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Abstract— This paper proposes an algorithm for distributed
model predictive control that is based on a primal-dual prox-
imal algorithm developed recently by two of the authors. The
proposed scheme does not require strong convexity, involves
one round of communication at every iteration and is fully
distributed. In fact, both the iterations and the stepsizes are
computed using only local information. This allows a plug and
play implementation where addition or removal of a subsystem
only affects the neighboring nodes without the need for global
coordination. The proposed scheme enjoys a linear convergence
rate. In addition, we provide a randomized variant of the
algorithm in which at every iteration subsystems wake up
randomly independent of one another. Numerical simulations
are performed for the frequency control problem in a power
network, demonstrating the attractive performance of the new
scheme.

I. INTRODUCTION

This paper considers distributed model predictive control
(DMPC) of a network of m dynamically coupled linear
systems. For i = 1, . . . ,m, the dynamics of system i is of
the form

xi(k + 1) =

m∑
j=1

Φijxj(k) + ∆ijuj(k),

with xi(k) ∈ IRsi , ui(k) ∈ IRti , subject to local state and
input constraints. The structure of the network is defined
by matrices Φij and ∆ij . System j affects i if either one
of Φij , ∆ij is nonzero. It is natural to assume that two
systems can communicate if either one of them affects the
dynamics of the other, in which case we say that they are
neighbors. However, the systems need not be aware of the
global structure of the network, or even existence of systems
beyond their neighbors.

DMPC formulations considered in the literature vary de-
pending on the nature of the coupling and can be grouped
in two general categories. In applications such as formation
control where the systems are physically separate but share a
common goal the DMPC problem involves coupling cost or
constraints without dynamic coupling [1]–[3]. The second
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category involves DMPC problems with dynamic coupling
with applications ranging from smart grids, sensor networks,
water networks to transportation systems, and has been
studied by many authors [4]–[9]. This paper is focused
on the second category. We note that in our setting it
is straightforward to extend the proposed setup to include
coupling in cost and constraint between neighbors, however,
this leads to complicated notation and has been avoided for
the sake of clarity. Furthermore, this work is not concerned
with the stability of the closed-loop system and looks at the
DMPC problem from the optimization point of view.

A popular approach for solving the DMPC problem is
to derive distributed algorithms using dual decomposition.
Many authors have considered solving the dual problem
using the proximal gradient method, the alternating direction
method of multipliers (ADMM) or their variants [4], [6]–[8],
[10]. These approaches are preferred to subgradient methods
given that they allow constant stepsizes. Algorithms that are
based on proximal gradient or its accelerated variants require
the cost function to be strongly convex. Another common
issue is the need for centralized computations for selecting
the stepsizes. This is a major drawback that can hinder
the implementation especially in applications where the
network structure is subject to change. For example, applying
proximal gradient requires the stepsize to be bounded by
the inverse of the Lipschitz constant associated to the dual
function [4]. In [11] a metric for Lipschitz continuity is
used which requires solving a semidefinite program (SDP)
globally. In [6] the authors provide a distributed method for
selecting the metric that involves solving a series of local
SDPs. Another recent work that involves distributed stepsize
selection is [7] where the Lagrangian minimization step is
modified with regularization terms. Each iteration in [6] and
[7] involve a local inner minimization step the result of which
is required by the neighbors, i.e., each iteration involves two
rounds of communication.

In contrast to the dual decomposition approach our pro-
posed algorithm is the result of applying a new primal-
dual proximal algorithm [12] to the primal problem. The
aforementioned algorithm is based on a new operator split-
ting technique [13] and is specifically tailored for distributed
applications. The main contributions of this paper are sum-
marized below:
• The new algorithm is fully-distributed, involves simple

computations for each subsystem without any inner loops,
and requires one round of communication per update. At
every iteration active subsystems perform local updates,
communicate the necessary vectors to their neighbors, and
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go idle. The algorithm is presented in two forms: The syn-
chronous case where all of the systems are active at every
iteration, and the asynchronous case where subsystems are
activated at random independently of one another.

