
Synthesis of Optimal Feedback Controllers from Data
via Stochastic Gradient Descent

Laura Ferrarotti∗ and Alberto Bemporad∗

Abstract— We propose a policy search method for synthe-
sizing optimal feedback control laws for reference tracking
directly from data. During the learning phase, the control law
is optimized by using stochastic gradient descent iterations
and (optionally) applied to the plant while collecting data.
Differently from model-based methods, in which a full model
of the open-loop plant is first identified from data, here a
simple linear model is recursively identified with forgetting
factor for the only reason of computing approximately the
gradients required for the descent. We report examples showing
that the method recovers the optimal feedback law in case the
underlying plant is linear, and outperforms the best control law
that is achieved by first identifying an open-loop linear model
in case the underlying plant is nonlinear.

I. INTRODUCTION

Data-driven synthesis of control systems has recently
gained increasing popularity within the control community.
The idea is to construct control laws directly from exper-
imental data without going first through the identification
of an open-loop model of the process. In [1] the authors
combine direct data-driven controller synthesis with model
predictive control (MPC) to synthesize optimized control
laws that can handle constraints without the need of a model
of the open-loop process, leaving the nominal model of the
unconstrained closed-loop system as a degree of freedom
in the design. Nonlinear optimization over such a nominal
closed-loop model is proposed in [2] to design optimal
control laws from data. In [3], a model-free approach is taken
by considering a database of past input/state trajectories and
optimizing their linear combination in real-time with respect
to a given performance index.

Reinforcement Learning (RL) also exploits experience
gathered from process/environment interactions to design
optimal data-driven control laws. The close relation between
the design of control laws for continuous state and input
spaces and RL is underlined in [4], using the linear quadratic
regulator (LQR) as a benchmark. In the RL framework, the
key concepts of action and cost (or reward) are mathemat-
ically expressed through the concepts of policy and value
function, respectively. Based on how they treat the policy
and value functions, RL methods are usually categorized
in actor-only methods, critic-only methods, and actor-critic
methods [5]. Critic-only and actor-critic methods calculate
control policies by using an approximation of the value
function, while this is avoided in actor-only methods. A
remarkable example of critic-only method is Q-learning
[6], that requires no model of the system dynamics. When

∗IMT School for Advanced Studies Lucca, Lucca, Piazza S.Francesco
19, 55100 Italy. Email: {laura.ferrarotti,alberto.bemporad}@imtlucca.it

applied to LQR, Q-learning was proved to converge in [7],
provided the persistence of excitation by adding exploration
noise on the control action. Actor-only methods, instead,
avoid giving an overall estimate of the cost-function, as they
work with a parameterized family of policies and search
the optimal policy directly in the policy parameter space;
for this reason they are also called policy search methods.
Using parametrized policies gives one the advantage of
effectively dealing with a continuous set of actions and high
dimensional, including continuous, state spaces [8], [9].

Policy search algorithms can be divided into model-free
and model-based methods. Model-based algorithms use data
collected from the process to learn a model of its open-loop
dynamics, then used for control design. Model-free methods
attempt instead at learning the control policy directly from
collected data; as intermediate policies might be quite off,
additional care must be put during the learning phase to avoid
risky operations on the plant [10], [11].

Solid theoretical foundation, starting from the guarantee
of convergence when applied to LQR, is achieved for algo-
rithms belonging to the subclass of policy search methods
denoted as policy gradient (see [12], [13]). These methods
rely upon optimizing parametrized policies following the
direction indicated by the gradient of the cost-function.
In [14] conditions on the principal policy gradient updates
are given to guarantee convergence to a globally optimal
solution, efficiently with respect to the number of samples
and computational complexity.

In this paper we propose a control design approach that
belongs to the policy gradient family. Our method is not
model-based, in the sense that it does not first identify a
complete model of the open-loop system to then design a
control strategy. Nonetheless, it is not completely model-
free, as it needs to compute simple local linear models that
are estimated on line from the input/output data stream.
The purpose of such local linear models is not to provide
information on the overall dynamics of the plant, that could
be possibly nonlinear, but rather merely to approximate
the gradient of the performance index driving the synthesis
of the control law. Focusing on solving output tracking
problems for arbitrary reference signals, we synthesize the
corresponding control law by learning it iteratively on line
by Stochastic Gradient Descent (SGD) [15], so to optimize
a given performance index that weights tracking errors and
input increments.

