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Kernelized Identification of Linear Parameter-Varying Models
with Linear Fractional Representation
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Abstract—The article presents a method for the identifica-
tion of Linear Parameter-Varying (LPV) models in a Linear
Fractional Representation (LFR), which corresponds to a Linear
Time-Invariant (LTT) model connected to a scheduling variable
dependency via a feedback path. A two-stage identification
approach is proposed. In the first stage, Kernelized Canonical
Correlation Analysis (KCCA) is formulated to estimate the
state sequence of the underlying LPV model. In the second
stage, a non-linear least squares cost function is minimized by
employing a coordinate descent algorithm to estimate latent
variables characterizing the LFR and the unknown model
matrices of the LTI block by using the state estimates obtained
at the first stage. Here, it is assumed that the structure of the
scheduling variable dependent block in the feedback path is
fixed. For a special case of affine dependence of the model on
the feedback block, it is shown that the optimization problem
in the second stage reduces to ordinary least-squares followed
by a singular value decomposition.

I. INTRODUCTION

The Linear Parameter-Varying (LPV) paradigm represents
a natural extension of Linear Time-Invariant (LTI) models.
The property of linearity is preserved in the dynamic relation
between input and output signals, but this relation can
change over time according to a measurable time-varying
signal, the so called scheduling variable. By virtue of this
scheduling signal, LPV models can describe the behavior of
many time-varying and non-linear systems accurately. In the
existing literature, many methods have been proposed for the
identification of LPV models, both in state-space (SS) [14],
[17], [19], [20] and input-output (I0) representations [2], [3],
[71, [8], [10], [16]. A detailed summary of the available LPV
identification approaches can be found in [15].

The main drawback of the IO approaches is that the
obtained models are not well suited for controller synthesis.
The controller design approaches for LPV models (e.g.,
[12], [21]) often require the LPV models to be in either SS
representation with an affine dependency on the scheduling
signal or in a Linear Fractional Representation (LFR) de-
picted in Fig. 1. While restricting SS representations to affine
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dependency is a necessity in polytopic control synthesis
methods, it often requires masking nonlinear dependencies
on measured signals as independent scheduling variables
leading to significant increase of the scheduling space and
conservatism of the synthesis. Compared to such representa-
tions, LFRs can easily handle rational dependencies in a sim-
ple fashion, thus providing control synthesis methods with
reduced conservatism [12]. Hence, identification of LPV-
LFR model structures is of significant practical importance.

Very few works have addressed the problem of identifying
LPV models in an LFR form. To mention a few, in [9], it is
shown that under the assumption of full state measurement,
the problem of SISO LPV-LFR model identification can
be solved by recursive least-squares. A prediction error
method is proposed in [5] and [6], where the mean-squared
prediction error is minimized using non-linear programming.
In [4], an identification approach is presented for SISO LPV-
LFR models with scalar scheduling variable. By suitably
manipulating the scheduling signal trajectory, it is shown
that, for the noise-free case, the model can be identified us-
ing convex optimization. For noisy measurements, tractable
convex relaxations are proposed under the assumption that a
bound on the measurement noise is known.

In this work, we present a two-stage method for the
identification of LPV models with LFRs which can be seen
as a step towards direct identification of LPV-LFR models
without structural assumptions. The first stage consists of
estimating the state sequence of the underlying LPV models
using Kernel Canonical Correlation Analysis (KCCA), which
has been recently introduced for LPV-SS models in [11].
In a KCCA approach, the correlation between past and
future data samples is maximized in order to estimate the
state sequence up to a similarity transformation. In the
second stage, a cost function is minimized with a coor-
dinate descent algorithm to estimate the latent variables z
characterizing LFRs and the unknown model matrices in
the forward LTI part, using the state estimates obtained at
the first stage. It is shown that under the assumption of
affine parametric dependency and diagonal structure of the
feedback block, the unknown LTI model matrices can be
computed using ordinary least square followed by a singular
value decomposition. In overall, the main contributions of the
paper are: (i) parametric identification of LPV state-space
models is obtained with rational scheduling dependencies;
(ii) the proposed method provides a computationally efficient
alternative to the parametric state-space approaches dealing
with non-affine scheduling variable dependencies which are
prone to computational and dimensionality problems.



p(k)
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Fig. 1: Linear fractional representation of LPV systems