• The stepsize of each subsystem is selected locally through
a simple rule (cf. Assumption 2(iii)). Therefore, any mod-
ification to the network structure would only affect the
neighboring subsystems.

• The cost function must be convex but not necessarily
strongly convex.

• The algorithm possesses linear convergence rate when the
local input and state constraints are polyhedral sets, a
common scenario.

II. PROBLEM SETUP

We consider a distributed model predictive control prob-
lem with m dynamically coupled subsystems. We use an
undirected graph G = (V, E) to model the interaction
between subsystems/agents. Each node i ∈ V is associated
with a subsystem, maintains its own local variables, and
can communicate with its neighbors. The goal is to solve
the global model predictive control problem with only local
exchange of information between neighbors.

Let Φij and ∆ij denote the state transition and input
matrices from subsystem j to i. For all i ∈ V , the in-neighbor
and out-neighbor sets are defined as follows:

N in
i ={j ∈ V \ {i}|Φij 6= 0 or ∆ij 6= 0},

N out
i ={j ∈ V \ {i}|Φji 6= 0 or ∆ji 6= 0},

and the neighborhood set is defined by Ni = N out
i ∪N in

i , i.e.,
the edge (i, j) ∈ E exists if j ∈ Ni. The DMPC problem is
written in the following standard form:

minimize
1

2

m∑
i=1

( N∑
k=1

xi(k)>Qki xi(k)+

N−1∑
k=0

ui(k)>Rki ui(k)
)

subject to xi(k+1) =
∑

j∈N in
i ∪{i}

Φijxj(k)+∆ijuj(k) (1a)

ui(k) ∈ Ui, for k = 0,...,N−1,

xi(k) ∈ Xi, for k = 1,...,N−1,

xi(N) ∈ X fi
for all i= 1,...,m

where xi(0) is given, xi(k) ∈ IRsi and ui(k) ∈ IRti denote
the state and input variables of subsystem i at time k.

Note that the separable quadratic cost function is used for
clarity of exposition. It may be replaced by any Lipschitz
differentiable function without requiring the subsystems to
solve inner minimizations (cf. Remark 1). Furthermore, it
is straightforward to modify our analysis to allow coupling
between neighbors.

Throughout the paper the following assumptions hold:

Assumption 1. For i = 1, . . . ,m:
(i) Input and state constraint sets Xi,X fi ⊆ IRsi and Ui ⊆

IRti are nonempty, closed, and convex.
(ii) The cost matrices Qki and Rki are positive semidefinite.

(iii) The graph G is connected.
(iv) The DMPC problem admits a solution. Moreover, for

i = 1, . . . ,m there exists xi(k) ∈ riXi for k =
1, . . . , N − 1, xi(N) ∈ riX fi , and ui(k) ∈ riUi for
k = 0, . . . , N−1 such that the linear dynamics (1a) are
satisfied (riC denotes the relative interior of the set C).

The strict feasibility enforced in Assumption 1(iv) ensures
that strong duality holds, and can be dropped whenever the
constraint sets are polyhedral [14, Corollary 31.2.1].

For i = 1, . . . ,m define

zi =
(
xi(1), · · · , xi(N), ui(0), · · · , ui(N − 1)

)
∈ IRri ,

where ri = N(si + ti). The quadratic cost func-
tion can be written as 1

2

∑m
i=1 z

>
i Gizi where Gi =

blkdiag(Q1
i , . . . , Q

N
i , R

0
i , . . . , R

N−1
i ). The dynamics can be

expressed as:∑
j∈N in

i ∪{i}

Lijzj =
∑

j∈N in
i ∪{i}

bijxj(0), for i = 1, · · · ,m,

where Lij and bij are appropriate linear mappings [11]. With
these definitions the distributed MPC problem becomes

minimize
1

2

m∑
i=1

z>i Gizi (2a)

subject to
∑

j∈N in
i ∪{i}

Lijzj = bi, i = 1, · · · ,m (2b)

zi ∈ Zi, i = 1, · · · ,m (2c)

where bi =
∑
j∈N in

i ∪{i}
bijxj(0), and the constraint sets Zi

denote the product of local input and state constraint sets:

Zi = Xi × . . .×Xi︸ ︷︷ ︸
N−1

×X fi × Ui × . . .× Ui︸ ︷︷ ︸
N

.

