
MODEL PREDICTIVE CONTROL - IDEAS FOR THE

NEXT GENERATION

A. Bemporad, G. Ferrari-Trecate, D. Mignone, M. Morari, F. D. Torrisi

Institut für Automatik
ETH Swiss Federal Institute of Technology
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Abstract

Mixed Logical Dynamical (MLD) systems are introduced
as a new system type. The MLD form is capable to model
a broad class of systems arising in many applications: lin-
ear hybrid systems; sequential logical systems (finite state
machines, automata); nonlinear dynamic systems, where
the nonlinearity can be expressed through combinational
logic; some classes of discrete event systems; constrained
linear systems. Controllability/verification and observ-
ability of MLD systems and other system theoretic proper-
ties are defined. Tests for these properties are formulated
in the form of Mixed-Integer Linear Programs. Moving
horizon control and estimation strategies with stability
guarantees are proposed. These strategies require the
iterative solution of Mixed-Integer Quadratic Programs.
Several examples communicate the power and versatility
of the proposed framework.

1 Introduction

Most control theory and tools have been developed
for systems, whose evolution is described by smooth
linear or nonlinear state transition functions resulting,
for example, from differential or difference equations.
In many applications, however, the systems include
discrete components, such as on/off switches or valves,
gears or speed selectors. Discrete characteristics are
also often introduced by the control system or the
specifications which are expressed by a series of if-then-else
rules. Such systems consisting of continuous and discrete
“components” are commonly referred to as hybrid systems.
Hybrid systems arise in a large number of application

†The full version of this paper will appear in at-
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areas, but our understanding of these systems is rather
limited at present. In practice the control of hybrid
systems is left to schemes based on heuristic rules inferred
from practical plant operation. For the time being, the
most common analysis tool is exhaustive simulation.

The premise of the work described in this paper is
that all questions and problems related to hybrid systems
are inherently difficult because of their combinatorial
nature. Consequently all useful techniques must involve
significant off-line and/or on-line computation. Against
this background we introduce a new system type, Mixed
Logical Dynamical (MLD) systems. We argue that
many practical problems can be represented in MLD
form. Control, estimation, and verification of MLD
systems require the solution of Mixed-Integer Linear
(or Quadratic) Programs (MILPs or MIQPs). Because
efficient techniques not only for MILPs but also for
MIQPs are becoming available, computation power is
increasing, and mixed integer problems can be efficiently
parallelized, this new approach holds much promise for
tackling realistic size problems.

2 Mixed Logical Dynamic (MLD)
Systems

Any modeling framework for hybrid systems must be a
compromise which circumvents some of the complexities
and leads naturally to the formulation of analysis and
controller synthesis techniques which are manageable for
practical problems. Our formulation is motivated by the
following considerations.

• Limiting the formalism to discrete time is not
overly restrictive from a practical point of view
because of the sampled-data nature of the control
systems, which determine the evolution of these
hybrid systems.

• We restrict the dynamics to be linear with the



exception that some of the state variables are binary.
This greatly simplifies the analysis, but nevertheless
permits the description of a broad class of systems.

By following standard notation (Williams 1977, Cava-
lier et al. 1990, Williams 1993), we adopt capital letters
Xi to represent statements, e.g. “x ≥ 0” or “Temperature
is hot”. Xi is commonly referred to as a literal, and has
a truth value of either “T” (true) or “F” (false). Boolean
algebra enables statements to be combined in compound
statements by means of connectives: “∧” , “∨”, “∼” ,
etc. One can associate with a literal Xi a logical variable
δi ∈ {0, 1}, which has a value of either 1 if Xi =T, or 0
otherwise.

As we are interested in systems which have both logic
and dynamics, we wish to establish a link between the
two worlds. In particular, we need to establish how
to build statements from operating events concerning
physical dynamics. The key idea is to use techniques
described, for example, in (Williams 1993, Cavalier et
al. 1990, Raman and Grossmann 1992) to transform
propositional logic into mixed-integer linear inequalities,
i.e. linear inequalities involving both continuous variables
x ∈ Rn and binary/logical variables δ ∈ {0, 1}.

The resulting Mixed Logical Dynamic (MLD) Systems
are described through the following linear relations

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) (1a)

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) (1b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (1c)

where

x =

[
xc
x`

]
, xc ∈ Rnc , x` ∈ {0, 1}n`, n , nc + n`

is the state of the system, with the xc components
continuous and the x` components 0-1 . The outputs y
and the inputs u are partitioned similarly. The auxiliary
logical and continuous variables are represented by δ ∈
{0, 1}r` and z ∈ Rrc , respectively.