The paper is organized as follows. The problem of synthe-
sising optimal policies is formulated in Section II. A detailed
description of the proposed algorithm follows in Section III.

Numerical results related to the synthesis of linear feedback
laws for linear and nonlinear systems are shown in Section
IV. Some final conclusions are drawn in Section V.

Notation. Let Rn be the set of real vectors of dimension
n. Given a matrix A ∈ Rn×m we denote its transpose by
A′. If x ∈ Rn is a vector, then xi is its ith element. Given
a matrix Q ∈ Rn×n, ‖x‖2Q = x′Qx. We denote by I the
identity matrix.

II. PROBLEM FORMULATION

We describe the dynamics of a plant interacting with its
environment by a Markovian signal st ∈ Rns that evolves in
time according to the following (unknown) model

st+1 = h(st, pt, ut, dt) (1)

where pt ∈ Rns is a vector of measured exogenous signals,
ut ∈ Rnu a vector of decision variables, and dt ∈ Rnd
a vector of unmeasured disturbances. The components of st
may include the state xt ∈ Rnx of an (unknown) plant model

xt+1 = f(xt, ut, dt) (2a)
yt = g(xt, dt) (2b)

driven by the command input ut and the disturbance dt, with
output yt ∈ Rny that we want to track a reference signal
rt ∈ Rny . In case the plant is described in input/output form,
st may include a finite set xt of ni past input and no past
output values, xt ∈ Rnony+ninu , that is

xt = [y′t . . . y
′
t−no+1 u

′
t−1 . . . u′t−ni]

′ (3)

along with (2b) and the state-update equation

xt+1 = [g(f(xt, ut, dt), dt+1)′ . . . y′t−no+2 ut . . . u
′
t−ni+1]′

Vector st may also include additional states that one wants to
include in the control policy, such as the integrals of output
tracking errors, as we will show later. The non-Markovian
signal pt ∈ Rnp , that we will model as a random vector,
can represent instead exogenous variables, such as measured
disturbances, time-varying parameters, and/or the reference
signal rt itself.

We define a deterministic control policy π as a function π :
Rns+np → Rnu that associates to each st and pt an action
ut = π(st, pt). In order to define the concept of optimal
policy, we introduce the stage cost ρ : Rns+np+nu → R,
a real-valued function such that ρ(st, pt, ut) represents the
cost of applying the input ut while in (st, pt). Then, for a
given initial condition s0 and values p0, d0, p1, d1, . . . we set

J∞(π, s0, {pl, dl}
∞

l=0) =

∞∑
l=0

ρ(sl, pl, π(sl, pl)) (4)

as the cost of applying the deterministic policy π to (1) over
an infinite time execution, with (sl+1, sl, pl, π(sl, pl), dl) sa-
tisfying (1) for all l. Finally, we characterize the overall cost
of a deterministic policy π by introducing the performance
index

J(π) = ES0, {Pl,Dl}
∞
l=0

[J∞(π, S0, {Pl, Dl})]

where the expectation of J∞ is taken with respect to the
random variables S0 and Pl, Dl, l = 0, 1, . . ., representing
the initial point of the trajectory and the value of signals pl,
dl at step l, respectively.

Our aim is to find a policy π∗ that optimizes

π∗ = arg min
π∈F(Rns+np ,Rnu)

J(π) (5)

where F(Rns+np ,Rnu) is the set of functions of ns + np
real variables taking values in Rnu .

A. Approximation of policy optimization problem

Problem (5) is a general abstract problem of optimal policy
search. In order to find a computable solution to it, in this
paper we make the following approximations:
• We parametrize the policy π by a matrix K of pa-

rameters, K ∈ Rnu×nk , and denote by πK(st, pt) the
corresponding policy.

