥ ( )∥∞V x 0 (hence, a positive value for T), and (18) be-
comes
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ε
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A similar kind of bound holds, with obvious changes in notations,
for the subgraphs Gm and for the auxiliary graph Gaux. In the fol-
lowing, we always assume that the associated ε is sufficiently
(footnote continued)
nodes.



R. Morisi et al. / Engineering Applications of Artificial Intelligence 56 (2016) 157–174164
small, in such a way that simplifications like (19) can be made. In
particular, for the first phase of the hierarchical consensus method,
one gets
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and, for its second phase,
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At this point, we observe that an advantage of using the ∞l -norm in
the analysis (with respect, e.g., to the l2-norm) is that since the
state vector in (1) is a convex combination of the opinions of the
agents associated with the nodes of the graph, one gets

∥ ( )∥ ≤ ∥ ( )∥ ∀ = … ( )∞ ∞x t x t0 , 1, 2, . 22

This, combined with the (definitions (14), 15), and (17), provides
also the following upper bounds:

∥ ( )∥ ≤ ∥ ( )∥ ∀ = … ( )∞ ∞x x m M0 0 , 1, , , 23m
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which allow one to bound from above °t1 phase and °t2 phase in terms of
∥ ( )∥∞x 0 as follows:
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For ε sufficiently small (in particular, smaller than 1, in such a way
that ( )εlog is negative), the right-hand sides of formulas (19), (25)

and (26) are dominated, respectively, by the terms ( )
( )

ε

μ

log

log
, ( )

( )ε

μ

log

log max
,

and ( )
( )ε

μ

log

log aux
. Then, in this situation, recalling formula (13), the

hierarchical consensus method has a better performance guaran-
tee than the non-hierarchical consensus method when the fol-
lowing condition holds:

( ) ( ) ( )μ μ μ
+ >

( )

1
log

1
log

1
log

,
27max aux

(here, one can notice that all the ratios involved are negative).
Concluding, at least for ε sufficiently small, (27) shows that the

hierarchical consensus method is associated with a better perfor-
mance guarantee than the non-hierarchical one when all the
subgraphs Gm ( = …m M1, , ) and the graph Gaux have better
spectral properties than G. As already mentioned, Section 3 mo-
tivates the use of clustering algorithms to make such subgraphs
and the auxiliary graph has such good spectral properties.
7. Numerical results

In this section, the hierarchical consensus method is applied to
various kinds of connected graphs G, and compared with the non-
hierarchical consensus method. We report several numerical ex-
amples obtained by performing the first phase of the hierarchical
consensus method applying both spectral clustering and the
nearest supernode approach, with the aim of comparing numeri-
cally the two clustering methods used in the first phase. For both
cases, the numerical results are evaluated by considering various
choices for the number M of subgraphs extracted from the original
graph G. The procedure is tested on various kinds of random
graphs. Specifically, we consider, as graph models, the random
geometric graph (Bollobás, 1998), the planted partition model
(Mossel et al., 2015), and the preferential attachment model
(Barabási and Albert, 1999). This last model generates random
scale-free networks, such as the Internet, the World Wide Web,
citation networks, and several real-world social networks. Hence,
our goal is to compare the hierarchical and non-hierarchical con-
sensus methods on different kinds of graphs modeling real-world
networks. When applying the nearest supernode clustering
method, we first fix the number M of subgraphs, then 10 tests are
run for each situation studied. In fact, in the process of generating
the subgraphs via that clustering method, the nodes in ON are
usually assigned randomly to one of the nearest supernodes, un-
less there is only one such supernode. For the nearest supernode
clustering method, the final results reported later in this section
are empirical means and standard deviations over the 10 tests. In
this way, a better comparison is obtained between the two clus-
tering methods. For every kind of graph considered in the nu-
merical comparison, the vector ( )x 0 of the initial opinions of the N
agents is generated as the realization of a random vector, where
each component is drawn i.i.d. from the standard uniform dis-
tribution on the interval ( )0, 1 . The ∞l -norm of this vector is then
used to determine the minimal number of steps of the non-hier-
archical consensus method that guarantees to reach the global
consensus state up to the fixed tolerance ε > 0 (see formula (19)).
It is worth noting that, with this choice of the vector ( )x 0 , one can
bound from above its ∞l -norm by the value 1, without knowing the
specific realizations of its components. Formulas (25) and (26) are
then used for the two phases of the hierarchical consensus
method. Finally, we consider values of ε sufficiently small in order
to neglect the dependence of formulas (19), (25), and (26) on the
number of nodes of the subgraphs/graphs considered, and to as-
sume that the slowest subgraph in the first phase of the consensus
method is the one associated with μmax.