II. NOTATION

Let R™ be the set of real vectors of dimension n. The
i-th element of a vector z € R™ is denoted by [z], and
an||?2 = 2" Qz denotes the squared weighted 2-norm of x.
For matrices A € R™*" and B € RP*4, the Kronecker prod-
uct between A and B is denoted by A ® B € R™P*"4 et
> be the sequence of successive integers {a,a +1,--- ,b},
with @ < b. The Moore-Penrose pseudo-inverse of a non-
square matrix A is denoted by Af. The notation (A% o p)(k)
is used to express the dynamic dependence of the matrix A
on p at time k, e.g., A at time k£ depends on the future d
samples of the signal p, i.e., p(k), ..., p(k+d—1). Similarly,
dependance on past samples is denoted in the same way.

IIT. PROBLEM FORMULATION

By referring to Fig. 1, we consider the following discrete
time LPV data generating system in a linear fractional
representation with the LTI part given by,

x(k‘ + 1) A ‘ By Bs l‘(kj)
Z(k) = Cl D11 D12 ’U)(k) s (18.)
Yo (k) Ca | D21 Do u(k)

where z(k) € R™ is the state, u(k) € R™ and y, (k) € R™
are the measured input and output of the system at time k
respectively. The ouput measurements are corrupeted by zero
mean additive white noise, i.e., y(k) = yo(k) + e(k) and
{A, ..., Dyy} are unknown constant martices of appropriate
dimensions. The feedback path is represented by

w(k) = Alp(k))z(k),

where, A : P — R"™*"r is a function of the scheduling
variable p. The variables x, z and w are latent (auxillary)
variables whose measurements are not available.
The following assumptions are made on the system (1):
Al. the structure of the feedback block A is known.
A2. I — D11 A(p(k)) # 0 for all trajectories of the schedul-
ing signal p(k) € P.

(1b)

We now formally state the identification problem ad-
dressed in this contribution.

Problem 1: Given an N-length training dataset D =
{u(k),y(k),p(k)}_,, identify the LPV system represented
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by the LFR (1), by estimating the unknown matrices
{4, ..., D2}, to match the input-output behavior of the
underlying data generating system.

IV. IDENTIFICATION ALGORITHM

In this section, we describe the proposed method for iden-
tification of the LPV-LFR model (1). The method consists
of two stages. In the first stage, the estimate Z(k) of the
state sequence characterizing the LTI block is obtained using
Kernel Canonical Correlation Analysis (KCCA) [11], [18].
In the second stage, the latent variable sequence z(k) and
the unknown matrices {A, ..., Djy} are estimated by
minimizing a non-linear least squares cost function using
coordinate descent algorithm.

A. KCCA for state estimation of LPV models

In this section, we review Kernel Canonical Correlation
Analysis (KCCA) [11], [18] to obtain a state sequence
{#(k)}4_, which is compatible with the given dataset D.

The model (1) can be represented in a LPV state-space
form. By re-writing the latent variable z(k) in (1) as

z(k) = (I = DuA(p(k))~" (Cra(k) + Dipu(k)), (2)

and w(k) as A(p(k))z(k), the following LPV state space
representation is obtained

z(k +1) = A(p(k))z (k) + B(p(k))u(k), (3a)
y(k) = C(p(k))z(k) + D(p(k))u(k) + e(k),  (3b)
where
A(p(k)) = A+ BiA(p(k))(I = D1 A(p(k))) ' Ch,
B(p(k)) = Ba + BiA(p(k))(I = D11 A(p(k))) ™" Dia,
C(p(k)) = Cy + D A(p(k))(I — DuA(p(k))) ' C,
D(p(k)) = Daz + Dot A(p(k))(I = D11 A(p(k))) ™" Dia.

The state sequence x(k) of the LPV model (3) compatible
with the date set D can be estimated by using KCCA
as introduced in [11]. The key idea behind using KCCA
approach is that the state is the minimal interface between
past and future inputs w, outputs y, and scheduling data
samples p. Therefore, maximizing the correlation between
past and future data samples yields state estimates which are
compatible with the data set D. For a given horizon length
d, let us define past p{ € R9"» and future scheduling data
vector ;Eg a4 € R w.rt. time instance k as

i = [p(k—d)...p(k=1)] ", iq = [p(K) ... p(k+d—1)]".

