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ABSTRACT
Ferroelectric Random Access Memory (FRAM) by Texas In-
struments (TI) is a non-volatile memory which allows lower
power and faster data throughput compared to other non-
volatile solutions. These features have accelerated the in-
terest in this technology as the future of embedded unified
memory, in particular in data logging, remote sensing and
Wireless Sensor Network (WSN). The application of Model
Predictive Control (MPC) in WSN has gained lot of atten-
tion in the last years and it requires solving convex optimiza-
tion problems in real-time. In this paper several convex op-
timization algorithms have been implemented and compared
on a FRAM-based MSP-EXP430FR5739 node by TI, to eval-
uate its suitability in extending the potentialities of onboard
volatile Static Random Access Memory (SRAM) for embed-
ded optimization-based control.

1. INTRODUCTION

Thanks to the recent advances in a variety of engineering
disciplines, such as system miniaturization, wireless com-
munication and signal processing, WSNs have gained a
lot of attention, in particular in the field of smart envi-
ronments. A sensor node is usually battery-powered and
combines sensing, computation and communication capa-
bilities. Nowadays energy consumption remains as a ma-
jor obstacle for full deployment and exploitation of WSNs
in very different application fields [1, 2]. For this reason
lot of researchers are focused on the low-power circuit de-
sign techniques or the power management approaches to im-
prove node’s power consumption, minimizing for example
the communication’s requirements [3] or focusing on adding
external power sources to the node [4], [5].

Among these approaches, efforts have been made to de-
velop memories for this kind of applications, as the FRAM
by TI, which is competitive with emerging new memory
technologies, but is already commercially available and con-
sidered as the memory of the future due to its ideal prop-
erties [6]. FRAM is a non-volatile memory which com-
bines the speed, ultra-low-power, endurance and flexibility
of SRAM with the reliability and stability of flash memory;
furthermore it allows random access to each individual bit for
both read and write. FRAM technology is particularly suited
in WSNs because, compared to standard flash memory, it has
more than 100x faster write speed while having less than half
the memory access energy per bit resulting in much higher
throughput and less energy per stored bit [7].

In this paper the performance of the FRAM has been
evaluated, focusing on its flexibility in terms of program-
ming and on its write speed. The benchmark consists in the

implementation of convex optimization algorithms on MSP-
EXP430FR5739 Experimenter Board by TI, a development
platform for data logging applications, energy harvesting,
wireless sensing and automatic metering infrastructure. The
aim of the work is to verify the possibility to extend the ca-
pabilities of on-board volatile memory with a non-volatile
support, when the problems to be solved are larger than the
storage space in the volatile support. The choice for the algo-
rithms to implement comes from their application in MPC,
where the control problem requires solving Quadratic Pro-
gramming (QP) in real time. The investigation of MPC for
the FRAM sensor node is motivated by the recent studies
in the applicability of MPC in the context of WSNs, where
the technique has been used for power control to guarantee a
specified Quality of Service (QoS) adapting the transmission
power level which has to be minimized [8]. Furthermore,
MPC has been adopted in WSN for other purposes such as
resources’ allocation and power management in energy har-
vesting [9]. More generally MPC can be thought as a way
of expanding WSN nodes with real-time decision capabili-
ties. The need for a QP solver to be executed at each sam-
pling period has increased the interest in algorithms suited
for embedded applications where the simplicity to code is a
key feature, together with proved guarantees on worst-case
execution time and robustness to low precision arithmetic.
For these reasons, different algorithms have been developed
in the last years and some of them, suitable for embedded
application, have been implemented and evaluated on the de-
vice: Dual Gradient Projection (DGP), the Accelerated Dual
Gradient-Projection (GPAD) [10], Parallel Quadratic Pro-
gramming (PQP) [11] and Alternating Direction Method of
Multipliers (ADMM) [12]. The four algorithms have been
compared in terms of applicability on the FRAM support,
evaluating the speed of a complete SRAM execution and a
complete FRAM one which, in addition to the above men-
tioned benefits, permits the storage of a larger problem on
the selected device (1Kb of SRAM and 16KB of FRAM).
Furthermore the performance of the algorithms have been
detailed in terms of data stored, Time Per Iteration (TPI)
and average total execution time with worst case evaluation.
The paper is organized as follows: in Section 2 the FRAM
technology is detailed; Section 3 defines the formulation of
the problem to be solved together with the algorithms tested
which are briefly summarized. Finally in Section 4 the per-
formance of the algorithms are compared.