The justification for the MLD form is that it is capable
to model a broad class of systems arising in many
applications: linear hybrid systems; sequential logical
systems (finite state machines, automata); nonlinear
dynamic systems, where the nonlinearity can be expressed
through combinational logic; some classes of discrete
event systems; constrained linear systems. Here the
terms “combinational” and “sequential” are borrowed
from digital circuit design jargon. More importantly,
the MLD formalism leads to the formulation of various
verification, control and estimation problems in terms
of MILPs or MIQPs, for which efficient algorithms are
available. These problems have not been successfully
addressed by other tools or only with a much higher
computational effort. In a sense the ends justify the means
here.

(0,0,0) (1,0,0)
δ1

(1,1,0)

(1,1,1)

Figure 1: Convex hull of the rows of the truth table of
X3 = X1 ∧X2

In (Bemporad and Morari 1999) some examples are
described of basic systems that can be expressed in the
MLD form, such as linear systems with output nonlinear-
ities, discrete inputs, qualitative outputs, bilinear systems,
piece-wise linear systems, and automata driven by events
on continuous dynamics.

2.1 Transformation into MLD Form

The transformation of propositional logic problems into
equivalent sets of linear inequalities is not unique. For
instance in (Cavalier et al. 1990) the approach above is
compared with the approach which utilizes conjunctive
normal forms (CNF). It is clear that a proper processing
of the propositional logic problem might produce large
benefits for the numerical solution of the mixed integer
program, which results in the analysis as well as controller
and estimator synthesis problems for MLD systems.

Recently, we succeeded (Mignone et al. 1999) in
developing the following very effective method which
generates a set of linear inequalities corresponding to
any complex logical expression without introducing any
auxiliary variables. First, for each expression Xn =
F (X1, X2, . . . Xn−1) the truth table is calculated, showing
the result Xn for each possible combination of values for
X1, X2, . . . row by row. We proved (Mignone et al. 1999)
that the polytope P obtained as the convex hull of the
points defined by the rows of the truth table describes
the logical expression with a minimal number binary
variables. For example, the four rows of the truth table
for X1 ∧X2 = X3 define the points and the convex hull in
Fig. 1. Even though the generation of the truth table and
the computation of the convex hull is time consuming, it
can be performed offline.

Many algorithms and computer codes exist for deter-
mining the convex hull from a general set of points. For
a detailed survey of these packages, the reader is re-
ferred to http://www.geom.umn.edu/software/cglist/

ch.html. Modifications are necessary for our problem,



because often the points defined by the truth table lie in
a proper subspace, a case not dealt with by these general
algorithms.

The transformation of first principles hybrid system
descriptions into MLD form requires the application of
a set of given rules, like the transformation technique
just described. It is lengthy and tedious and is therefore
a task that is preferably automated. Therefore a
compiler has been developed (Anlauff et al. 1999) that
produces the matrices A, Bi, C, Di and Ei in (1).
The problem specification language to the compiler is
HYSDEL (HYbrid System DEscription Language).

3 Theoretical Properties of Mixed

Logical Dynamic Systems

In principle, the inequality (1c) might be satisfied for
many values of δ(t) and/or z(t). In order to define
trajectories in the x and y-space for system (1), we
wish that x(t + 1) and y(t) are uniquely determined
by x(t) and u(t), i.e., that the system is well posed
(for a formal definition see (Bemporad and Morari
1999)). Typically, when the model derives from a
real system, there is no need of checking for well-
posedness. Because the transformation into MLD form
is not unique it is conceivable that the MLD system is
not well posed. Therefore, a simple numerical test for
checking this property has been developed and is reported
in (Bemporad and Morari 1999). It is based on a feasibility
check of an MILP.

Needless to say, well-posedness is a minimal requirement
for the MLD description to be meaningful. For control,
however, reachability and controllability must also be un-
derstood. For the construction of estimation procedures,
reconstructibility and observability are important proper-
ties. Finally, we have to define what we mean by stability
and we need a technique for assessing stability for a given
MLD system.

These questions are inherently difficult. Consider
the problem of reaching a target set from a set of
initial conditions (reachability/controllability). In the
hybrid systems literature, this is exactly what is called
a formal verification problem, which has been shown to
be undecidable in general (Alur et al. 1993, Kesten et
al. 1993).

However, some progress has been made in addressing
these questions (Bemporad et al. 1999c). To illustrate the
ideas and the unusual behavior which can occur we will
briefly discuss our work on observability here.

We adopted the concept of incremental observability
from (Keerthi and Gilbert 1988, Rao and Rawlings 1998).
Incremental observability must be tested on a case-by-
case basis. No structural properties have emerged at this
point. Even for a piece-wise linear systems, a special
case of an MLD system, the “observability index” is not
related to the order of the constituting linear systems

as is the case for LTI systems. Also the combination
of observable LTI systems into a piecewise linear system
is not necessarily observable. The reverse does not hold
either. The combination of LTI systems which are by
themselves not observable may be observable (Bemporad
et al. 1999c).