• We consider a finite trajectory of length L for evaluating
the cost of the policy, i.e., we use

JL(K, s0, {pl, dl}L−1l=0) =

L−1∑
l=0

ρ(sl, pl, πK(sl, pl)) (6)

instead of (4).
Under the above simplifications, problem (5) is approximated
as the following optimization problem

K∗ = arg min
K

E
S0,

{Pl,Dl}
∞
l=0

[
L−1∑
l=0

ρ(Sl, Pl, πK(Sl, Pl))

]
(7a)

with
Sl+1 = h(Sl, Pl, Dl) (7b)

We solve problem (7) using the mini-batch SGD algo-
rithm [15]. The algorithm works as follows: given a function
F (x, y), it attempts computing x∗ = arg minx EY [F (x, Y)]
by updating the candidate solution xt recursively as

xt = xt−1 −
αt
M

M∑
i=1

∇xF (xt−1, yi) (8)

by starting from an initial guess x0. In (8), M is a fixed
number of samples yi of the random variable Y and αt a
positive learning rate. If the learning rate is suitably chosen
and F is convex, xt converges to a neighborhood of a global
minimum x∗ as t→∞. Convergence to the global minimum
is not guaranteed when F is not convex; however, SGD is
widely applied in practice, even in non-convex minimization
problems, especially in machine learning algorithms.

B. Optimal policy search for output tracking

In this paper we focus on an output-tracking task, i.e., we
want to learn a policy that makes the output yt of system (2)
track a reference signal rt, using input/output data only. We
look for an optimal policy minimizing the quadratic stage
cost

ρ(xt, rt,∆ut) = ‖Cxt+1 − rt‖2Qy + ‖∆ut‖2R (9)

where xt is defined in (3) and ∆ut = ut − ut−1 input
increment, that we treat as the new control variable. Matrix
C is such that yt = Cxt. Matrix Qy = Q′y � 0 weights the
tracking error while R = R′ � 0 tracks the control effort. For
offset-free tracking of constant set-points in steady-state, we
take into account the integral term qt+1 = qt+(yt+1−rt) and
we add a penalty ‖qt+1‖2Qq to the stage cost (9), weighted
by a tuning parameter Qq = Q′q � 01. Accordingly, we set

st =

[
xt
qt

]
, pt = rt. (10)

In this paper we focus on the simplest case of a linear
policy parametrization πK

πK(st, rt) = −Ksst −Krrt (11)

although the approach could be immediately generalized to
other parameterizations.

The application of SGD to the output-tracking problem
formulated in (7) requires at each step t a number Ns of
sample values sz0 of the initial state, z = 1, . . . , Ns, Nr
samples of the reference trajectory {rkl }L−1l=0 , k = 1, . . . Nr,
and Nd samples of the disturbance trajectory {dhl }L−1l=0 , h =
1, . . . Nd. In particular, we choose the samples xi0 of the
initial state from past states recorded during the evolution of
the plant, that we store in the dataset

Xt = {x0, x1, . . . , xt} (12)

of states collected until time t2. At each time t we select
N0 vectors randomly from Xt. The reason for this choice
is that we want to pick states for which we know how to
estimate the gradient, using the local model to approximate
(1). Different strategies might be applied here as well.
Then, we combine the initial states xi0 with Nq randomly
sampled values qj0 for the initial integral action value, to
construct Ns = N0 × Nq samples si,j0 . The full sampling
procedure is described in detail in Section III-B.

For each sample (si,j0 , {rkl , dhl }L−1l=0) the SGD update (8)
requires calculating ∇KJL(Kt−1, s

i,j
0 , {rkl , dhl }L−1l=0), which

in turn requires knowing the dynamic relation (1). For the
sole purpose of estimating the gradient ∇KJL we approxi-
mate (1) via the linear model

sl+1 = A(si,j0 , pkl , d
h
l)sl + B(si,j0 , pkl , d

h
l)ul

+ H(si,j0 , pkl , d
h
l)

(13)

In (13) A, B, H are matrices defining a local linear model
that is valid around si,j0 . According to our data-driven ap-
proach, the linearized model in (13) is estimated by recursive
systems identification, as we will detail in Section III-A.
Finally, the direction followed by SGD is

D(K) =
1

N

Ns∑
i=1

Nr∑
k=1

Nd∑
h=1

∇K ĴL(K, si,j0 , {rkl , dhl }L−1l=0) (14)

1A penalty on ut might be easily introduced as well in (9), such as
‖ut − urt ‖2Qu .

2To limit the memory occupancy of Xt, in a practical application we can
maintain in Xt only a subset of representative states.

where ĴL approximates JL in accordance with the local
model (13) associated with si,j0 and N = Ns ·Nr ·Nd.