2. FRAM TECHNOLOGY

While the benefits of FRAM have been known for many
years, [6], the mass-production of FRAM-based devices has
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begun recently due to the improvements in encapsulation, ro-
bustness to fatigue and access schemes for high density de-
vices, [13–15]. FRAM stores information using the polariza-
tion of ferroelectric thin film placed between two electrodes.
The FRAM cell structure is very similar to that used in of
DRAM, consisting of One Transistor One Capacitor (1T1C)
cell. The dipole orientation, which is the stored information,
can be set and reversed by applying voltage across either line.
The most important feature of the ferroelectric material is
its non-volatility and immunity to magnetic fields. Unlike
widely used non-volatile memory technologies such as EEP-
ROM or Flash memory, FRAM does not require a special
sequence to write data as random access to each individual
bit for both read and write is permitted. The main features of
the ferroelectric memory are briefly detailed in the following
section.

2.1 Speed and Universality
Normally tens of ms to several ms are required to write flash
memory in order to program one data word. In addition, this
time does not include the pre-erasing of the segment to be re-
programmed, which takes several ms. In contrast, FRAM re-
quires only 100ns to program one data word and pre-erasing
is not required. Thanks to this fast write, there is virtually no
interruption of the program execution and a speed close to the
volatile memories such as SRAM allows FRAM to be used
as a unified “memory”, flexible to be partitioned to the needs
of the application, providing more bytes for data (i.e., in data
logging application) or for code (i.e., in complex algorithm
implementation).

2.2 Low Power and Reliability
Reads and writes in FRAM-based devices occur at low volt-
age, just 1.5V , and at very little current; thus a charge pump
in not needed to operate, drastically reducing the power con-
sumption as well as the footprint of the device. For this de-
vices TI guarantee 10 years of operation (virtually unlim-
ited write endurance) and data retention at 85�. Furthermore
FRAM does not suffer from Soft Error, which are flips of bit
states due to external sources.

3. PROBLEM FORMULATION AND
IMPLEMENTED ALGORITHMS

For the convenience of the reader, the convex optimization al-
gorithms considered in this paper for solving the linear MPC
problems are briefly described. In particular, such algorithms
can handle polyhedral constraints and convex quadratic ob-
jective function, resulting in a constrained Quadratic Pro-
gramming (QP) problem of the form:

minimize
z

V (z) =
1
2

zT Qz+qT z

subject to g(z) = Az�b  0
(1)

with z 2 Rn, Q 2 Rn⇥n, q 2 Rn, A 2 Rm⇥n and b 2 Rn. The
dual problem of (1) is given by the following formulation:

minimize
z

F(z) =
1
2

yT Hy+hT y+
1
2

W

subject to y � 0
(2)

with

H = AQ�1AT , h = AQ�1q+b, W = qT Q�1q (3)

where H 2 Rm⇥n, h 2 Rm, y 2 Rm.

Definition 3.1. Let z⇤ and V ⇤ be the optimal solution and the
optimal value for the primal problem (1) and consider two
non-negative constants ev,eg and Z = {z 2 Rn|Az�b  0};
we say that z̄ 2 Rn is an (ev,eg)-optimal solution for (1) if

(4a)V (z̄)�V ⇤  ev

(4b)max
i2N[1,mx ]

[gi(z̄)]+  eg

where [gi(z̄)]+ = max{gi(z̄),0}.

In the following a summary for each QP solver consid-
ered in this paper is provided. The implementations adopted
are optimized for speed execution, storing as much data as
possible to reduce the Time Per Iteration (TPI). The im-
portance of coding details for energy-aware applications has
been addressed in [16].

3.1 Dual Gradient Projection (DGP)
Considering the optimization problem in (1) and its La-
grangian L (z,y) =V (z)+yT g(z), the gradient projection al-
gorithm applied to the dual problem consists in solving the
following equations at every iterations.

zk = argmin
z

L (z,yk) (5)

yk+1 =


yk +

1
L

g(zk)

�

+

(6)

where

L =

s
m

Â
i, j=1

|Hi, j|2 (7)

is the Frobenius norm of H. In this paper a fixed-point imple-
mentation of DGP has been used, presented in [17] where an
inexact DGP method specifically suitable for a fixed-point
implementation has been developed together with detailed
convergence rate analysis (based on [18]).