III. A PRIMAL-DUAL ALGORITHM FOR DMPC

Our goal is to solve (2) in a fully distributed fashion while
keeping the number of communications to a minimum. For
each subsystem that affects i, i.e., j ∈ N in

i , we introduce a
local variable zij , that can be seen as the estimate of zj kept
locally by agent i. For notation consistency, self-variables
zi are hereafter denoted by zii. We write the equivalent
optimization problem:

minimize
1

2

m∑
i=1

z>iiGizii (3a)

subject to
∑

j∈N in
i ∪{i}

Lijzij = bi, i = 1, . . . ,m (3b)

zii ∈ Zi, i = 1, . . . ,m (3c)

zij = zjj , i = 1, . . . ,m and j ∈ N in
i (3d)

For i ∈ V , let ni =
∑
j∈N in

i ∪{i}
rj and define:

zNi
= (zij)j∈N in

i ∪{i}∈ IRni , Li = [Lij ]j∈N in
i ∪{i}∈ IRNsi×ni

The set of points satisfying the linear constraint is given by:

Di = {z ∈ IRni |Liz = bi}.
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Fig. 1. Dynamic coupling in the DMPC problem

We note that the variables are stacked in ascending order
(index-wise). For example, consider the neighborhood re-
lation described in Figure 1. Subsystem 1 is affected by
subsystems 2 and 4, therefore, zN1 = (z11, z12, z14). Our
proposed algorithm is a primal-dual scheme. Therefore, in
addition to primal variables each system holds dual variables.
For each i ∈ V we introduce two sets of dual variables: the
node variable yi ∈ IRri and the edge variables wij,i ∈ IRri

for j ∈ N out
i , and wji,i ∈ IRrj for j ∈ N in

i . The first
argument of the subscript denotes the edge relation and the
second the ownership of the variable, i.e., if system i affects
j, then i and j will keep wij,i and wij,j respectively.

Let Ei ∈ IRri×ni be a linear mapping such that EizNi
=

zii. Define

gi(zNi
) = δDi

(zNi
) + 1

2z
>
Ni
E>i GiEizNi , hi = δZi , (4)

where δX denotes the indicator function of a closed
nonempty convex set, X . Problem (3) becomes

minimize

m∑
i=1

gi(zNi) + hi(EizNi) (5a)

subject to AijzNi
+AjizNj

= 0 (i, j) ∈ E (5b)

where Aij ∈ IRl(i,j)×ni is defined based on the neighborhood
relation as follows

AijzNi
=

zii j /∈ N in
i , j ∈ N out

i

−zij j ∈ N in
i , j /∈ N out

i

(zii,−zij) j ∈ N in
i , j ∈ N out

i .
(6)

Notice that depending on the neighborhood relation l(i,j) is
either equal to ri, rj or ri + rj .

A primal-dual algorithm was introduced in [15] for prob-
lems of the form (5) with consensus constraint. However,
a consensus constraint can not capture the coupling in the
DMPC problem depicted in Figure 1. Another drawback
of the aforementioned work is that the stepsize selection
requires global coordination. Our analysis here is different
from that work and is based on [12]. In Section IV we
describe how [12, Algorithm 3] is applied to the DMPC
problem to derive Algorithm 1.

Before proceeding with the algorithm recall the definition
of Moreau’s proximal mapping [16]. For a positive definite
matrix V and proper closed convex function q : IRn 7→ IR,
the proximal mapping relative to ‖ · ‖V is defined as:

proxVq (x) := argmin
z∈IRn

{q(z) + 1
2‖x− z‖

2
V }.

Our proposed distributed scheme is summarized in Algo-
rithm 1. It involves two versions. In the synchronous case
at each iteration all systems perform their local updates and
broadcast the result to the relevant neighbors. In the asyn-
chronous case each system wakes up randomly independent
of other systems, i.e., there may be several active systems at
each iteration. The stepsizes appearing in Algorithm 1 should
satisfy the following assumption:

Assumption 2 (Stepsizes in Algorithm 1).
(i) (node stepsizes) Subsystem i keeps two positive step-

sizes σi, τi associated to hi and gi, respectively.