4 Control

4.1 Optimal Control of MLD Systems

For an MLD system of the form (1), consider the
following problem. Given an initial state x0 and a final
time T , find (if it exists) the control sequence uT−1

0 ,
{u(0), u(1), . . . , u(T − 1)} which transfers the state from
x0 to xf and minimizes the performance index

J(uT−1
0 , x0) ,

T−1∑
t=0

‖u(t) − uf‖
2
Q1

+ ‖δ(t, x0, u
t
0)− δf‖

2
Q2

+

‖z(t, x0, u
t
0)−zf‖

2
Q3

+‖x(t, x0, u
t−1
0 )−xf‖

2
Q4

+‖y(t, x0, u
t−1
0 )−yf‖

2
Q5

(2)

subject to

x(T, x0, u
T−1
0 ) = xf (3)

and the MLD system dynamics (1a), where ‖x‖2Q , x′Qx;
Qi = Q′i ≥ 0, i = 1, . . . , 5, are given weight matrices,
and xf , uf , δf , zf , yf satisfy (1) in steady state for
x(t+ 1) = x(t) = xf .

This problem can be solved as a Mixed-Integer
Quadratic Program (MIQP).

4.2 Predictive Control

It is interesting both from a theoretical and a practical
point of view to ask whether an MLD system can be
stabilized to an equilibrium state or can track a desired
reference trajectory via feedback control. Finding such
a control law is not easy, because the system is neither
linear nor even smooth. Model predictive control (Garcia
et al. 1989) provides tools to succeed in this task. In
brief, one has to solve an optimization problem of the
form (2)–(3) at each time step t, by finding an optimal
input sequence {u∗(t+k)}k=0,... ,T−1. Then, only the first
move is applied to the plant, i.e. u(t) = u∗(t+ 0), and the
whole optimization procedure is repeated at time t + 1,
when new measurements x(t+ 1) are available.

By appropriately defining the concepts of equilibrium
and stability for MLD systems, and by using Lyapunov
arguments it can be proven (Bemporad and Morari 1999)
that the control law, obtained by repeatedly solving (2)–
(3) at each time step t, stabilizes the system.

From the proof it follows that suboptimal solutions
do not not affect stability, although the performance
deteriorates. This is particularly appealing when the
available computational power does not allow the full
solution of the MIQP problem (2)–(3).



5 Moving Horizon Estimation for
MLD Systems

As shown above, model predictive controllers can be
synthesized for MLD systems (1). The method requires
the solution of an MIQP at each sample time. The dual
problem, i.e. the moving horizon estimation problem can
also be formulated in terms of an MIQP. The goals of such
an estimation can be varied, like state estimation, fault
detection or disturbance estimation. The common feature
in all these problems is the minimization of a quadratic
cost function involving the quantities to be estimated.
Contrary to the control problem, the estimation horizon
extends backwards in time, allowing at time t to estimate
the quantities of interest at times prior to t.

Many techniques for fault detection are modeling faults
as additive unknown inputs affecting a linear system.
Fault detection is then equivalent to determining if
the estimated inputs exceed a certain threshold value.
The MLD system framework allows the designer the
formulation of more realistic fault detection problems.
Faults can also be modeled as unmeasured binary
disturbances affecting the system in a multiplicative
manner. A faulty actuator, for example, is represented
much more accurately in this manner.

The dynamics of the system in the presence of each
fault is assumed to be known. After the described
transformation steps to bring the system into the MLD
form, one finds that for fault detection the MLD model (1)
should include three unmeasured additive inputs: binary
faults, input disturbances, and output disturbances.
Under certain mild assumptions the stability of the
estimator can be guaranteed (Bemporad et al. 1999b).

6 Computational Aspects

One drawback of the methods summarized in this paper
lies in the complexity of the MILPs and MIQPs that must
be solved. These types of optimization problems exhibit
an exponential increase of the worst case complexity
with an increasing number of binary variables. However,
this does not necessarily preclude the application of the
method. For instance, if we use branch and bound
methods (considered widely to be best for these types of
problems (Fletcher and Leyffer 1995)) the solution time
can vary considerably according to the tree exploring
strategy and the branching variable selection rule.

We have experimented successfully with a strategy
which assumes that the binary variables change only
infrequently over the considered time horizon (Bemporad
et al. 1999a). This assumption is particularly good, when
the binary variables represent faults that do not occur
very often and that are usually not recoverable. Finally, as
mentioned above, for control purposes it is not critical to
find the global optimum to guarantee stability, a feasible
suboptimal solution suffices.