III. POLICY SEARCH ALGORITHM

Starting from an initial policy parameterization K0, we use
SGD steps as in (8) to attempt finding a solution K∗ of (7).
While searching for the optimal policy, we update the local
linear model (13) recursively to estimate the gradient ∇KJL,
as described in Section III-A. In addition, we consider two
possible settings: an offline setting, in which πKt is not
applied to the process because new experimental data cannot
be collected, and an online setting, in which new data can be
collected. In the latter case, after updating the policy from
Kt−1 to Kt as in (19) we will check if it stabilizes the local
linear plant (16) at time t before applying it to the process, as
described in Section III-C. A summary of the overall method
is given in Algorithm 1.

A. Update of the local linear model

We get a local linear approximation (13)

yt = Θt · [y′t−1 . . . y′t−no u
′
t−1 . . . u′t−ni−1]′ + dt (15)

of the (unknown) system dynamics (2), with Θt ∈ Rny×nx ,
by Kalman filtering (KF) 3, assuming that Θt+1 = Θt + ξt
where ξt is a Gaussian white noise with covariance Qk and
dt in (15) is a a Gaussian white noise with covariance matrix
Rk.

Considering the input/output form with xt as in (3), (15)
can be rewritten in terms of the input increments ∆ut−1 =
ut−1 − ut−2 as yt = Θx

t · xt−1 + Θδu
t ·∆ut−1 + dt, where

Θx
t and Θδu

t are easily obtained from Θt.
By taking into account also the integral action, we finally

set st, pt as in (10) and obtain the linear model approxima-
tion {

sl+1 = Atsl +Bt∆ul + Epl +Ddl
yl = Csl

(16)

where At = [A 0
CA I], Bt = [B

CB], E =
[

0
−I
]
, D = [I0] and

A =
[

Θxt
Ā

]
, B =

[
Θδut

0

]
, C = [I 0 0], being Ā a fixed matrix

containing entries equal to 0 or 1 where appropriate.

B. Gradient estimation and policy update

For each sample (si,j0 , {rkl , dhl }L−1l=0), i = 1, . . . , N0, j =
1, . . . , Nq , k = 1, . . . Nr, h = 1, . . . Nd, the SGD update (8)
requires calculating ∇KJL(Kt−1, s

i,j
0 , {rkl , dhl }L−1l=0).

In order to construct the Ns = N0 × Nq samples si,j0 , we
consider the dataset Xt defined in (12) of past and current
states collected from the plant during the learning phase
and denote by xσt(i) the ith sample chosen from Xt, where
σt(1), . . . , σt(N0) are integers randomly selected between 0
and t. In order to explore the neighborhood of the trajectories
generated by the plant, each state xσt(i) is perturbed by a
(small) zero-mean noise vi, whose components are bounded
in [−vmax, vmax]. Regarding the components of the integra-
tor qt of the output tracking error, we sample Nq samples

3Recursive least squares with forgetting factor could be used here too.

qj0 from a normally distributed random variable with mean
zero and variance σ2

q . Hence, we set vector si,j0 as

si,j0 =

[
xσt(i) + vi

qj0

]
i = 1, . . . , N0, j = 1, . . . , Nq (17)

Regarding the reference and disturbance trajectories, we
assume that each reference trajectory is constant between
0 and L− 1, that is

rkl ≡ rk, l = 0, . . . , L− 1, k = 1, . . . , Nr (18)

where the constant reference values rk are chosen randomly
from the interval [rmin, rmax] of references of interest. The
samples dhl are randomly generated for l = 0, . . . , L − 1,
h = 1, . . . , Nd from a given box [−dmax, dmax]).

Note that when (si,j0 , {rkl , dhl }L−1l=0) are drawn in accor-
dance with given (possibly non-uniform) probability distri-
butions, (14) can be easily extended to include probabilities
of samples.

The analytic gradient of ĴL(Kt−1, s
i,j
0 , {rkl , dhl }L−1l=0) for

each sample is then evaluated using the local linear model
(Aσt(i), Bσt(i)) estimated at the time instant σt(i) in which
the state xσt(i) was visited by the plant. The idea is that
such a model represents the local behavior of system (1)
in a neighborhood of xσt(i). The model is then kept con-
stant along the L steps of the trajectory represented in
(6). Then, for each given initial condition si,j0 , the cor-
responding subsequent states si,jl+1 under the local closed-
loop linear dynamics (16), (11) are given by si,jl+1 =