(ii) (edge stepsizes) For each edge (i, j) ∈ E we associate
a positive stepsize κ(i,j) that is shared between system
i and j.

(iii) (convergence condition) The stepsizes satisfy the fol-
lowing local condition consensus

τi <
1

max{
∑
j∈N out

i
κ(i,j) + σi, (κ(i,j))j∈N in

i
}
. (7)

The dual updates for yi in Algorithm 1 require projection
onto the set Zi which can often be performed efficiently,
e.g. for boxes, halfspaces, norm balls. The primal updates
are compactly written as zNi = proxτigi(c) where c =
(cij)j∈N in

i ∪{i} is given by

cii = zii − τi
(
ȳi +

∑
j∈N out

i

w̄ij,i
)
, (8a)

cij = zij + τiw̄ji,i, for all j ∈ N in
i . (8b)

The proximal mapping proxτigi(c) involves the minimiza-
tion of a strongly convex quadratic function over an affine
subspace:

minimize
z

1
2z
>(E>i GiEi + 1

τi
Ini

)z − 1
τi
c>z (9a)

subject to Liz = bi, (9b)

and can be evaluated efficiently through solving the linear
system defining its KKT optimality conditions. We stress
that the matrix of the linear system is constant throughout
iterations, and needs to be factored only once. Consequently,
the evaluation of the primal step at every iteration amounts to
forward and backward substitution steps [17, Section III.C].

IV. DERIVING THE ALGORITHM AND CONVERGENCE
RESULTS

In this section we detail the steps of applying [12, Algo-
rithm 1 and 2] to the DMPC problem.

Let z = (zN1
, . . . , zNm

) and define the linear operator

N(i,j) : z 7→ (AijzNi , AjizNj ).
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Algorithm 1 Synchronous & asynchronous distributed primal-dual algorithm for DMPC
Inputs: σi > 0, τi > 0 for i = 1, . . . ,m, and κ(i,j) > 0 for (i, j) ∈ E .
for k = 0, . . . do

I: Synchronous version

for all systems i = 1, . . . ,m do

II: Asynchronous version
draw r.v. εki according to P(ε0i = 1) = pi > 0
for all systems i with εki = 1 do

Local updates:
w̄kij,i = 1

2

(
wkij,i + wkij,j

)
+

κ(i,j)

2

(
zkii − zkji

)
, for all j ∈ N out

i

w̄kji,i = 1
2

(
wkji,i + wkji,j

)
+

κ(i,j)

2

(
zkjj − zkij

)
, for all j ∈ N in

i

ȳki = yki + σiz
k
ii − σiPZi

(
σ−1
i yki + zkii

)
zk+1
Ni

= proxτigi(c) is given by (8) and (9).
yk+1
i = ȳki + σi(z̄

k
ii − zkii)

wk+1
ij,i = w̄kij,i + κ(i,j)(z̄

k
ii − zkii), for all j ∈ N out

i

wk+1
ji,i = w̄kji,i − κ(i,j)(z̄

k
ij − zkij), for all j ∈ N in

i

Broadcast of information:
Send zk+1

ii , wk+1
ij,i to j ∈ N out

i , and zk+1
ij , wk+1

ji,i to j ∈ N in
i

The edge constraints (5b) can be equivalently formulated
in the cost as

∑m
i=1 δC(i,j)

(
N(i,j)z

)
, where C(i,j) =

{(z1, z2) ∈ IR2l(i,j) | z1 + z2 = 0}. Consequently, (5) can be
formulated in the form of unconstrained optimization:

minimize

m∑
i=1

(
gi(zNi

) + hi(EizNi
)
)
+
∑

(i,j)∈E

δC(i,j)