7.1. Random geometric graph

To generate this kind of graph, N points are sampled from a
3-dimensional Gaussian distribution with mean ( )0, 0, 0 and cov-
ariance matrix ∈ ×I3 3 3. A threshold is then applied on the Eu-
clidean distance between every pair of points, connecting the two
points of the pair via an edge of the graph, when the distance is
smaller than the threshold. Two realizations of random geometric
graphs with different numbers of nodes are considered, the first
one with N¼100 nodes, and the second one with N¼300 nodes.
The adjacency matrices of the two realizations are shown in Fig. 2.
In both cases, we fix a tolerance ε equal to 10�6.

When the realization of the random geometric graph with
N¼100 nodes shown in Fig. 2 (a) is considered, the second-largest



Fig. 2. Adjacency matrices of two realizations of a random geometric graph: (a) with 100 nodes; (b) with 300 nodes.
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eigenvalue modulus of the transition probability matrix P asso-
ciated with the graph G is equal to μ = 0.97, while the number of
steps required by the non-hierarchical consensus method to
guarantee the tolerance ε is T¼458. The first phase of the hier-
archical consensus method is performed by considering both
spectral clustering and the nearest supernode approach. In more
details, when spectral clustering is applied, we require the hier-
archical consensus method to extract a number of clusters

∈ { }M 10, 5, 2, 1 , while for the nearest supernode approach we
choose ∈ { }M 20, 10, 5, 2, 1 . We do not require spectral clustering
to determine 20 clusters, because in that case it could create dis-
connected subgraphs. Clearly, for both clustering methods, the
result obtained for M¼1 is the one achieved by the non-hier-
archical consensus method. In the figures, we report also that re-
sult, in order to have a better comparison between the perfor-
mances of the hierarchical and non-hierarchical consensus
methods.

Fig. 3 reports the upper bound on +° °t t1 phase 2 phase derived from
formulas (25) and (26), by varying the number M of subgraphs
considered. For M¼1, formula (19) is applied. On the left, the
figure shows the time needed by the hierarchical consensus
method when spectral clustering is applied during its first phase,
while on the right, the results obtained by the nearest supernode
Fig. 3. Number of steps required to guarantee the desired accuracy ε = −10 6 in the a
consensus methods, for a realization of a random geometric graph with 100 nodes. In
method. In (b): the first phase of the hierarchical consensus method is performed by ap
four different rules described in Section 5.1. (For interpretation of the references to colo
approach are reported. For the spectral clustering, we report on
the x-axis the average dimension of the subgraphs Gm, which is
equal in this case to =h N

M
, since no overlaps of nodes are allowed

by this clustering method. Since both clustering methods require
as an input the number of clusters M one wants to detect, and not
their average dimension, for comparison purposes, we report h on
the x-axis also for the nearest supernode approach. In this case,
since overlaps of nodes are allowed among the different subgraphs
(due to the procedure followed for their construction), the average
dimension of the subgraphs Gm can be larger than h, although this
number can be still considered as an approximate average number
of nodes per subgraph. Of course, the nearest supernode approach
can still create subgraphs even with a number of nodes smaller
than h. The plot on the right shows the empirical mean and
standard deviation, over the 10 tests, of the number of steps re-
quired by the hierarchical consensus method to guarantee the
desired accuracy, when the nearest supernode approach is used in
its first phase. The four types of seeds described in Section 5.1 are
considered in the plot.

Concerning the random geometric graph with N¼300 nodes,
whose adjacency matrix is the one reported on the right in Fig. 2,
one obtains μ = 0.995. The number of steps required by the hier-
archical consensus method to reach the global consensus state up
pproximation of the global consensus state via the hierarchical/non-hierarchical
(a): spectral clustering is used during the first phase of the hierarchical consensus
plying the nearest supernode approach, selecting the supernodes according to the
r in this figure caption, the reader is referred to the web version of this paper.)



Fig. 4. Similar to Fig. 3, but for a realization of a random geometric graph with 300 nodes.

