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Abstract

This paper combines predictive control and set-
membership state estimation techniques, for input/state
hard constraints fulfilment. Linear systems with unknown
but bounded disturbances and partial state information
are considered. The adopted worst-case approach guar-
antees that the constraints are satisfied for all the states
which are compatible with the available information and
for all the disturbances within the given bounds. A
stability result and simulative studies are reported.

1 Introduction

Two features frequently arise in many practical control
problems: the necessity of satisfying input/state con-
straints and the presence of disturbances. In recent years,
several control techniques have been developed which are
able to handle hard constraints, see e.g. [1]. In partic-
ular, in the last decades industry has been attracted by
predictive controllers [2]-[5]. These approaches are based
on the so called receding horizon strategy. This consists
in determining a wirtual control input sequence that opti-
mizes an open-loop performance function, according to a
prediction of the system evolution over a semi-infinite pre-
diction horizon. Then, the sequence is actually applied to
the system, until another sequence based on more recent
data is newly computed. The involved prediction depends
on the current state, the future state disturbances, and
the selected control input. Several strategies, which have
been developed for deterministic frameworks [6]-[9] can
be applied by neglecting the presence of the state distur-
bances over the prediction horizon. However, this does not
guarantee that state related constraints are actually satis-
fied. More recently, [10]-[12] and [13] have indipendently
developed computationally efficient techniques for solving
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constrained problems, by manipulating the reference tra-
jectory. In particular, in [13] constraint fulfilment is also
guaranteed in the presence of state disturbances. How-
ever, these techniques require full state measurements.
When these are not available, it is common practice to pro-
vide the predictor with an estimate generated by a state
observer, e.g. a Kalman filter, but again, no guarantee of
constraint fulfilment holds.

This paper copes with both the presence of state
disturbances and full state information unavailability.
We assume that the uncertainties acting on the system
(state disturbances and output noises) are unknown but
bounded. We adopt a worst-case approach, which entails
in: 4) considering the effect of the worst state disturbance
sequence over the prediction horizon; ) handling state
unavailability by using the so-called set-membership state
estimation [14]-[15]. This considers the state uncertainty
set, i.e. the set of all the state vectors compatible with the
model equations, the initial uncertainty, the disturbance
bounds and the available output measurements. Due to
the tremendous amount of calculations required by the
updating of the state uncertainty sets, many recursive
approximation algorithms, based on simple regions in the
state space, like ellipsoids [14]-[17], or limited complex-
ity polytopes [18], have been proposed in the literature.
In this paper, we adopt the minimum volume parallelo-
topic approximation developed in [19]-[20]. The resulting
set-membership estimation algorithm is particularly ap-
pealing for predictive control, as it presents both good
approximation capabilities and reasonable computational
complexity.

2 Problem Formulation and Assumptions

Consider the following linear discrete-time time-invariant
system

z(t+1) Ax(t) + Bu(t) + £(t)
Cz(t) + Du(t) + ((t)

Gx(t) + Hu(t)

(1)



along with a desired output reference r(t) € RP, where the
state z(t) € R™ is supposed to be not directly measurable,
u(t) € R™ is the control input, y(¢) € R? the measured
output, £(t) € R™ the state disturbance, ((t) € RP the
output noise, and ¢t € Z; = {0,1,...}. We assume that
both £(¢) and ((¢) are unknown but bounded

& &) <&, (2)
G oSG <G (3)
or, in a more compact form, £(¢) € E, ((t) € Z, Vt € Z,

and = and Z are given . We assume that system (1)
satisfies the following

1=1,...,n

1=1,...,p

Assumption 1 A is asymptotically stable.

This assumption is not restrictive, since frequently (1)
represents a precompensated feedback system.

The problem is to generate the control input u(t) so as
to constrain the vector c(t) € R/

c(t) e C, (4)

where C is the convex polyhedron
()

without affecting the original tracking properties of the
system. W.l.o.g., we consider

C={ceR": Acc<B.}, B. €R,

and rewrite (5) as

C={[z' ) eR"™™: Az + A'u < B.} (6)
where ’ denotes transposition. Hereafter, we shall assume
that

Assumption 2 C is bounded.