The past and future input data uf € R, af, , € R
and output data ng € R, g,‘j a4 € R are defined in a
similar manner.

The future output samples of the LPV model (3) can be

represented in the observability form
Uira = (OF op)(k) - x(k) + (M} op) (k) - U g +efia, @)

where the d-step forward observability matrix (O? op)(k) €
Rdnv*ns and the forward Toeplitz matrix (7—[? op)k) €



D(pk)

C(pr+1)B(pk)

C(pr)
C(pr+1)A(pr)

Cprra—1) =2 APrta—j)

C(Pr+d—1) H?;%.A(kardfj)B(pk) C(Pr+d—1) H?;zg A(kard*j)B(karl)

D(??k) )

D(prtda—1)

(Odop) (k)

R *dnu which have dynamic dependency on p, are ex-
plicitly given in (5). From (4), the state variable z(k) is
given as'

(k) = (0% op) (k) (710 — (HE o) (R)TL4a) . (6)

which shows that the value of the state x(k) at time k is
a function of future input, output and scheduling variables.
Here, we assume that (9? satisfies the structural observability
assumption (see [15, Definition 3.34]) and has full column
rank for all £ € Z.

Similarly, using the state update equation (3a), z(k) can
be written in terms of past data samples as

X

d
z(k) = (H A(pk_i)> xz(k —d) + (R;l op)(k)-ad, (7)

where (R% o p)(k) € R is the d-step backward
reachability matrix which can be easily computed from
recursive substitutions of (3a). Here, we also assume that
Rg satisfies the structural reachability assumption (see [15,
Definition 3.37]).

Shifting (6) by d-samples backward in time we obtain
2(k — d) which is then substituted in (7). More specifically,
from (6) we have

w(k—d)=((0F o p)(k—d)) (7~ (HF o p) (k—d)af) . ()
Then, by substituting (8) in (7),
#(k) =My (k) (Ji—~(H$ o p)(k—d)ai)HRpop) (k)af, (9)

T

d

where M%(k) = [Ti_; A(pr—:) ((O? op)(k — d)) . Thus,
from (9) it follows that the conditional expectation of the
state variable x(k) at time k is a function of past inputs,
outputs and scheduling variable data samples. By defining

~d
7¢ = 133 , 5;€1+d — [u’yd € Rénutny) (6) and (9) can
Yk Yk+d

be rewritten as

2(k)=((0% o p) () [=(HE o p) (k) 1240, (10)
e (PE,q)
w(k)=[~MZ(k)(H$ o p)(k—d)+HRE o p) (k) MI(K)] 2z,
<Pp(17%)
(11)

where ¢, : R¥%» — Rnexdmutny) and ¢, : R —
R7exd(nutny) are (unknown) mappings of past and future

IAs e is a zero-mean, independent and identically distributed white noise

process, the expected value of the term (O? op)(k)

=d g
P €}y q is zero,
which gives the unbiased state estimate (6) in conditiona

mean sense.
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scheduling variable samples to an ng-dimensional feature
space. Note that (10) and (11) both provide the representation
of the state x(k). However, (10) depends only on future data,
while (11) depends only on the past data.

According to the KCCA framework, the state sequence can
be estimated by maximizing the correlation between appro-
priate projections of the maps ¢, (p¢)z{ and ¢ (ﬁz+d)ig+d.
In the following, we present the formulation of the regular-
ized KCCA based on Least-Square Support Vector Machines
(LS-SVM) originally introduced in [13] which allows us to
estimate the state sequence without explicitly parameterizing
the maps ¢, (p¢) and @ (pf, ;). The regularized version of
KCCA formulated with LS-SVM overcomes the problem
of “naive kernelization” (see [1]). To develop the LS-SVM
formulation we define the N X ng-dimensional matrices

N dNgT
®, = [op(P)zl, -, ep(PR)ZN] (12)
_ _ _ Naar T
O = [p;(0l )2t ias o or (P2 ] - (13)
The primal LS-SVM problem for KCCA is given by
N
Lo L, I 7 T
gw&f ; (781&“1@ V5 5k VpQTk) o Vi ViT Wi Wi
s.t. s = vacpf(pZ+d)2,f+d, TR = ijgpp(f)z)Zg,Vk =¥,
(14

where 7,7,,7f € RT are regularization hyper-parameters.
The variables v; € R"¢ and w; € R"¢ optimizing (14)
represent the directions in the feature space along which the
projections of future and past data (s; and 7y, respectively)
have maximum correlation. In order to solve (14) without
explicitly specifying the feature maps ¢, (5¢) and @ (¢, ).
the dual problem is constructed by defining the Lagrangian