Fig. 5. Adjacency matrices of two realizations of a planted partition model with 100 nodes (a) and with 300 nodes (b). Both graphs have been generated by setting =p 0.2in
and =p 0.01out .
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to the tolerance ε is T¼2543. In Fig. 4 (a), the results obtained
when spectral clustering is applied in the first phase are shown. In
more details, a number of clusters ∈ { }M 30, 15, 6, 3, 2, 1 are
considered. Again, we do not consider a larger number of clusters
(e.g., 60), because that clustering method has problems in de-
tecting small clusters. When the nearest supernode approach is
considered, the number of subgraphs used to divide the original
graph, instead, is ∈ { }M 60, 30, 15, 6, 3, 2, 1 . The plot in Fig. 4
(b) shows the average over 10 tests of the results of each run.
Again, the result corresponding to M¼1 is the one obtained by the
non-hierarchical consensus method.

From the plot shown in Fig. 4, we can infer that, for each type of
seed used, and for each value of h, when random geometric graphs
are considered, the hierarchical consensus method improves the
results obtained by non-hierarchical one. In addition, when a
random geometric graph with a relatively large number of nodes
(300 nodes rather than 100 nodes) is considered, the proposed
nearest supernode approach works often even better than spectral
clustering. Indeed, when small subgraphs are generated (e.g., with
an approximate average number of nodes h equal either to 5 or to
10), and even when the original graph is divided into only M¼2
subgraphs, the nearest supernode approach provides a better
performance guarantee than spectral clustering.
7.2. Planted partition model

The same procedure is applied to a planted partition model.
This is a cluster-exhibiting random graph model, where nodes
inside the same cluster are connected by an edge with probability
pin, while nodes belonging to different clusters are connected with
probability pout. In particular, we follow an Erdős–Rényi model
generating a random graph with N nodes that exhibits two clus-
ters: the first one with N1 nodes, and the second one with N2

nodes. We consider examples with two equally-sized clusters.
Thus, starting from a graph with an even number N of nodes, we
require each cluster to have N

2
nodes.

In the following, we examine two realizations of a planted
partition model, one with N¼100 nodes, and a larger one with
N¼300 nodes (their adjacency matrices are shown in Fig. 5). Both
of them have intra-cluster probability of connection equal to

=p 0.2in , while nodes in different clusters are connected with in-
ter-cluster probability =p 0.01out .

For the example with N¼100 nodes (adjacency matrix reported
in Fig. 5(a)), the results are shown in Fig. 6. In particular, for the
original graph G, the number of steps required to reach an ap-
proximation of the global consensus state up to a tolerance equal
to ε = −10 6 is T¼326, while the second-largest eigenvalue modulus
is equal to μ = 0.96.



Fig. 6. Similar to Fig. 3, but for a realization of a planted partition model with 100 nodes, two equally sized clusters, =p 0.2in , and =p 0.01out .

Fig. 7. Similar to Fig. 3, but for a realization of a planted partition model with 300 nodes, two equally sized clusters, =p 0.2in , and =p 0.01out .
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When the planted partition model with N¼300 nodes (whose
adjacency matrix is shown in Fig. 5) (b) is considered, the second-
largest eigenvalue modulus of the original graph G is equal to
μ = 0.94.

The results achieved by spectral clustering and by the nearest
supernode approach are shown in Fig. 7 (a) and (b), respectively.
When spectral clustering is adopted, the original graph is divided
into a number of subgraphs ∈ { }M 30, 15, 6, 3, 2, 1 ; while when
we implement the first phase of the hierarchical consensus
method by means of the nearest supernode approach, the number
of subgraphs is ∈ { }M 60, 30, 15, 6, 3, 2, 1 .

When dealing with planted partition models, the nearest su-
pernode approach does not work as well as in the case with ran-
dom geometric graphs. Nevertheless, for the example with N¼100
nodes, if the first phase is performed by spectral clustering, we
obtain satisfactory results (as the plot in Fig. 6(a) shows). In fact, in
this case, all the choices for the number of clusters considered to
partition the original graph lead to a better performance with
respect to the non-hierarchical consensus case. As expected, when
the number of subgraphs to be generated is M¼2, the method
obtains the best result. Nevertheless, also the nearest supernode
approach is able to achieve good results, especially when the
clustering coefficient is adopted to select the supernodes, and
subgraphs with a small approximate average number of nodes h
(i.e., either 5 or 10) are considered (plot in Fig. 6(b)).

When a planted partition model with N¼300 nodes is con-
sidered, again, spectral clustering works better than the nearest
supernode approach, although the latter is able to achieve good
results when subgraphs Gm with a sufficiently small approximate
average number of nodes h (i.e., either 5 or 10), are extracted from
the graph G.