According to the above setting, at a generic time ¢ the
available information on the state vector z(t) is given by
the model equation (1), the bounds on the state distur-
bances (2) and the output noise (3), and the observed mea-
surements y(k), k =0,1,...,¢. Let us denote by X™*(¢1]t2)
the state uncertainty set of all state vectors at time ¢,
compatible with the information available at time to. If
the a priori information set X*(0] — 1) is bounded and
contains the initial state 2(0), then the state uncertainty
sets are provided by the following recursion

X (t)t)
Xt+1)t) =

A (tlt — 1) N &7 (1)
AxX*(tlt) @ {Bu(®)} ® E

where
X, (t) ={z € R": y(t) — Cx — Du(t) € Z}

is the set of states compatible with the single measure-
ment y(¢), and & denotes the vector sum of sets. It is

clear that the complexity of X*(¢|t) and X™*(t+ 1|t) grows
with ¢, and therefore it is common practice to approximate
these sets by simpler regions, the so-called set-valued esti-
mates X (t|t) and X (¢|t + 1) respectively. In the following,
the set-valued estimate involved in the optimization pro-
cedure at time ¢ will be X (¢t — 1). This means that the
input at time ¢ will be computed on the basis of the avail-
able information up to time t — 1, so that the required
computations can be performed over one full sample in-
terval.

In order to use efficient optimization procedures, we
adopt the strategy proposed in [9] by limiting to N, the
number of control degrees of freedom. This entails in
coping with a finite dimensional optimization vector

v(N, — 1)
V= : e RNvm
v(0)
and then considering, as virtual control input sequence,
its constant extension over a semi-infinite horizon

Sy = {v(k)}lo
which is obtained by setting

v(k)=v(N, —1),Vk >N, -1, k€ Zy . (7)
In the following, we shall indicate with c(¢t + k,z,V, Kx)
the constrained vector at time ¢ + k, predicted at time ¢,
according to model (1), initial state € X (¢|t — 1), future

state disturbances Ky € Z,

E(t+k—1)
K :

£(t)
R {IC/C GRkn : ICk,i S [{Z_,&f]},
and by setting u(t + k) = v(k), Vk € Z.

We wish to select a performance function J(¢,V) in such
a way that the minimization of J(¢,V) w.r.t. V ensures
good tracking properties. In the predictive control litera-
ture, it is common use to weight the sum of the predicted
tracking error squares over a semi-infinite horizon, which
makes the performance function depend on the current
state 2(t). On the other hand, we have assumed that z(t)
is not available. In the present worst-case formulation, a
possible solution consists in defining

J(t,V) = max {Z|y(t+k,m,V,lCoo)

e e X(tt—1)
Koo € Zoo k=0

—r(@®)E, + VI3, }

where Yy, T, > 0, and HyHQTJ =y'Y,y. However, a con-
trol law based on such a cost function would require the



solution of a very complex constrained min-max optimiza-
tion problem at each time step ¢t. In order to sidestep these
difficulties, we adopt the following function

J(tV) = g tllv(k) -
|C(I — A)~'Bu(N, — 1)

v(No = D)7, +
—r®)l%,,

Notice that no feedback term is present in (8). Since as
explained later the constraints involved in the minimiza-
tion of (8) depend on the current set-valued state esti-
mate X (t|t — 1), feedback will be present only when the
constraints are active. This should not be considered as
a drawback, since noise and unmodeled dynamics effects
rejection can be achieved by designing a precompensator
and then labeling as (1) the resulting closed-loop system.

At each time t, the selection of the optimal vector V;
proceeds as follows. Denote by Q(¢) the set of all vectors
V leading to feasible evolutions of the constrained vector,

(8)

Q(t) {y e RN ™ c(t+k,z,V,Ky) €C,
Ve e X(tt—1), VKi € B, Vk € Z4 }.

9)
If Q(¢) is nonempty, define

V; =arg min J(¢,V)

veQ(t) (10)

Then, denoting by V} the extension of the previous opti-
mal vector V;_1, i.e.

