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Abstract— The most critical step in modern direct data-
driven control design approaches, such as virtual reference
feedback tuning and non-iterative correlation-based tuning, is
the choice of an adequate closed-loop reference model. Indeed,
the chosen reference model should reflect the desired closed-
loop performance but also be reproducible by the underlying
unknown process when in closed loop with the synthesized con-
troller. In this paper, we propose a novel approach to compute,
directly from data, an “optimal” reference model along with the
corresponding controller. The performance index used to define
the optimality of the reference model measures the tracking
error and the actuator efforts (as it is typical in performance-
driven controllers such as linear-quadratic Gaussian control
and model predictive control), along with a term penalizing
the expected mismatch between the reference model and the
actual closed-loop system. The performance index depends on
the variables used to parametrize the reference model and the
controller, which are optimized through a suitable combination
of particle swarm optimization and virtual reference feedback
tuning.

I. INTRODUCTION

The design of optimal controllers, such as linear-quadratic
Gaussian (LQG) and model predictive controllers (MPCs),
relies on a dynamical model of the open-loop process. In the
case a physical description of the process is not available,
system identification algorithms can be employed to train
a model from data, which is then used to the design the
controller [1]. Designing a controller by first identifying
an open-loop model of the process and then synthesizing
a controller based on the resulting model would require
focusing the attention on reproducing the open-loop behavior
of the process first, then selecting a model structure, tune
the model parameters, compare the open-loop response of
the model on validation data, etc. However, even in the
applications where deriving a model from data is neither
costly- nor timely-consuming, it remains difficult to decide
a-priori the level of accuracy/complexity the model should
have to meet the desired closed-loop performance.

As an alternative to model-based control, direct data-
driven design methods have been proposed in the literature
(see for example [2]-[10] and the references therein). In
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direct data-driven control, the only information available on
the system (namely, data) is directly used to achieve the final
control objectives (usually expressed in terms of a stable
reference model M ), thus avoiding the intermediate and
approximation step of exploiting this information to derive an
open-loop model of the process. We can label these methods
as model-free, meaning that a model of the plant is not
required to synthesize the control law.

The direct approaches sound appealing as only the desired
closed-loop reference model has to be specified. However,
the choice of an adequate reference model M usually repre-
sents a critical step in any direct data-driven method. Indeed,
M should reflect the desired closed-loop performance, but it
should also take into account the capability of the underlying
unknown process to reproduce the desired behavior when
the loop is closed with the synthesized controller. This issue
is highlighted in [11], and handled through a hierarchical
control architecture. The main idea of [11] is to first design,
directly from data, an inner controller to match a simple
low-performing closed-loop reference model M , which is
then used to synthesize an outer model predictive controller
to enhance the performance of the inner loop. Although the
results in [11] clearly show the benefits of the hierarchical
control architecture, choosing a too low-performing reference
model for the inner loop might lead to an outer MPC with
aggressive control actions, which may not be provided be-
cause of physical limitations or might even excite dynamics
not described by the inner closed-loop model M .

With the general ambition of synthesizing optimal control
laws directly from data in a model-free way, in this paper
we provide a heuristic method to determine an optimal
(according to some performance index) reference model M
achievable by a controller designed through any data-driven
design approach, such as the Virtual Reference Feedback
Tuning (VRFT) [2] reviewed in Section II. The index used to
define the optimality of the reference model M is introduced
in Section III-A and it comprises two terms. The first one
is the typical cost used in optimal controllers (such as LQG
and MPC) and it measures the performance of the model M ,
defined by the energy of the tracking error and the actuator
efforts. The second term measures the expected mismatch
between the desired reference model M and the actual
closed-loop. The performance index is optimized through
particle swarm optimization, and the optimal reference model
M is extracted along with the corresponding controller C,
as shown in Section III-B. Constraints on input and output
signals can also be handled, as discussed in Section III-C.
In Section IV the effectiveness of the proposed approach is
shown by means of numerical examples, and the achieved
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performances are compared to the ones attained by a linear
quadratic controller.

II. DIRECT CONTROLLER SYNTHESIS

In this section, we formulate the data-driven control design
problem and we briefly recall the VRFT approach [2], used
in this paper to synthesize a controller C from data to match
a given reference model M .

Our goal is to control a process having only a data-
set of N input and output samples (u(0), . . . , u(N − 1)),
(y(0), . . . , y(N−1)) available, without attempting at finding
first a model of the open-loop process and, as we will discuss
in Section III, with the ambition of optimizing a certain
closed-loop performance index.