7.3. Preferential attachment model

We conclude the numerical comparison of the hierarchical/
non-hierarchical consensus methods by applying them to two
realizations of a preferential attachment model. The graphs are
generated according to the standard ( )G N m, model, where m
(here, chosen to be equal to 2) denotes the number of edges to be
inserted whenever a new node is added to the graph, while for the
number N of nodes, we choose again to test the methods on both a
graph with N¼100 nodes (adjacency matrix shown in Fig. 8(a))
and one with 300 nodes (whose adjacency matrix is reported in
Fig. 8 (b)).

For the example with N¼100 nodes, the second-largest ei-
genvalue modulus of the transition probability matrix associated



Fig. 8. Adjacency matrices of two realizations of a preferential attachment model: with 100 nodes (a); with 300 nodes (b).

Fig. 9. Similar to Fig. 3, but for a realization of a preferential attachment model with 100 nodes and m¼2.

Fig. 10. Similar to Fig. 3, but for a realization of a preferential attachment model with 300 nodes and m¼2.
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with the original graph G is μ = 0.99, while the number of steps
required by the non-hierarchical consensus method to reach the
global consensus state up to a tolerance equal to ε = −10 6 is T¼937.
The results obtained by applying the hierarchical consensus
method are shown in Fig. 9.

Finally, we perform the same numerical investigation for the
example with N¼300 nodes; the adjacency matrix is shown in
Fig. 8(b). For this example, the second-largest eigenvalue modulus
of the transition probability matrix of the original graph G is
μ = 0.99, while the number of steps needed by the non-hier-
archical consensus method to reach an approximation of the glo-
bal consensus state equal to ε = −10 6 is T¼1005. The results ob-
tained by applying the hierarchical consensus method im-
plemented both via spectral clustering and via the nearest super-
node approach are shown in Fig. 10.

When the preferential attachment model is considered, the
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hierarchical consensus method shows some problems with both
the clustering methods adopted during its first phase, especially
for the example with 300 nodes, modeling the case of a graph with
a sufficiently large number of nodes. Nevertheless, when the
smaller graph with 100 nodes is considered, good results are ob-
tained. In particular, the nearest supernode approach with sub-
graphs associated with a relatively small approximate average
number of nodes h is able to improve the performance with re-
spect to the non-hierarchical consensus method. In addition, as
the plot in Fig. 9(b) shows, the best results are obtained when the
clustering coefficient is used for the generation of the supernodes.
8. Drawbacks and refinements of the basic version of the
method

In the previous section, we have applied the hierarchical con-
sensus method to different kinds of graphs, using two clustering
methods for the extraction of the subgraphs Gm in its first phase. In
this section, first, we analyze a factor, which we will call antenna
effect, that is shown to influence strongly (and negatively) the
results achieved by both clustering methods adopted to perform
the first phase. Then, we propose a possible way to overcome that
effect.

8.1. The antenna effect

In this subsection, we analyze the performance of the hier-
archical consensus method when subgraphs Gm containing one
node with degree equal to 1 are generated. We refer to this kind of
situation by the term antenna effect. To simplify the theoretical
analysis, we consider here the case of a graph like the one shown
in Fig. 11 (a), which is made of a complete subgraph (in this case,
made of − =N 1 4 nodes) connected by a single edge to another
node with degree equal to 1. We call this kind of graph basic an-
tenna effect model with N nodes. In the next subsection, we also
investigate numerically other kinds of graphs showing the occur-
rence of the antenna effect.

We aim at studying the spectral properties of the basic antenna
effect model, exploiting Cheeger's inequality (see formula (9)). We
briefly recall from Section 3 that this inequality provides a lower
and an upper bound on the second-smallest eigenvalue ξ ( )L2 norm of
the normalized Laplacian matrix Lnorm of a weighted graph, which
possibly contains self-loops. As shown in Section 3, if a (doubly
stochastic and symmetric) transition probability matrix P (or ′P ) is
used as the weight matrix, ξ ( )L2 norm is strongly related to the rate of
convergence to the consensus state associated with the graph.
More precisely, the larger ξ ( )L2 norm , the larger such a rate of
convergence.