E(Uﬁwjasaranjvﬂj) =

N

Z VKK — Wlsi - Vplr;ﬁ - EU‘TUJ‘ - lw-ij

= 2 2 9277 9 i
N

- an (s — ”J‘T“Pf(ﬁZ+d)5k+d)
k=1
N

=Y &5 (ke —w] o)z | (15)
k=1

where 7; = [n} - NT ¢ RN and ko = [kl NTT

nj=[nj--n] € and k; = [k} kY] €

RY are dual Lagrange multipliers. The dual variables i
and k; can be obtained via Karush-Kuhn-Tucker (KKT)
conditions, i.e., by setting the gradients of the Lagrangian
w.r.t. primal and dual variables 2% 25 0L 0L " OL "L

Qv;’ Qw;’ Osy’ Ory’ dnk? Okk>
to zero. Through simple algebraic manipulations, the primal



variables can be eliminated based on the KKT conditions.
The optimal dual variables need to satisfy the following
generalized eigenvalue problem,
Tj
I[%). oo

0 Kppl||ny Y vrKg+1 0
I{j J
and Kg = @J@}' are

Kg 0 0 VpKpp+1
where \; = 1/, and K}, = <I>p<I>;—

kernel matrices which define the inner product in the feature
space. The elements of the kernel matrices are given as

(K] = Gz Yy F Ol )erPh a)zmea  (17a)
kB 4:P% 1 4)
(Kool = ()" 0 () p(Pr) 21 (17b)
k(pf.pd,)

In (17), the function k(-,-) is a positive definite ker-
nel defining the inner products @ (7, 4)¢ (P4, 4) and
¢, (P)ep(pL,). Definition of the kernel instead of feature
maps ¢, (pf) and ¢f(py, ) is called the kernel trick and
allows one to formulate the generalized eigenvalue problem
(16). An example of the kernel is radial basis function (RBF)
k(pi,p;) = c exp (_7“111-;51”2
parameters which are usually tuned via cross validation.

By solving the generalized eigenvalue problem (16), the
dual variables 7; and x; are obtained. From the KKT
conditions, the primal variables are given as v; = q)f uh
and w; = P ;.

The estimate of state sequence Z(k) for the LPV model (3)
compatible with the data set D is obtained as follows. We

parametrize the j-th component of the estimated state vector
z(k) as

) where ¢ and o are hyper-

[j(k)]j = UJ‘TSOf (ﬁi+d)2,‘§+d
Substituting the primal variable v; = q);nj, and representing

the inner product @}()gp 7(+) in terms of the kernel function
k(-,-), we obtain

2 gk (P g Py a)

[&(k)]; = n; : #. (18)
20 ak (PR PRy a)

Similarly, for w; = ®]r; the estimate of the j-th
component of the state at time k is given by

2T k(pd, pl)

[2(k)]; = &, (19)

k(P DY)
[#(K)]; in (18) and (19) are the estimates of the same state
value, which are averaged in CCA approach.

Remark: Note that, the eigenvalue problem (16) has N
different solutions 7;, x; for j = 1,..., N. The dual solu-
tions 7;, k; €RYN of the generalized eigenvalue problem (16)
can be computed using following economical singular value
decomposition (SVD) [11]

wKa+Il 0 r[ 0 Kpp}_Uz [
0 |wKp+I| [Kg| 0 |

Vi
Vs

-
} (20)
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Algorithm 1 Coordinate descent for the estimation of latent
variables z and model parameter matrices ©

Input: training dataset D {u(k),y(k),p(k)}H_,; esti-
mated state sequence X = {#(k)}_,; tolerance €, maxi-
mum number of iteration n,,,y; initial guess A

1. Iterate for n =1,...
1.1 O" < argming J(Z"1,0)
1.2 Z" < argmin, J(Z,0")
2. Until |Z™ — Z" Y| < € or n = nyax

Output: Estimated matrices O™

where the dual solutions can be obtained as 7; = [Vi];
and x; = [Vo]; with []; denoting the j-th column of the
matrix. The dimension of the state # can be chosen by
considering only those [(k)]; which correspond to the 7
most significant singular values contained in . We remark
that the estimated state sequence Z(k), compatible with the
data D is estimated up to a state transformation 7" : R%"» —
R™*"= which can have dynamic dependence on scheduling
variable p(k),...,p(k+d—1).