Al+1
ti si,j0 +

∑l
n=0A

h
ti(Etir

k
l−n + Ddhl−n), where Ati =

Aσt(i) − Bσt(i)K
s
t−1, Eti = E − Bσt(i)K

r
t−1 which are

combined with (6) and (9) to obtain ĴL.
The average of {∇K ĴL(Kt−1, s

i,j
0 , {rkl , dhl }L−1l=0)}i,j,k,h

provide D(Kt−1) as in (14). The policy update step per-
formed by the SGD algorithm with decreasing learning rate
αt is

Kt = Kt−1 − αtD(Kt−1) (19)

SGD has a solid theoretical background and a consistent
amount of examples of successful application. However it
is known to be characterized by a slow convergence rate.
Thus, in the numerical examples reported in Section IV we
will use the AMSGrad method [16], a faster variant of SGD4.

C. Stability check and policy implementation

In an online setting, after updating the policy Kt as in (19)
we want to check if it stabilizes the local linear plant (16)
at time t before applying it to the process. This is done
by computing the dominant eigenvalue λt of the matrix A
characterizing the current linear closed-loop model, obtained
by applying Kt to the local linear model (16). Although there
is no guarantee that Kt will also stabilize the underlying
plant, we decide to apply Ks?

t = Kt to the plant only if
|λt| < 1.

4The adaptive moment estimation (Adam) algorithm [17] could be also
used in alternative.

In case Kt is not stabilizing (16), we solve the following
semidefinite program

min
Y,P,W

‖Y −Ks
t P‖22

s.t.
[
P P M ′

P W 0
M 0 P

]
� 0

with M = AtP −BtY
W � 0, P � 0

(20)

The feedback gain Ks?
t = Y ?(P ?)−1 obtained from the

solution Y ?, P ?,W ? of (20) is the gain closest to Ks
t that

is asymptotically stabilizing (At, Bt), as proved for instance
in [18]. The gain Ks?

t is applied to the plant instead of the
gain Ks

t obtained from the SGD update (8). In conclusion,
the input ut applied to the plant at time t is ut = ut−1 −
Ks?
t st −Kr

t rt.

Algorithm 1 Optimal policy search
Input: Initial policy K0 and model Θ0, number Nlearn of

steps, training reference {rt | t = 0, . . . , Nlearn}.
Output: Final policy KSGD.

1: for t = 1, 2, ..., Nlearn do
2: Recursively update linear model Θt;
3: for i = 1, 2, ..., N0 do
4: sample xσt(i) from state history Xt;
5: for j = 1, 2, ..., Nq do
6: sample qj0 and build si,j0 as in (17);
7: retrieve model coefficients Θσt(i);
8: for k = 1, 2, ..., Nr do
9: get random state trajectory {rkl }L−1l=0 ;

10: for h = 1, 2, ..., Nd do
11: get random disturbance trajectory {dhl }L−1l=0 ;
12: calculate ∇K ĴL(Kt−1, s

i,j
0 , {rkl , dhl }L−1l=0);

13: end for
14: end for
15: end for
16: D(Kt−1)←

∑
i,j,k,h∇K ĴL(Kt−1,s

i,j
0 ,{rkl ,d

h
l }
L−1
l=0)

NsNrNd
;

17: Policy update: Kt ← Kt−1 − αtD(Kt−1);
18: online setting: apply ut ← ut−1 −Ks?

t st −Kr
t rt;

acquire xt+1;
offline setting: retrive ut, xt+1 from dataset;

19: end for
20: end for
21: KSGD ← KNlearn

;
22: end.

IV. NUMERICAL RESULTS
We test the proposed policy search algorithm when applied

to a linear time-invariant (LTI) system and to a nonlinear
system. In the nonlinear case, we show the results of applying
the algorithm in an online setting. The policy update is
performed in both examples using the AMSGrad algorithm
[16] tuned using the parameters α = 0.1 for the LTI
example and α = 1 for the nonlinear example, weight on
the 1st moment β1 = 0.9, and weight on the 2nd moment
β = 0.999.

TABLE I
POLICY SEARCH PARAMETERS-LTI

ny nu ni no Qk Rk L
1 1 2 3 10−3I 0.1 20

N0 Nr Nq rmin rmax σ2
q vmax

50 1 10 −103 103 100 106

0 10000 20000 30000
−4

−2

0

2

4

Time t

rt
yt

Fig. 1. LTI example: tracking task performed in learning. Output yt (dashed
blue line), training reference rt (red line).