Now, we aim at studying theoretically how the eigenvalue
ξ ( )L2 norm is influenced by the occurrence of the antenna effect. To
Fig. 11. (a) A nearly complete graph with one node attached to only a single node
of the complete part (basic antenna effect model); (b) one choice for the subset S
made to determine an upper bound on Cheeger's constant for the basic antenna
effect model.
do this, we exploit Cheeger's inequality to find an upper bound on
ξ ( )L2 norm for the basic antenna effect model with ≥N 2 nodes. For
our investigation of the antenna effect, we do not need to compute
exactly Cheeger's constant appearing inside Cheeger's inequality
(which is a combinatorial problem, see formula (8)), but we limit
to find an upper bound on it.

We recall that in the (proposed version of the) hierarchical
consensus method, the matrix P is computed following the pro-
cedure described in the Appendix. Thus, to each edge of G one
associates in P a weight w (ϵ according to the notation used in the
Appendix), while a self-loop with weight − wd1 i is associated in P
to every vertex i, where di is the corresponding degree. Now, for
the basic antenna effect model, the largest degree ( )d Gmax in the
graph is achieved by the only node of the complete part of the
graph which is connected to the node of degree 1, and is equal to

−N 1. Hence, since the weight of each self-loop has to be non-
negative and smaller than or equal to 1, one obtains the bounds

≤ ≤
− ( )w

N
0

1
1

. 28

Moreover, choosing the set S in the definition of Cheeger's con-
stant as in Fig. 11(b) and using (8), one gets

{ }Φ( ) ≤
−

=
( )

P
w

N
w

min 1, 1
.

29

This, combined with formulas (9) and (28), provides the following
upper bound on ξ ( )L2 norm for the basic antenna effect model with

≥N 2 nodes: ξ ( ) ≤ ≤ −L w2
N2 norm

2
1
. Hence, we can conclude that,

for N sufficiently large, such a graph model has a very small value
of ξ ( )L2 norm , and also the rate of convergence to its consensus
state10 is very small. It is also worth mentioning, instead, that, for

≥N 3, the complete subgraph with −N 1 nodes inside the basic
antenna effect model (i.e., the subgraph obtained disconnecting
the node with degree 1, and replacing the weight − ( − )N w1 1 of
the self-loop of the attached node with − ( − )N w1 2 ) has11

ξ ( ) = ( − ) · −
−

= ( − ) ( )L N w
N
N

N w2
1
2

1 , 302 norm

whose maximum value is

ξ ( ) = −
− ( )L

N
N

1
2 312 norm

when w achieves its maximal admissible value
−N
1

2
. When N is

large, (31) simplifies to ξ ( ) ≃L 12 norm . Hence, we can conclude that
the presence of the additional node in the basic antenna effect
model can decrease significantly the value of the second-smallest
eigenvalue of the normalized Laplacian matrix.

From the analysis presented above, we can conclude that
in situations for which the first phase of the hierarchical consensus
method can produce subgraphs showing the antenna effect, it is
better to keep the average number of nodes of such subgraphs
small. This explains why, in the numerical results presented in
Section 7, good results have been obtained several times when,
e.g., subgraphs with a small approximate average number of nodes
h (i.e., either 5 or 10), have been considered.

To support the theoretical analysis just presented, in the next
subsection, we also investigate from a numerical point how the
spectral properties of a graph can be influenced by the antenna
effect.
10 In case the basic antenna effect model is one of the subgraphs determined in
the first phase of the hierarchical consensus method, this is the local consensus
state of that subgraph.

11 Formula (30) is provided, e.g., in Chung (1997, Lemma 1.7) for the case
=

−
w

N
1

2
(no self-loops), whereas its extension to the presence of self-loops is

straightforward.



Fig. 12. A complete subgraph (a) and a sparser one (b), both connected to an additional node via one edge.
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8.2. Numerical examples related to the antenna effect

In the following, we examine two trivial examples of graphs
presenting the antenna effect. Their adjacency matrices are shown
in Fig. 12; in particular, on the left in the figure, we consider a
graph made of a complete subgraph with 10 nodes connected via
one edge to an additional node with degree equal to 1; while the
plot on the right shows the adjacency matrix of a random geo-
metric subgraph (sparser than the complete one) with 50 nodes in
total, again connected via one edge to an additional node with
degree equal to 1.