Ut—l(Nv — 1) Ut—l(Nv — 1)
Utfl(Nv — 2) Utfl(Nv — 1)
Vg = : , th — | ve—1(Ny —2) ,
’Ut_l(l)
’Ut_l(O) ’Ut_l(l)
we set
V. — Vi ifQ(t);é(Z)andJ(t,Vt*)<J(t,th)—
"7 V! otherwise

(11)
where ¢ = min{p1J(t,V}), p2), and p1, p2 are fixed ar-
bitrarily small scalars. Then, according to the receding
horizon strategy described above, we set

u(t) = v(0). (12)

The entire procedure is then repeated at time ¢ + 1.
Finally, in order to complete the above scheme, we make
the following hypothesis on X (0| — 1).

Assumption 3 For the a priori information set X(0|—1)
there exists a finite input sequence V_; such that V!, €

Q(0).

3 Main Results

The optimization problem (10) involves an infinite num-
ber of linear constraints. However, in order to be able

to computationally solve (10) via standard quadratic pro-
gramming tools, a finite number of constraints is desider-
able. Next Theorem 1 shows that this can be achieved by
adding an extra linear constraint on V.

Theorem 1 There exist an index k, > N, and § > 0
such that, if V satisfies

[AZ(I-A)'B+ A*]v(N,—1)<B.—-4§1 (13)
where 1 = [1,...,1]', then V € Q(t) iff
t+kxV,Ky)elC, Voe X(t|t -1
C( + Rz, V, k) y VT (| )7 (14)

VK, € 2, Vk=0,..., ko,

Proof. W.lo.g. set t =0. Let k > N, x € X(0] — 1), and
consider V such that (13) is satisfied, and ¢(h,z,V,K) €

C,Vh=0,...,N,. Consider the prediction of the state at
time k
z(k,z,V,Ky) = Ak Nog(N,, 2, V,Kn, )+
SN AIBY(N, — 1) + SN T Al (R — 1 — )
where
A%z(Ny,x,V,Kn,) + A%(N, — 1) < B,.

By Assumption 2, there exist constants A§ and A¥ such
that

lello < A7 Jull < A%, ¥| ¥ | €.
By letting M and A such that

1A* oo < MAF,

where ||A||o denotes the oco-induced matrix norm, one
gets

k—N,—1

Iy Al

k—N,—1

Y MN[EG) e
=0

IN

IN

k—N,—1
o M -
MNE< ——

where £ = max;_1,_,{max{|¢; |, |£|}}. Being

ZAle -1)

it results, after some calculations

(I — A)~'Bu(N,

||Aw [ k‘ z, V ICk)
< MAZflooN™ = (

M|[A¢]loo
1-\

(I = A~ Bu(N, = D]]|

&+ 11 = A7 Bl Ag) (15)

+ <6,



for

2M || A% | o€

_— 1
0 =z 1—X (16)
k > k"=N,+

log d

Y 2M | Az]|oo (A + (I = A) 1 B[l AY)
(17)

Hence, by (13) and (15),

Az:x(kaxv V?’Ck) + Agv(k)
< A? [a(k,z,V, Ky) — (I = A) ' Bu(N, — 1)]
+B. -1 < B,

or equivalently

[ x(k,z,V,Ky)
v(k)

}EC, Vk > k*

Then, there exist integers k, < k* such that (14) guaran-
tees V € Q(0). O
Notice that (13) imposes that the predicted steady-state
constrained vector, corresponding to the constant input
level v(N, — 1), lies inside C by at least a fixed distance
away from the border. Then, by virtue of Assumption 1,
this implies that, after a finite transient, all the trajec-
tories of the constrained vector will be inside C. In the
following we will assume that the set defined by the in-
equality (13), with ¢ as in (16), is nonempty, and hence
the existence of feasible solutions V is allowed.

Next Theorem 2 describes the asymptotical behaviour
of the overall control scheme.