B. Estimation of z(k) and the LTI model parameters

1) General case: Once the state sequence X
{#(k)}N_, is estimated, the latent variables Z = {z(k)}}_,
and the unknown matrices © = {A, By,..., Das} of the LTI
model (1) can be obtained (up to a similarlty transformation)
by minimizing the following non-linear least-squares cost

J(Z,@):Z_Ili"(H 1)—(A2(k)+ B1A(pr)z(k) + Bau (k)
+ ZHZ —(C12(k)+ D11 A(pr) z(k) +D12u(k) |13,
+ ley ~(Ca22(k)+ D21 Apr)z(k}+Dazu(k)l5, (1)

where Q.,Q.,Q, > 0 are positive definite weighting
matrices. The cost function is minimized w.r.t. {Z, ©} using
the coordinate descent approach described in Algorithm 1
under the assumption that A(p(k)) is known. Note that, the
solution at Step 1.1 and 1.2 of the algorithm can be computed
analytically through linear least-squares.

In Algorithm 1, initial guess Z" values are chosen ran-
domly from a uniform random distribution.

2) Affine dependence: Although in the general case there
is no reliable initialization for Z9, in the special case of affine
dependence of (3) on A(p(k)), we can use Algorithm 1 in
an efficient manner. Hence, consider the LFR model (1) with
the following assumptions:

e Dy = 0, which corresponds to LPV models with affine
dependence on A(p(k)),

o« A(p(k)) = p(p(k))I, i.e., the feedback block A has a
diagonal structure with known real-valued basis func-
tions ¢ : P — R.



As Dq; = 0, we have
Z(k‘) = Clﬂf(k}) + Dlgu(k).

By substitutng (22) into (1) we obtain the following state
space model,

(22)

x(k+ 1) =Az(k) + B1A(p(k))Crx(k)
+ B1A(p(k))Diou(k) + Bou(k), (23a)
y(k) =Cax(k) + D1 A(p(k))Crx(k)
+ Do1 A(p(k))D12u(k) + Dagu(k).  (23b)

Using the assumption A(p(k)) = ¢(p(k))I, the unknown
matrices © in (23), can be solved in a least-squares sense by

minimizing the cost

J(©1,05) =
2
N—
(k+1)] 1 j(k)]
5|4 e o gt | []) -0
© Q
where @ = diag(Q.,Q,) >~ 0,
A B
o= [CZ D222] ’
BiC; BiD B
02 = [Dglél D211D1122] - {D;] [Cl D12}.

Once the least-squares cost J in (24) is minimized
wrt. ©p and O,, the matrices {A, By, Cy, Doo} are ob-
tained by appropriate partitioning of ©;. The matrices
{By, D21,C1, D12} are reconstructed by economic Singular
Value Decomposition (SVD) of ©s. Specifically, let U, X
and V be the matrices obtained from the economic SVD of
Oy, i.e. @y = UXV T which gives

|:Bl

D21

The individual matrices are obtained by proper partition-
ing using the estimated state dimensions 7y and known
dimensions of inputs n,, outputs ny and A(p). In this way,
the computational complexity is reduced manyfolds as the
iterations used in Algorithm 1 are not required.

V. NUMERICAL EXAMPLES

In this section, the effectiveness of the proposed method is
demonstrated via simulation examples. The output samples
y(k) used in the training phase are corrupted by an additive
zero-mean white noise e(k) with Gaussian distribution. The
effect of the noise on the output is quantified in terms

of the Shifgnal-to-Noise Ratio (SNR) defined as SNR =
ke 1(y(k) e(k))?

10log L (e(R)?.

is assessed on a noise-free validation data of length Nya

via Best Fit Rate (BFR) and Variance Accounted For (VAF)

criterion defined as

}:UEUQ, (1 D] =%"2VT. )

. The quality of the estimated model

Y

(k)

—\2

a (y(k) —
a (y(k) —

var y y
var(y 0

BFR = max<{ 1 — x 100%,

,0

VAF = max {1 — x 100%,
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Fig. 2: Singular values of the SVD problem (20)

50

with ¢ being the simulated model output and y being the
sample mean of the output over the validation set. The
operator var(-) denotes the variance of its argument.