We perform the following experiment. First, we consider the
original graph (either the complete one with 10 nodes, or the
sparser one with 50 nodes), and we compute the second-largest
eigenvalue modulus of its associated transition probability matrix
P. Then, we connect the additional node to one selected node of
the original graph, and we compute the second-largest eigenvalue
modulus of the transition probability matrix P associated with the
resulting graph. We repeat this procedure selecting each time a
different node of the original graph, then we compare the result-
ing second-largest eigenvalue moduli. To do the comparison, we
compute the transition probability matrix P in two ways: first,
using the method described in the Appendix, then solving the
FMMC problem, which determines the optimal (i.e., smallest) va-
lue for the second-largest eigenvalue modulus when considering
Fig. 13. Second-largest eigenvalue modulus of the transition probability matrix P associa
node (reported on the x-axis) of the complete subgraph in Fig. 12 (a): (a) generation of P
the FMMC problem.
the non-hierarchical case. In this way, we avoid the possibility that
an increase of the second-largest eigenvalue modulus obtained
after the insertion of the additional node has to be ascribed to the
particular method adopted to determine the transition probability
matrix P.

Concerning the first example (the one reported in Fig. 12(a)),
the second-largest eigenvalue modulus obtained before the in-
sertion of the additional node is approximately equal to 0, for both
the methods adopted to determine the matrix P. When the addi-
tional node is inserted (connecting it every time with a different
node of the original graph), one obtains a remarkable increase in
the value of the second-largest eigenvalue modulus. Fig. 13 shows
the results: on the left, it reports the second-largest eigenvalue
modulus of the matrix P computed through the method described
in the Appendix, whereas on the right, it shows the results ob-
tained by solving the FMMC problem. The latter produces slightly
better results (smaller values of the second-largest eigenvalue
modulus of P), but still in this case, the antenna effect causes a
significantly large value of the second-largest eigenvalue modulus
of P when the additional node is inserted. Due to the nature of the
original graph (i.e., a complete one), it was expected that the re-
sults achieved when the additional node with degree 1 is inserted
do not depend on the selection of the node of the original graph to
which the new node is connected, as Fig. 13 shows.

Regarding the second example (the one reported in Fig. 12(b)),
ted with the graph obtained when a node with degree 1 is connected to a selected
according to the procedure detailed in the Appendix; (b) generation of P by solving



Fig. 14. Similar to Fig. 13, but for the sparse subgraph in Fig. 12 (b).
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the results obtained by applying the same procedure as before are
shown in Fig. 14. In this case, the second-largest eigenvalue
modulus of the matrix P associated with the original graph is equal
to μ = 0.8275, when P is determined following the method de-
scribed in the Appendix. The plot in Fig. 14(a) shows the second-
largest eigenvalue moduli of the transition probability matrices P
associated with the graphs obtained after connecting the new
node to a selected node of the original graph. On the other hand, if
we determine the transition probability matrices by solving the
FMMC problem, we obtain a value of μ equal to 0.5606 for the
original graph, while the second-largest eigenvalue moduli for the
graphs obtained after the insertion of the additional node are
shown in the plot in Fig. 14(b). Again, we can see that the insertion
of the additional node increases significantly the second-largest
eigenvalue modulus, demonstrating also that the antenna effect
can show up also for graphs different from the basic antenna effect
model, possibly containing more than one node with degree equal
to 1.

Finally, we report the results obtained considering a realization
of the planted partition model with N¼100 nodes, =p 0.2in and

=p 0.01out . When dealing with this kind of model, we use the term
“apparent cluster” to refer to each cluster obtained by the model
itself in the “ideal case” =p 1in and =p 0out , while we indicate with
the term “subgraphs” the clusters extracted by the nearest super-
node approach. In particular, to do the following numerical in-
vestigation, we apply the nearest supernode approach by selecting
M¼2 subgraphs and the clustering coefficient as the method to
Fig. 15. Adjacency matrix of a realization of the planted partition model with 100
nodes, =p 0.2in and =p 0.01out .
generate the supernodes. The adjacency matrix of the original
graph is shown in Fig. 15; the second-largest eigenvalue modulus
of the transition probability matrix associated with it and com-
puted following the procedure described in the Appendix is
μ = 0.953.