Theorem 2 Consider system (1) and a sequence of ap-
prozimated state uncertainty sets {X(t|t — 1)}2,. Let
r(t) =r, Vt > t, € Zy. Then, the control strategy (10)-
(12), based on the optimization of the performance func-
tion (8) in the presence of constraints (9) and (13), guar-
antees stability of the overall control loop.

Proof. Omitted due to lack of space. O

4 Constrained Optimization Algorithm

In this section, we derive the solution of the constrained
optimization problem posed in Section 2. The control
algorithm must perform two main tasks:

i) updating the approximated state uncertainty set
X(tt —1);

ii) performing the constrained optimization (10) with
the additional constraint (13).

In this paper, we will consider parallelotopes [19] as
approximating regions for the state uncertainty sets.

Definition 1 Let a nonsingular matriz T € R™™*™ and a
vector & € R™ be given. Then

PT,2)={z: =32+ Ta,|alle <1}

defines a parallelotope in R™, with center & and edges
parallel to the column vectors of T .

Recently, a recursive algorithm for the outer approxima-
tion of the uncertainty state set of a linear system through
parallelotopic regions has been proposed in [20]. The re-
cursive approximation is computed according to a mini-
mum volume criterion. At a generic time ¢, the following
two steps are performed

o measurement update: given the parallelotope X (t|t —
1) = P(t — 1), compute the minimum volume paral-
lelotope P outbounding P(t — 1) N X, (t);

e time update: compute the minimum volume paral-
lelotope P(t) outbounding AP & {Bu(t)} @ = and set
X(t+ 1]t) = P(t).

The iterations above are initialized by setting X (0] — 1)
equal to the given a priori information set A*(0] — 1).
The computational complexity of the algorithm has been
proved to be polynomial in the state dimension n.

In order to solve the optimization problem (10), we need
to express the set Q(t) in (9) in terms of the optimization
vector V. By (6), the fulfilment of the constraints c(¢ +
k,z,V,Kg) € C, for every x € X(¢t|t — 1) and Ky € Ey,

over a finite horizon k = 0,...,k,, can be expressed as
AZz(t+ k,z,V,K) + Agv(k) < Be, (18)
Ve e X(tt—1), VKy € Z, VE=10,...,k,
where
a(t + k,z,V,Ki) = A%z + RUMV + RKy, (19)
and
r o= [B AB Ak_lB},
R, = [I, A AR
I,
M = : Om(k—Ny)xm(Ny—1)
I,

Iva

According to (19), after some algebraic manipula-
tions, (18) can be rewritten as

A%z + AV + ASKy,, < B, B e R,
Vo € X(t|t — 1), VKi, € Ek,,

(20)

where h = q(k, + 1), and A* € RM", AY ¢ R>mNo
AS € R o are suitably defined matrices.

Next Lemma 1 shows how to express (20) as a set of
linear inequalities on the optimization vector V.



Lemma 1 Let

V={veR’: Plu< P}, PcR"™ P, cR"

be bounded and nonempty. Denote by [P]* the i-th row of
P and by

max,cy [P]*v
max Pv :=

veV :
max,ey [P)"v

Then, the following sets

D = {weR?: Psu+Pw< P, VveV}
D = {weR“’ : P4w<P5—maxP3v}
veV

with P; € R¥*? P, € R¥>* Py € R*, are equal.

The above lemma proves that ) satisfies the con-
straints (20) iff

max Agle
Kro€Ek,

AV < B — A’z —

max

21
zeX (t|t—1) (21)

Notice that the second term in the RHS of (21) depends on
the current approximated state uncertainty set X (¢t — 1),
and hence it provides feedback from new output measure-
ments. On the other hand, the third term can be com-
puted off-line. Therefore, at each time instant ¢ one has to
solve h linear programming problems in order to compute
the second term in the RHS of (21). Then, the optimum
V can be obtained by solving a quadratic programming
problem with cost (8) and linear constraints (13) and (21).

5 Feasibility and Set-Membership State
Estimation

In this section, we study the conditions which have to
be fulfilled by the approximated state uncertainty set
X (t|t—1) in order to guarantee feasibility. We distinguish
between two different definitions.