The initial value Θ0 of the model is Θ0 = 0.

A. Example 1: LTI case

Let the system generating the data be the (unknown)
single-input single-output (SISO) LTI system xt+1 =

[−0.669 0.378 0.233
−0.288 −0.147 −0.638
−0.337 0.589 0.043

]
xt +

[−0.295
−0.325
−0.258

]
ut

yt = [−1.139 0.319 −0.571]xt
(21)

We assume that there is no disturbance dt affecting the model
and choose weights Qy = 1, R = 0.1, and Qq = 1 in (9).
The parameters of the model, of the KF, and of the cost
function approximation are reported in Table I.

Starting from an initial policy K0 = [1 . . . 1], the learning
procedure is executed for Nlearn = 30000 iterations.

The reference signal rt used for policy learning is piece-
wise constant, see Figure 1 (red line). The figure also reports
the output yt of the plant, to show the tracking performance
during training. After Nlearn steps the obtained policy is

KSGD = [−1.255, 0.218, 0.652, 0.895, 0.050, 1.115,−2.186]

The optimal policy computed using the real system (21) as
in (16) for a constant reference rt, coherently with (18), is

Kopt = [−1.257, 0.219, 0.653, 0.898, 0.050, 1.141,−2.196]

The convergence of Kt to Kopt during the learning phase
is shown in Figure 2 in terms of the Euclidean norm of the
difference between Kt and Kopt.

B. Example 2: Nonlinear case

We want to learn an optimal linear policy for the classical
Continuous Stirred Tank Reactor (CSTR) benchmark pro-
blem [19], which has nonlinear dynamics. All the simulations
are performed by sampling the continuous-time model of the

0 10000 20000 30000
0

2

4

Time t

||Kt − Kopt ||2

Fig. 2. LTI example: evolution of the error ‖Kt−Kopt‖2 at every instant
of the learning phase.

TABLE II
POLICY SEARCH PARAMETERS-CSTR

ny nu ni no Qk Rk L
2 1 1 3 I 0.1 10

N0 Nr Nq rmin rmax σ2
q vmax

50 20 20 8.6 9.5 100 1

CSTR system reported in the MPC Toolbox for MATLAB
[20], with sampling time Ts = 6 s.

The state x̄t of the nonlinear system is composed by
the concentration x̄1

t of the reagent inside the tank and
the temperature x̄2

t . Both signals are measured and their
measurements are subject to additive Gaussian white noise
with standard deviation nc = 0.01 units, respectively. The
concentration and the temperature of the inlet feed stream
are kept constant and equal to v1 = 10 kg mol/m3 and
v2 = 298.15 K, respectively.

The control objective is to optimally make ȳt = x̄1
t track

a desired set point r̄t by manipulating the temperature ūt
of the jacket coolant. We take ūoff = 300 K, x̄1

off = 8.45 kg
mol/m3 and x̄2

off = 312.74 K as the operating point. Let yt =
[(x1

t − x1
off) (x2

t − x2
off)]′, ut = ut− uoff, and rt = rt− yoff.

The stage-cost weights are

Qy = [1 0
0 0] , R = 0.1, Qq = [0.01 0

0 0] (22)

The linear model (15) is taken as a local model, without
taking into account the disturbance (dt = 0). Table II
contains the policy-search parameters used in this example.

The learning phase is performed in Nlearn = 10000 steps,
starting from an initial policy K0 having all components
equal to 0.0001 and using the piecewise constant reference rt
shown in Figure 3 (red line), together with the concentration
ȳt inside the CSTR and the commanded jacket temperature
ut. The performance of the policy KSGD obtained after
Nlearn iterations is compared against an unconstrained MPC
controller KID with the same weights as in (22) and a large
prediction and control horizon (300 steps), based on a linear
model identified from the same data used to learn KSGD. As
for KSGD, also in the synthesis of KID we assume (18).

The results of applying the two policies to the CSTR plant,
performing a tracking task with a new time-varying reference
signal rt that is different from the reference used in training,
for 20000 steps are shown in Figure 4. The sum of stage
costs (9) accumulated by KSGD during the validation task is
4.3 · 103 while the one related to KID is 2.4 · 104.