(
N(i,j)z

)
In order to formulate the dual problem we introduce two
sets of dual variables, yi ∈ IRri and w(i,j) ∈ IR2l(i,j) . The
former corresponds to node and the latter to edge constraints.
The edge variable w(i,j) consists of two blocks, w(i,j) =
(w(i,j),i, w(i,j),j), i.e., we consider two dual variables for
each constraint, where w(i,j),i ∈ IRl(i,j) is maintained by
agent i and w(j,i),j ∈ IRl(i,j) by agent j. Notice that the edge
variable w(i,j),i itself consists of either one or two blocks:
w(i,j),i = (wij,i, wji,i), where wij,i and wji,i are present
when j ∈ N out

i and j ∈ N in
i , respectively.

For clarity of exposition we rewrite the problem with
compact notation. We use N without any subscript to denote
the stacked linear mapping N = (N(i,j))(i,j)∈E , and C =
Ś

(i,j)∈E C(i,j). The transpose of N is given by

N> : (w(i,j))(i,j)∈E 7→ z̃ =
∑

(i,j)∈E

N>(i,j)w(i,j),

with z̃i =
∑
j∈Ni

A>ijw(i,j),i. Furthermore, set E =
blkdiag(E1, . . . , Em) and define Lz = (Ez,Nz) =:
(ỹ, w̃) ∈ IRnd , where nd =

∑
(i,j)∈E 2l(i,j) +

∑m
i=1 ri. Set

g(z) =
∑m
i=1 gi(zNi), h(ỹ, w̃) = h̃(ỹ) + δC(w̃), where

h̃(ỹ) =
∑m
i=1 hi(ỹi). Then, problem (5) can be casted as

minimize g(z) + h(Lz). (10)

Problem (10) may be solved by a range of primal-dual
algorithms resulting in the full splitting of the nonsmooth
functions and the linear mapping [13, Algorithm 3 and Figure
1]. In this work our goal is to derive algorithms in which: i)
both the iterates and the stepsizes are computed locally, ii)

involve one round of communication per iteration, iii) allow
block coordinate updates. An ideal candidate for this purpose
is the primal-dual algorithm introduced in [12, Algorithm 1].
In particular, the sequence generated by the algorithm is Fejér
monotone with respect to ‖ · ‖S where S is a block diagonal
positive definite matrix. This is not the case in other closely
related primal-dual algorithms such as the Chambolle-Pock
algorithm [18], where the linear mapping L appears as the
off-diagonal element of S (see [12, Section II]).
Remark 1. In (4) the quadratic terms were captured by
nonsmooth functions gi. Our scheme requires calculating
the proximal mapping of gi which translates to solving the
quadratic over affine minimization (9). Alternatively, one
can model the quadratic cost functions using a third smooth
term in (10) (see [12, Algorithm 1]). This would result in a
gradient step and a projection onto the set Di in place of a
quadratic over affine minimization. Hence, it is possible to
use general convex Lipschitz differentiable functions as cost
in the DMPC problem. In that case the Lipschitz constant of
the smooth term would affect the stepsizes. ♦

In order to represent the algorithm compactly we define
the following set of diagonal matrices:

W = blkdiag
(
(κ(i,j)I2l(i,j))(i,j)∈E

)
,

Σ = blkdiag(σ1Ir1 , . . . , σmIrm),

Γ = blkdiag(τ1In1 , . . . , τmInm).

Notice that κ(i,j) is repeated twice, i.e., once for every node
sharing the edge.