Definition 2 A vector V (and its constant extension Sy )
is said to be virtually admissible at time ¢ if it fulfils
constraints (13) and (18) Vx € X(t|t — 1), VK € Ej,
and Vk € Z.

Definition 3 A vector V (and its constant extension Sy )
s said to be actually admissible at time ¢ if, by applying
the command input {u(t+k)}3>, = Sy to system (1), the
corresponding evolution of the constrained vector satisfies
c(t+k)eC,VkeZy.

It is worth pointing out the difference between virtual
and actual admissibility. Whilst virtual admissibility is
an analytical property of vector V, actual admissibility
depends a posteriori on the specific state () and distur-
bance sequence realization {{(k)}72,. Intuitively, if the

approximated uncertainty state set X'(¢|t —1) is too small,
it can happen that the actual state vector z(t) ¢ X (¢|t—1),
and hence an input V is virtually but not actually admis-
sible. Conversely, when X (¢|t — 1) is too large, it may not
exist a vector V that satisfies (18) for every x € X (¢t[t—1).
However, for the particular experiment, actually admissi-
ble vectors ¥V may exist. The result presented in this sec-
tion provide a theoretical ground for the intuitions above.

As the next theorem points out, the relationship be-
tween the true state uncertainty set X*(¢|t — 1) and its
approximation X (t|t — 1) is a key factor for guaranteeing
actual admissibility.

Theorem 3 Suppose that V is virtually admissible at
time t. Then

i) XF(tt—1) CX(tt—1) = S, = {v(k+5)}2,, is
actually admissible at each timet+j, j € Z.

ii) X*(tlt—1) ¢ X(tjt—1) = Sy is not guaranteed
to be actually admissible at time t.

Proof. Omitted due to lack of space. a
An immediate consequence of the above theorem is that
outer approximations of the state uncertainty set must be
chosen in order to guarantee actual admissibility. In fact,
actual admissibility of V(t), Vt € Z., is equivalent to fulfil
constraint (4). Then, an important consequence of the
previous result is the following.

Corollary 1 If X(t|t — 1) D X*(t|t — 1), Yt € Z4,
the control strategy (8)-(13) guarantees that c(t) € C,
Yt € Zy.

Notice that the parallelotopic approach adopted in the
present paper provides an outer state uncertainty set
approximation, and hence the previous corollary holds.

6 Simulation Results

The proposed control strategy has been investigated by
simulations on the following second order discrete time
SISO system

st 41) = 1.6;163 —0.'5866 ()4
0 ] u(t) +£(t) (22)

0.1404 0] x(t) + ((t)

[ 1
yt) = |
[ —1.9313 22121 | x(t),

c(t) =

whose y- and
(dashed lines).

The transfer function from the input u to the con-
strained variable ¢ is underdumped and nonminimum
phase. In order to compress the dynamics of ¢ within
the range

c-step responses are depicted in Fig. 1

C=1[-1,3],
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Figure 1: Closed loop behaviour (thick lines) and uncon-
strained response (dashed lines) for r(¢) = 1.

and make the output y track the constant reference r(t) =
1, we adopt the control law (8)-(13) along with the pa-
rameters ¥, = 1, T, = 0.1, N, = 2, p1,p2 = 0. Also,
we set § =~ 0 and k, = 16, which have shown to guaran-
tee a good constraint fulfilment, even if the conservative
bounds (16)-(17) may not be satisfied. Fig. 1 shows the
resulting trajectories (solid lines) when system (22) is af-
fected by independent randomly generated disturbances
[I€(t)]|co < 0.01 and |¢(t)] < 0.05, for the a priori informa-
tion set X (0] — 1) = 0.25- [-1,1] x [-1,1]. Notice that
the constraints are fulfilled at the price of a slower output
response.

In Fig. 2 the effect of different state disturbance bounds
is investigated. Due to the adopted worst-case approach,
it results that as the size of the disturbance increases, the
constraints are fulfilled in a more conservative way, and
the output dynamics gets slower.
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