CPLEX (ILO 1997) is the most widely used commercial
code for solving MILPs. We have used the research codes
by Fletcher and Leyffer (Fletcher and Leyffer 1995) and by
Sahinidis (Ryoo and Sahinidis 1996) to solve the MIQPs
arising in the optimal control and estimation problems.
There the key is to pair an efficient sparse QP code for
the relaxed problems with a good tree exploring strategy.

7 Examples

The following examples are chosen to communicate the
power and versatility of the proposed framework. More
examples can be found in (Bemporad and Morari 1999)
and (Bemporad et al. special issue at ECC 1999d).

7.1 Predictive Control

Consider the following piecewise linear system with input
and state constraints:

x(t+ 1) = 0.8

[
cosα(t) − sinα(t)
sinα(t) cosα(t)

]
x(t) +

[
0
1

]
u(t)

y(t) = [1 0]x(t)

α(t) =

{
π
3 if [1 0]x(t) ≥ 0
−π3 if [1 0]x(t) < 0

x(t) ∈ [−10, 10]× [−10, 10]
u(t) ∈ [−1, 1]

(4)

The condition x1(t) ≥ 0 can be associated with a binary
variable δ(t) such that

[δ(t) = 1] ↔ [x1(t) ≥ 0] (5)

and the system (4) can be rewritten in MLD form as
described in (Bemporad and Morari 1999).

For this system we applied the model predictive control
scheme described in section 4 to solve a regulation
problem. In order to stabilize the system to the origin,
the feedback control law resulting from the optimization
(2) is adopted, along with the horizon T = 3, and the
steady state values uf = 0, δf = 0, zf = [0 0 0 0]′,
xf = [0 0]′, yf = 0. For details about the interpretation
of the auxiliary variables zf we defer to (Bemporad and
Morari 1999). Fig. 2 shows the resulting trajectories for
the states, the control action and the binary variable δ.
The trajectories obtained by solving the control problem
at time t = 0 are also shown as thin lines in the plots.

7.2 Fault Detection

7.2.1 Model of Three Tank System

The three tank system represented in Fig. 3 has been
adopted recently as a standard benchmark problem for
fault detection and reconfigurable control (Lunze 1998,
Berec and Tesař 1997). Here we report a simplified
physical description of the system (more details can be
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Figure 2: Closed-loop regulation problem for system (4).
Closed-loop trajectories (thick lines) and optimal solution
at t = 0 (thin lines).

found in (Dolanc et al. 1997)). We denote by Q1 and
Q2 the input flows to the system. QijV k are the liquid
flows between the tanks, as indicated in Fig. 3. Note for
instance, that Q13V 1 is zero, if both liquid levels h1 and h3

are below the valve height hv. QN3 is the nominal outflow
from tank 3 and QL1 is a possible leak of tank 1. From
the conservation of mass in the tanks we obtain a set of
differential equations.

V1 V2

V13 V23

VL1 VN3

hV

h3

h1

Q1 Q2

Q23V2

Q23V23

Q13V1

Q13V13

QL1 QN3

h2

Figure 3: COSY Three-Tank Benchmark.

In this model all valves are of the on-off type. A
switching controller for valve V1 is used to keep the liquid
level in tank 3 at some desired value. Tank 2 is only used
for reconfiguration purposes. The MLD description can be
readily derived according to (Bemporad et al. 1999b). The
following two types of faults are considered: The fault φ1

denotes a leak in tank 1 and the fault φ2 implies that valve
V1 is blocked closed. Note that the failure of valve V1 is
modeled as a multiplicative fault. In Fig. 4 we simulated
the occurrence of the faults at different times.

Both faults are detected correctly with a few time steps
of delay. Note however that during the startup there
are a few false alarms of fault φ2, i.e. blocking of valve
V1. These wrongly detected faults are due to the fact,

0 20 40 60 80 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
measured output

time

y 1, y
2

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
estimated output

y ha
t1

, y
ha

t2

0 20 40 60 80 100
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
state estimation error

time

e ha
t1

, e
ha

t2

0 80
0

1

The estimated fault φ
1
(t−1|t)

φ 1

0 20 40 60 80
0

1
The estimated fault φ2 (t−1|t)

time

φ 2
ˆ

ˆ

Figure 4: Simulation of a leak in tank 1 (φ1) from t = 20
until t = 60, and a blocking valve (φ2) from t = 40 until
t = 80.

that the level in tank 1 has not yet reached the height
of valve V1. Therefore no liquid can pass through V1,
which is indistinguishable from a blocked valve V1. To
avoid this problem it is very natural to formulate the
clause [h1 ≤ hv] ⇒ φ2 = 0. This is just an additional
constraint that can be added to the other constraints of
the optimization problem. With this correction, the fault
estimates are free of any errors, as can be seen in Fig. 5.
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Figure 5: The same simulation as in Fig. 4, with the
requirement [h1 ≤ hv]⇒ φ2 = 0.
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