In Fig. 16, the two subgraphs extracted from the original graph
in the first phase of the hierarchical consensus method are
shown. These subgraphs closely match the apparent clusters of
the model, apart from the presence in the second subgraph of
one node, which belongs to the first apparent cluster, and has
degree 1 in the second subgraph. The second-largest eigenvalue
modulus of the transition probability matrix associated with the
first subgraph is equal to μ = 0.8541 , while the one associated
with the second subgraph is much larger, i.e., it is μ = 0.952 . In
this case, one can see that only one node assigned to the “wrong”
subgraph and whose degree is 1 in such subgraph produces a
significantly large value of the second-largest eigenvalue mod-
ulus of the transition probability matrix associated with that
subgraph. The numerical examples just presented provide an
additional demonstration regarding the possibility of a high
change (particularly, a “worsening”) of the spectral properties of a
graph/subgraph, if one additional node with degree 1 is inserted
into the graph/subgraph. Thus, it is important to avoid the oc-
currence of this phenomenon, when considering the subgraphs
generated in the first phase of the hierarchical consensus meth-
od, because the presence of the antenna effect could limit the
effectiveness of the whole method.

8.3. A possible way to overcome the antenna effect

In this subsection, we discuss a possible way to improve the
results of the hierarchical consensus method, when subgraphs
presenting the antenna effect are extracted from the original graph
during the first phase of the method. The idea is to re-assign the
nodes whose degree is equal to 1 in the subgraphs determined in
the first phase of the method to subgraphs in which their degree
would be higher. More precisely, once the M subgraphs Gm have
been determined, we compute the degree of each node inside
every single subgraph; if a node has degree equal to 1 in the
subgraph it is currently assigned to, we compute its degree as if it
would be re-assigned to any other subgraph, and we finally assign
it to the subgraph where its degree would be maximal. In this way,
we try to avoid the occurrence of nodes with degree equal to 1 in
the subgraphs resulting from this modification of the first phase of
the method. To investigate numerically the effectiveness of the
proposed solution to overcome the antenna effect, we apply it to



Fig. 16. Subgraphs determined by the hierarchical consensus method with M¼2, when the nearest supernode approach is applied, and the supernodes are selected using
the clustering coefficient: (a) first subgraph; (b) second subgraph. The adjacency matrix on the right shows the occurrence of the antenna effect.
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the realization of the planted partition model with N¼300 nodes,
=p 0.2in and =p 0.01out , which has been already considered in

Fig. 7. The results achieved are shown in Fig. 17. The proposed
solution is applied in combination with the nearest supernode
approach, by considering all the four types of methods used to
Fig. 17. Planted partition model with N¼300 nodes, =p 0.2in , and =p 0.01out . In blue
guarantee the given tolerance ε = −10 6 in the approximation of the global consensus s
modified method, in which the nodes with degree 1 in the original subgraphs are assig
caption, the reader is referred to the web version of this paper.)
determine the supernodes. The results obtained by the original
version of the hierarchical consensus method are shown in blue,
whereas the ones obtained by using the solution proposed to
overcome the antenna effect are shown in red. The plots shown in
Figs. 17 highlight that the proposed solution of re-assigning the
: number of iterations required by the original hierarchical consensus method to
tate; in red: number of iterations required to guarantee the same tolerance by the
ned to other subgraphs. (For interpretation of the references to color in this figure
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nodes with degree 1 in the subgraph they are assigned at the
beginning remarkably improves the results. In the example re-
ported, indeed, the number of steps of the hierarchical consensus
method that guarantee the desired accuracy in the approximation
of the global consensus state decreases considerably when it is
combined with the modification proposed in this subsection, for
all the methods used to generate the supernodes (the one based
on the clustering coefficient providing the best results).
12 Another possible choice would be ϵ =
( ) +d G
1

max 1
for every graph/subgraph,

since ( ) ≤ ( )d G d Gmmax max for every subgraph Gm. However, the choice (34) produces
a larger second-smallest eigenvalue ξ ( )L2 norm of the associated normalized Lapla-
cian matrix Lnorm, as it follows from (33).
9. Discussion and conclusions