All computations are carried out on i5 1.7GHz Intel core
processor with 4 GB of RAM, running MATLAB R2016b.
Example 1
The LPV system (1) is used for data generation with

0 1 0 1.073

-0.1 0.7 ]0.816 1.075
0.524 —0.625| —0.5 0.5 |’ (26)
0.443 0.060 | 0.5 0.5

and the “feedback” path with scalar scheduling variable
represented by w(k) = p(k)z(k). Note that, (26) corresponds
to rational dependency of (3) on p(k).

Training and validation datasets of length N 400
and Ny, = 400, respectively, are generated by exciting
system (1) with input » being a white-noise process with
uniform distribution ¢/(—1,1). The standard deviation of the
noise e (k) corrupting the training output y(k) is 0.05, which
corresponds to an SNR equal to 21 dB.

The scheduling signal is given by p(k) = 0.5sin(k)+4d(k),
where §(k) is a random variable with uniform distribution
U(—0.5,0.5). In the first stage, the KCCA algorithm is
run to estimate the state sequence i(k), using RBF kernels
k(pi,pj) = ¢ exp (—7””";51'”2
0 =10.5 to construct kernel matrices K, and Kg in (16).
The LS-SVM regularization parameters are chosen based on
grid search as vy, = vy = 500 and the past and future window
length is d = 3. These hyper-parameters are chosen through
cross-validation. The dimension of the state is determined by
solving the SVD problem (20). The first 50 singular values
are shown in Fig. 2. We observe that there is a significant
gap between the first two singular values and rest of them.
Based on this observation the SVD is truncated to the first
two components. In other words, the selected state dimension
is n, = 2. The state order of n, > 2 can be selected for
higher accuracy, but at the cost of larger computation time.
The total computation time to construct the state sequence
Z(k) is 8.7 sec. This includes the time required to solve
the generalized eigenvalue problem (16) and to obtain (k)
based on (18).

Using the estimated state Z(k), the cost function J(Z,0)
in (21) is optimized using a coordinate descent (Algorithm

) with parameters ¢ =2 and
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Fig. 3: Example 1. True (red) vs estimated (blue) output

TABLE I: Best Fit Rate (BFR) and Variance Accounted For
(VAF) on a noise-free validation data

Example 1 | Example 2
BFR 92.71 % 96.05 %
VAF 99.74 % 99.84 %

1) with @, =100, Q, =10 and @), =10, chosen heuristically
based on numerical conditions. The initial guess Z° is
selected from a random distribution. The algorithm is run for
n = 250 iterations, where each iteration takes around 0.3 sec.
The performance of the proposed approach is evaluated using
a noise-free validation dataset. The true and the estimated
outputs are shown in Fig. 3 and the BFR and VAF criterion
are reported in Table I. The obtained results show a good
match between system and model output.

Example 2

We consider again the data generating system (26) but now
with D17 = 0 (instead of Dqq 0.5), which corresponds
to an LPV model with affine dependence on A(p(k)). The
state sequence is first estimated using KCCA with the same
hyper-parameters used in the Example 1. Then, the least-
square problem (24) is solved followed by singular value
decomposition as in (25) to compute the estimates of the
unknown model matrices. The total computation time to
solve the least squares problem followed by SVD is 1.01 sec.
The estimation results in terms of BFR and VAF criterion
(computed w.r.t. noise free validation data) are reported in
Table I, for an SNR of 21 dB on training data. The results
show that an accurate estimate of the output of the true
system is obtained with high computational efficiency.

VI. CONCLUSIONS AND FUTURE WORKS

In this contribution, we have proposed a method to iden-
tify LPV models in a linear fractional representation. The
proposed two stage approach consists first in estimating the
state sequence using canonical correlation analysis between
past and future data. Then, the latent variables in the LFR
form and unknown model parameter matrices are estimated
by solving a non-linear least squares problem using a coor-
dinate descent algorithm. The proposed method is applica-
ble for MIMO LPV models defined via LFRs with multi-
dimensional scheduling signal. Current research activities
are focused on the development of alternative algorithms
for latent variable estimation and on the application of the
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presented KCCA based approach to the identification of other
model classes such as switched models.
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