It can be seen that our controller KSGD outperforms the
optimal controller KID. This is not surprising, as KID is

7

8

9

y
t

rt
yt

0 5000 10000

260

280

300

320

Time t

u
t

Fig. 3. CSTR example: tracking task performed in learning. Upper plot:
output ȳt (dashed blue line), reference rt used in learning (red-line). Bottom
plot: temperature of the jacket coolant ut.

2

4

6

8

10

y
t

KSGD
rt

0 10000 20000

2

4

6

8

10

Time t

y
t

KID
rt

Fig. 4. CSTR online example: tracking task performed in validation.

optimal with respect to the best linear model that can be
identified from the dataset, not to the actual underlying
nonlinear CSTR model.

V. CONCLUSIONS

We have presented a policy-search method to synthesize
optimal control laws directly from data by using stochastic
gradient descent iterations. A linear process model is recur-
sively identified with a forgetting factor for the only purpose
of getting a local linear model to compute gradients.

The reported examples show that the method is able to
converge to the optimal feedback law when the system
generating the data belongs to the class of models chosen for
the recursive identification. Moreover, if the latter assumption
is not satisfied, the method seems to outperform what can

be achieved by open-loop identification cascaded by model-
based optimal control design.

Compared to reinforcement learning and other policy
search methods, an advantage of our approach is that the
design of the experiment required to collect data is relatively
easy, due to the fact that the exploration of the state space
is simply delegated to the reference signal used during the
learning phase, and in particular no artificial noise must be
added on input or output signals.

Current research is devoted to extending the approach in
several directions, including more general parameterizations
on the control policy and the investigation of conditions for
guaranteeing convergence of the stochastic gradient descent
method to a fixed (possibly not globally optimal) policy.

REFERENCES

[1] D. Piga, S. Formentin, and A. Bemporad, “Direct data-driven con-
trol of constrained systems,” IEEE Transactions on Control Systems
Technology, vol. 26, no. 4, pp. 1422–1429, Jul 2018.

[2] D. Selvi, D. Piga, and A. Bemporad, “Towards direct data-driven
control design of optimal controllers,” in Proc. European Control
Conference, Limassol, Cyprus, 2018.

[3] J. R. Salvador, D. Muñoz de la Peña, T. Alamo, and A. Bemporad,
“Data-based predictive control via direct weight optimization,” in 6th
IFAC Conference on Nonlinear Model Predictive Control, pp. 437-442,
Madison, WI, USA, 2018.

[4] B. Recht, “A Tour of Reinforcement Learning: The View from
Continuous Control,” 2018.

[5] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal of Optimal Control, vol. 42, pp. 1143–1166, 2003.

[6] C. J. C. H. Watkins and P. Dyan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[7] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, “Adaptive linear quadratic
control using policy iteration,” in Proc. American Control Conference,
1994.

[8] I. Grondman, “Online model learning algorithms for actor-critic con-
trol,” PhD dissertation, Delft Center for Systems and Control, 2015.

[9] M. Zanon, S. Gros, and A. Bemporad, “Practical reinforcement
learning of stabilizing economic MPC,” in Proc. European Control
Conference, Naples, Italy, 2019.

[10] M. P. Desienroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, no.
1-2, pp. 1–142, 2011.

[11] T. P. Lillicrap, J. H. Jonathan, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist Reinforcement Learning,” Machine Learning, vol. 8,
no. 3, pp. 229–256, May 1992.

[13] J. Peters and S. Schaal, “Reinforcement Learning of motor skills with
policy gradients,” Neural Networks, vol. 21, no. 4, pp. 682–697, May
2008.

[14] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence
of policy gradient methods for linearized control problems,” 2018.

[15] H. Robbins and S. Monoro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[16] S. Reddi and S. Kumar, “On the convergence of Adam and beyond,”
in Proc. International Conference on Learning Representation, Van-
couver, CA, USA, April 30th-May 3rd 2018.

[17] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proc. International Conference on Learning Representation,
San Diego, CA, USA, May 7-9 2015.

[18] D. Bernardini and A. Bemporad, “Stabilizing model predictive con-
trol of stochastic constrained linear systems,” IEEE Transactions on
Automatic Control, vol. 57, no. 6, Jun 2012.

[19] D. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics and
Control, 2nd ed. Wiley, 2004.

[20] A. Bemporad, M. Morari, and N. Ricker, Model Predictive
Control Toolbox for MATLAB. The Mathworks, Inc., 2016,
http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/.