Let v = (y, w, z), and define the operator T

Tv = (ȳ + ΣE(z̄ − z), w̄ +WN(z̄ − z), z̄),

where

ȳ = proxΣ−1

h̃∗
(y + ΣEz) (11a)

w̄ = proxW
−1

δ∗C
(w +WNz) (11b)

z̄ = proxΓ−1

g (z − ΓE>ȳ − ΓN>w̄). (11c)
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Then [12, Algorithm 1] can be represented as the fixed-
point iteration vk+1 = Tvk. This iteration is amenable to
block coordinate (BC) updates. A general BC scheme was
proposed in [12, Algorithm 2]. Our focus here is on the case
where each coordinate has an independent probability to be
active. Briefly put, the BC scheme is represented as

zk+1 =

m∑
i=1

εki Ui(Tz
k),

where Ui are diagonal matrices with zero and one diagonal
elements, and are used to select the coordinates, while εki ∈
{0, 1}m encodes if a coordinate i is updated at iteration k.
The matrices Ui are assumed to be disjoint and

∑m
i=1 Ui = I ,

where I is the identity matrix of appropriate dimensions.
The partitioning described in this section satisfies these
requirements, i.e., for i = 1, . . . ,m, the matrix Ui selects
zNi , yi and w(i,j),i for j ∈ Ni.

Since h̃ in (11a) is separable, using (4) and the Moreau
identity [16], we have that for i = 1, . . . ,m

ȳi = yi + σizii − PZi(yi + σizii).

Furthermore, the projection onto C(i,j) is given by
PC(i,j)

(w1, w2) = 1
2 (w1 − w2,−w1 + w2). Therefore,

(11b) yields the updates for the edge variables in Algorithm
1. The z̄ in (11c) can be evaluated as follows: For each i ∈ V

z̄Ni
= proxτigi

(
zNi
− τiE>i ȳi − τi

∑
j∈Ni

A>ijw̄(i,j),i

)
.

Therefore, the primal update is carried out by solving (9)
where c is given by (8). Finally, evaluation of the operator
T requires matrix vector products and straightforward sub-
stitution of the involved matrices yields Algorithm 1.

Next theorem summarizes the convergence results for
Algorithm 1. The proof is omitted here and the interested
reader is referred to [12, Lemma 3 and Theorem 6,7].

Theorem 1. Let Assumptions 1 and 2 hold. Consider the
stacked vectors z = (zN1

, . . . , zNm
), y = (y1, . . . , ym), w =

(w(i,j))(i,j)∈E . Then, in the case of synchronous updates,
(vk)k∈IN = (yk, wk, zk)k∈IN generated by Algorithm 1 con-
verges to some v?, and in the case of asynchronous updates it
converges almost surely to some v?-valued random variable,
where v? is a primal-dual solution to (5). In particular,
(zk11, . . . , z

k
mm)k∈IN converge to a solution of the DMPC

problem (1). If in addition, Xi,X f and Ui are polyhedral sets
then in the synchronous case the distance from the primal-
dual solution set converges Q-linearly to zero.

V. NUMERICAL SIMULATIONS

In this section, as a benchmark example we consider the
problem of frequency control in power networks [19]. The
network consists of power generation areas with the goal
of maintaining nominal frequency levels despite changes in
load and network configuration. The approach in [19] is
based on modeling the dynamic coupling as disturbance.
Clearly, this could lead to conservative control actions. In
contrast our method solves the exact global optimization

2

4

3

1

5
t = 20

t = 20

t = 50

Fig. 2. Network structure in the DMPC problem for scenario 1: system 5
is added at t = 20 and system 4 is disconnected at t = 50.

constrained by the dynamics through distributed computation
and communication with the neighbors.

Each system consists of four states xi =
(∆θi,∆ωi,∆Pmi ,∆Pvi) and one control input ui = ∆Prefi .
The continuous-time LTI model of each system is given by

ẋi =
∑

j∈N in
i ∪{i}

Aijxj +Biui.

Notice that the inputs are not coupled. The objective for each
system is to track xri = (0, 0,∆PLi

,∆PLi
) and uri = ∆PLi

,
where ∆PLi

denotes the local power load. In our simulations
we used five systems as described in Figure 2. The local
constraints for each system are as follows: ∆θi ∈ [−0.1, 0.1]
for all i, and ∆PL1 ,∆PL5 ∈ [−0.5, 0.5], ∆PL2 ,∆PL3 ∈
[−0.65, 0.65], and ∆PL4

∈ [−0.55, 0.55]. Furthermore, the
quadratic costs Qi = 4Isi and Ri = Iti are used for all
systems along the horizon. We have omitted the details on
the system dynamics here. The reader is referred to [19] and
the references therein for details and parameter values. We
used Euler’s method for discretization of the dynamics with
step length of 1 sec. This discretization has the advantage of
maintaining the sparsity patterns of the transition matrices.
In all our simulation we used horizon length N = 20.