3.2 Accelerated Dual Gradient-Projection Algorithm
(GPAD)
In [10] an algorithm based on the fast gradient projection
method of [19] has been proposed and applied to the QP
(1). It is particularly tailored for embedded linear MPC with
polyhedral constraints on both inputs and states. An iteration
of the GPAD algorithm is:

wk = yk +b k(yk � yk�1) (8)

zk = argmin
z

L (z,wk) (9)

yk+1 =


w⇤ k+

1
L

g(zk)

�

+

(10)

b k+1 =
k�1
k+2

(11)

This algorithm guarantee a convergence rate of O(1/k2) for
both dual and primal optimality as well as for primal feasi-
bility.
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3.3 Parallel Quadratic Programming (PQP)
The Parallel Quadratic Programming (PQP) method has been
developed in [20] for image processing problems in which a
quadratic minimization program in the non-negative cone is
involved, which is the form of the dual problem in (2). Re-
cently the PQP structure has been exploited for constrained
MPC [11]. Given a generic matrix A, let us define the two
matrices:

[A�]i, j = max{0,�[A]i, j} (12)
[A+]i, j = max{0, [A]i, j} (13)

Furthermore, construct a diagonal matrix W 2 Rm⇥m, com-
puted to guarantee convergence; the choice adopted in [11]
is [W]ii � [H�1]. By taking F =�Q�1AT a PQP iteration is:

h
yk+1

i

i
=

⇥
(H�+W)zk +F�⇤

i
[(H++W)zk +F+]i

[zk]i (14)

3.4 Alternating Direction Method of Multipliers
(ADMM)
ADMM is a simple method for solving large-scale convex
optimization problems and is becoming very popular [21]. In
fact, ADMM offers a solution comparable to other efficient
algorithms in serial regime, but is very popular in distributed
optimization, merging the benefits of augmented Lagrangian
and dual decomposition: the solutions of local sub-problems
are coordinated to find the solution to a larger problem. Con-
sider problem (1) in a version equal to the ADMM standard
form [12], introducing a slack variable x:

minimize
z

V̂ (z) =
1
2

zT Qz+qT z+F (x)

subject to ĝ(z,x) = Az�b+ x = 0
(15)

where F (x) is the indicator function in the non-negative or-
thant. Considering the augmented Lagrangian function in a
scaled form,

(16)
Lr(z,x,u) =

1
2

zT Qz + qT z + F (x)

+
r
2
||Az � b + x + u||22 �

r
2
||u||22

with u = y/r , the scaled ADMM iterations consists on sep-
arating minimization of (16) over z and x into two different
steps and then perform an ascent step on the Lagrange mul-
tipliers y. Thus an ADMM iteration consists in:

(17a)zk+1 = argmin
z

Lr(z,xk,uk)

(17b)xk+1 = argmin
z

Lr(zk+1,x,uk)

(17c)uk+1 = uk + r ĝ(z,x)

4. RESULTS
In this section the results of the implementation of the al-
gorithms in Section 3 are collected. The experimental setup
consists of a MSP-EXP430FR5739 programmed with USB
interface via Code Composer Studio 5. The MSP430FR5739

Figure 1: The experimental setup, with MSP-
EXP430FR5739 device and oscilloscope to capture the
time needed by the different solvers tested.

integrated microcontroller has a 16-Bit fixed-point RISC ar-
chitecture with a system clock up to 24-MHz and a memory
composed of 16KB FRAM and 1KB SRAM. The algorithms
have been compared in terms of memory allocation and ex-
ecution time over the two different memories. Random gen-
erated QP problems have been used to test the algorithms;
different sizes of QP have been tested considering n 2 [2,10]
and m 2 [4,20]. The experimental setup for the evaluation of
performance is shown in Figure (1).

4.1 Memory Allocation
Considering n, m defined as in equation (1) and the algo-
rithms’ implementations as described in Section 3, the mem-
ory occupancy relationships in terms of stored data can be
compared as in Figure 2. For embedded application, a static
memory allocation is preferable and all the algorithms have
been coded with this shrewdness. Figure 2 gives a qualitative
comparison in terms of bytes allocated by the algorithms in
relation with the size of the problem: the horizontal plane in
each graph represents the 1Kb limit of the SRAM memory
of the device; as has been prove in the next section, the size
of the problem can be extended involving the FRAM without
compromising the performances of the algorithms. Using the
proposed implementation Figure 2 shows that the PQP algo-
rithm stores more data than the other implementations which,
are seen to be approximately comparable.