We have studied the approximation of the global consensus
state of an agents' network through a hierarchical consensus
method, divided into two phases. The goal of the first phase is to
extract, from the original network, several subgraphs with “good”
spectral properties, which guarantee fast convergence rates to
their local consensus states. In the second phase, an auxiliary
graph, derived from such subgraphs, is considered, to find an ap-
proximation of the global consensus state. The method has been
motivated theoretically using spectral graph theory arguments
and also investigated numerically, comparing it with a non-hier-
archical consensus method on different kinds of graphs modeling
real-world complex networks. The results of the hierarchical
consensus method are satisfactory in almost all the cases studied,
showing usually a better performance with respect to the non-
hierarchical consensus method (i.e., a smaller number of iterations
needed to guarantee the same accuracy in the approximation of
the consensus state of the original network), for both the clus-
tering methods used in the first phase (i.e., spectral clustering, and
ad-hoc method, called nearest supernode approach). In more de-
tails, in the experiments conducted, both clustering methods used
in the first phase of the hierarchical consensus method were able
to achieve satisfactory results when realizations of random geo-
metric graphs were considered. Indeed, in these cases, better re-
sults were obtained than the ones achieved by the non-hier-
archical consensus method, as Figs. 3 and 4 show. When realiza-
tions of planted partition models were considered, the results
highlight the fact that, when a cluster-exhibiting original graph
was considered, the hierarchical consensus method implemented
via spectral clustering had better performance than the non-
hierarchical consensus method; while the nearest supernode ap-
proach revealed some drawbacks. Finally, when considering rea-
lizations of the preferential attachment model, both clustering
methods showed problems. Nevertheless, the nearest supernode
approach achieved better results than spectral clustering, and in
some situations it was able to outperform the non-hierarchical
consensus method.

In the paper we have also investigated, both theoretically and
numerically, a phenomenon, called antenna effect, which could
worsen, in some situations, the performance of the hierarchical
consensus method itself. Then, we have suggested a possible way
to overcome the antenna effect, and demonstrated experimentally
its effectiveness. Finally, we have observed empirically that, when
the nearest supernode approach is applied in the first phase of the
hierarchical consensus method, the best results are usually ob-
tained when the clustering coefficient is used for the choice of the
supernodes. In fact, the nodes with the highest clustering coeffi-
cient are expected to be a sort of “centroids” of clusters.

For what concern possible future investigations and develop-
ments, the hierarchical consensus method could be applied to
other kinds of graphs modeling real-world complex networks, and
also to a stochastic version of the consensus problem. Moreover,
from the numerical results obtained, we have observed that none
of the two clustering methods adopted is always better than the
other one. Hence, a possible improvement would be to make the
choice of the clustering method automatic, possibly based on
some a priori knowledge of the structure of the graph. Other
possible improvements concern the development of methods for a
better detection of subgraphs with “good” spectral properties. This
goal could be achieved, e.g., through a more effective generation of
the supernodes, a better assignment of the other nodes to the
supernodes, a dynamic choice of the supernodes in case of their
“bad” initial choice, and the use of splitting/merging clustering
techniques. Moreover, distributed approximate versions of spectral
clustering (e.g., the one developed in Heefeda et al., 2012) could be
used inside the hierarchical consensus framework to overcome the
drawbacks of spectral clustering mentioned in Section 4. Finally, as
another possible development, one could consider a variation of
the hierarchical consensus method, in which there is a continuous
alternation between its two phases.
Appendix A. Determination of the transition probability
matrices

Given a connected graph G, the following method, taken from
Garin et al. (2010), allows one to construct a doubly stochastic and
symmetric matrix P for which convergence to the consensus state
in formula (1) is guaranteed. More specifically, the elements of the
matrix P are defined as follows:
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1
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, where

( )d Gmax is the maximum degree of any node in G. In this way, the
diagonal entries of P are guaranteed to be positive. Equivalently, in

terms of the (unweighted) adjacency matrix { }∈ ×
A 0, 1

N N
of the

graph G (whose generic element =A 1ij if and only if ( ) ∈i j E, ), and
of its diagonal (unweighted) degree matrix D (whose diagonal
elements are the di's), formula (32) can be expressed as

= + ϵ( − )P I A D . The corresponding normalized Laplacian matrix is

= − = − ϵ( − ) ( )L I P A D . 33norm

Since the normalized Laplacian matrix is symmetric and positive-
semidefinite, it follows from (33) that the larger ϵ, the larger the
second-smallest eigenvalue ξ associated with the normalized La-
placian matrix Lnorm. The procedure just described is also used,
with obvious changes in notation, to determine the transition
probability matrices Pm of the subgraphs Gm involved in the first
phase of the hierarchical consensus method, and the one Paux of
the auxiliary graph Gaux. It has to be remarked that all the matrices
Pm are derived starting from submatrices of the same adjacency
matrix A associated with the graph G, although the weights as-
sociated with the self-loops and the choices for ϵmay be different.
Finally, when computing the transition probability matrix asso-
ciated with a generic graph/subgraph, we choose

ϵ =
+ ( )d

1
1

,
34max

where dmax refers to the specific graph/subgraph.12
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