In Algorithm 1 the stepsizes for each system must be
selected in accordance to the simple condition of Assumption
2(iii). Typically, in primal-dual proximal algorithms larger
stepsizes yield faster convergence. However, there is a trade-
off between edge parameters κ(i,j) and node parameters,
σi, τi. We selected these values empirically as follows: i)
κ(i,j) = 10 for all (i, j) ∈ E , ii) σi = 1 if dout

i = 1, and
10|dout

i − 1| otherwise, iii) τi = 0.99
max{10douti +σi,10} , where

dout
i denotes the cardinality of N out

i . Notice that due to this
simple local rule, removal or addition of a node only affects
the neighboring nodes through dout

i .
Our simulations consist of two scenarios:
Scenario 1: In the first scenario we demonstrate the plug

and play capability of our algorithm. We consider systems
1, . . . , 4 with the dynamic coupling depicted in Figure 2.
We assume that at time t = 20 system 5 is connected to
systems 2 and 4. Furthermore, system 4 is disconnected
from the network at time t = 50. Table I summarizes
the load of power and network modification at given time
steps. Figure 3 highlights the frequency deviation (the second
state variable) for systems one and four. It is observed
that the frequency control is achieved despite the load and
configuration changes.

Scenario 2: In the second scenario, we considered a static
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TABLE I
LOADS OF POWER AND NETWORK STRUCTURE FOR SCENARIO 1

time 5 5 20 20 35 35 50
system 1 4 2 5 5 3 4
∆PLi

0.10 -0.12 0.08 added 0.05 -0.10 removed

20 40 60

−8

−6

−4

−2

0

2

·10−3

t[s]

∆
ω
1

20 40

−0.5

0

0.5

1

1.5
·10−2

t[s]

∆
ω
4

Fig. 3. Frequency deviation for systems one and four

network structure with 5 systems and load ∆PL1
= 0.10 with

the same neighborhood structure and constraints as in the
previous scenario. We compared our algorithm (referred here
as PDDMPC) to [6, Algorithm 3] (DGFG) that is based on
applying the fast gradient method to the dual problem. The
aforementioned paper proposes solving a series of convex
semidefinite program (SDP) locally at the nodes in order
to select the parameters of the algorithm in a distributed
fashion. In order to have a fair comparison we solved the
global optimization problem using MOSEK [20]. Figure 4
demonstrates the superior performance of our scheme. The y-
axis is the error defined as the norm of the difference between
current primal variables and the solution in both algorithms.
The x-axis denotes the total number of local iterations.
Notice that DGFG requires two rounds of communication
at every iteration. Furthermore, we used the randomized
version of the algorithm where each system is activated
independently with probability pi = 0.5. It is observed that
the random activation of nodes result in roughly the same
number of total local iterations as the synchronous case.

VI. CONCLUSIONS

This paper introduced a fully distributed primal-dual
proximal algorithm for the DMPC problem that includes
both synchronous and randomized versions. In addition to

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

10−6

10−5

10−4

10−3

10−2

10−1

100

total no. of local iterations

‖z
k
−
z
?
‖

DGFG
PDDMPC (pi = 1)
PDDMPC (pi = 0.5)

Fig. 4. Total number of local iterations: comparing synchronous PDDMPC,
randomized PDDMPC and DGFG.

simple local iterations, the stepsizes of the new algorithm
are selected locally without any global coordination. There-
fore, any changes to the network structure only affects the
neighboring nodes. In addition, our algorithm enjoys a linear
convergence rate under mild assumptions on the input and
state constraints. Future works include devising efficient
strategies for selecting the edge weights, and extending the
algorithm for the case of lossy communications.
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