4.2 Execution Time
The four algorithms have been tested comparing a complete
execution on the SRAM support and a complete execution
on the FRAM support. To evaluate the execution time, as we
are in the order of microseconds, software-based methods
have been avoided and a pin toggle has been used instead
with an oscilloscope. By default the CCS compiler stores
the variables defined as constants in the FRAM support, and
the others in the SRAM; to force a complete execution on
SRAM is sufficient to avoid the definition of constant vari-
ables, whereas a complete FRAM execution needs different
steps. A new area of FRAM must be defined by modifying
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Figure 2: Memory Allocation for the Optimizazion Algo-
rithms

the system memory map and a new memory section has to
be created inside the previously defined memory area. Fi-
nally the definition of the variables have to be included in
an environment as in Code 1. A part from this basic steps,
the variables can be used with the simplicity of a SRAM as
the writing and reading phase from FRAM support is totally
transparent.

Figure 3 shows the Time Per Iteration (TPI) benchmark
of the four algorithms. The TPI is a deterministic evalu-
ation of the embedding capabilities of an algorithm. As
the selected platform provides a 32-bit Hardware Multiplier
(MPY), sums and multiplications are easily performed by the
device. GPD, GPAD and ADMM are substantially compara-
ble; GPD and ADMM show equal computation time, GPAD
exhibits a slight increase in time and finally PQP shows the
worst performances respect to other algorithms (this is due to
the necessity of several divisions). Figure 3 shows the com-
parison between the execution time on SRAM and on FRAM
for each algorithm. The results show that the time needed by
a complete FRAM execution is comparable to that needed
by the volatile memory, thus it is observed that FRAM can
be used to deal with larger problems without noticeable de-
crease in performance. For each graph in Figure 3 the exe-
cution on SRAM stops when no more space is available on
volatile memory; as expected from memory allocation re-
sults, PQP can solve only smaller problems with respect to
other algorithms. Figure 4(a) shows the mean time needed
(over 1000 testing problems per dimension) to solve QPs of
different sizes, considering the FRAM execution; Figure 4(b)
presents the worst case with the same testing problems.

The results for both memory allocation and execution
time can be summarized as follows:

• A complete execution on the FRAM is comparable with
that on SRAM, so the non-volatile memory can be used
to store and solve larger problems;

• The PQP algorithm stores a greater amount of data com-
pared to the other three algorithms which are substan-
tially comparable;
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Figure 3: Time Per Iteration Benchmark between SRAM and
FRAM Execution: the SRAM plots stop when there is no
more space available.

• ADMM, GPAD and GPD result to be particularly suited
to be executed on the embedded platform, thanks to the
simplicity of the operations involved;

• ADMM outperforms the other algorithms (also for the
worst case) with a combination of low TPI and the lowest
number of iterations needed; only the GPAD remains a
good alternative;

It is important to note that the good performance of the
ADMM algorithm is deeply related on the selection of the
augmenting term r for the Lagrangian. The results presented
in this paper are obtained with a good choice of this factor,
selected empirically.

Code 1: Example of FRAM variable definition
#pragma SET_DATA_SECTION(".fram_vars")
[...variables definition...]
#pragma SET_DATA_SECTION()

5. CONCLUSION

In this paper an MSP430 platform by TI with FRAM memory
technology has been used for a benchmark of iterative solvers
for quadratic programming. The novel non-volatile memory
has been tested in terms of execution speed and compared to
the standard integrated SRAM, showing competitive results
and thus allowing a combined use of volatile and non-volatile
memory to increase the stored problem’s dimensions. The
suitability of the platform for solving optimization problems,
for example in MPC applications for WSNs, has been con-
firmed. The GPD, GPAD, PQP and ADMM algorithms have
been implemented in a speed-aware form on the platform and
compared from both a memory allocation and an execution
time point of view.
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Figure 4: Execution time tested on 1000 random QP per di-
mension with n = x, m = 2x and x 2 [2,10].
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