In the following, we restrict to the single input single
output case (u, y ∈ R), to a linear reference model defined
in terms of a stable discrete-time operator M(θ, q), and to a
linear discrete-time control law

u(t) = C(ϕ, q)(r(t)− y(t)) + c0(ϕ)r(t)

where q is the forward shift operator (q u(t) = u(t + 1)),
r(t) ∈ R is the reference signal to be tracked, θ ∈ Rnθ
collects a parameterization of M (for example, the one
expressed as in (8) in Section III-B), and ϕ ∈ Rnϕ the
coefficients parameterizing the control law. Note that if
C(ϕ, q) is parameterized to contain an integrator block, the
feedforward term c0(ϕ) could be zeroed.

According to the VRFT approach, for a given refe-
rence model M(θ, q) we can introduce the virtual reference
rv(θ, t), defined by the relation

y(t) = M(θ, q)rv(θ, t) (1)

and the corresponding virtual tracking error

ev(θ, t) = rv(θ, t)− y(t) (2)

Note that the definition of the virtual reference rv(θ, t)
requires to compute the left inverse M†(θ, q) of M(θ, q),
i.e., M†(θ, q)M(θ, q) = 1. For linear time-invariant or linear
parameter-varying (LPV) reference models, the left inverse
M†(θ, q) can be computed as indicated in [8, Proposition 1].

The controller synthesis problem can be recast as the one
of minimizing the difference

ε(θ, ϕ, t) = u(t)− uv(θ, ϕ, t)

between the collected input data samples u(t) and the virtual
input uv(θ, ϕ, t) obtained by feeding the virtual error ev to
the controller C(ϕ, q), i.e.,

uv(θ, ϕ, t) = C(ϕ, q)ev(θ, t) + c0(ϕ)rv(t). (3)

Accordingly, for a given input/output dataset of N samples,
we choose the controller parameter vector

ϕ?(θ) = arg minϕ

N−1∑
t=0

`(ε(θ, ϕ, t)) (4)

given some loss function ` : R→ R, with `(0) = 0, `(ε) ≥ 0,
∀ε ∈ R. For simplicity, we will use `(ε) = ε2 in this work.
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c0(ϕ)
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M†(θ, q)

rv ev
uv

u
y++

−
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− +
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Fig. 1: Virtual reference feedback tuning: a schematic repre-
sentation. The grey box containing the question mark “?”
represents the unknown plant.

However, any black-box parametric systems identification
method (or, more generally, any regression method) can be
used instead of (4) to determine a parameter vector ϕ? such
that the virtual input uv(θ, ϕ, t) in (3) matches u(t) as much
as possible. We may also consider linear-parameter varying
(LPV) controllers, as well as nonlinear controllers using
different parameterizations of the control laws (e.g., a neural
network).

A schematic visualization of the VRFT concept is shown
in Figure 1.

III. OPTIMAL REFERENCE MODEL SELECTION

A. Optimality criterion

In the above section we have shown how to design a
controller from data for a given reference model M(θ, q).
We need now to define a criterion for selecting a parameter
vector θ? that makes the corresponding closed-loop reference
model M(θ?, q) “optimal”. Let r(0), . . . , r(N − 1) be a
“representative enough” reference signal, that is of the type
we expect the controller will be asked to track once it is
deployed. The reference r could be for example a collection
of random steps, ramps, sinusoids, square waves, etc.

Optimality of the reference model M(θ?, q) is defined
according to the following cost

J(θ) =
1

N

N−1∑
t=0

{
Wy(r(t)− yp(θ, t))2 +W∆u∆u2

p(θ, t)

+Wfit(u(t)− uv(θ, t))2
}

(5)

where
yp(θ, t) = M(θ, q)r(t) (6a)

is the “perfect” output that would result by feeding the
reference r to the closed-loop system when the reference
model M(θ, q) is perfectly matched;

and
∆up(θ, t) = up(θ, t)− up(θ, t− 1)
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are the input increments, with

up(θ, t) = C(ϕ?(θ), q)(r(t)− yp(θ, t)) + c0(ϕ?(θ))r(t)
(6b)

being the input produced by the controller C(ϕ?(θ), q),
c0(ϕ?(θ)) synthesized to match M(θ, q).

The performance index defined in (5) is the typical cost
function used in performance-driven control, such as in
model predictive control [12]. The first two terms relate to the
performance the system would show if the reference model
M(θ, q) were perfectly matched by the closed-loop process.
The weights Wy,W∆u > 0 trade off between reducing the
tracking error and reducing the effort of the actuator, and
ultimately decide the tradeoff between speed of convergence
and robustness. The third term accounts for how well the
model M(θ, q) is matched. Without loss of generality we
can set Wy = 1, so that only the remaining two weights are
left as tuning knobs of the synthesis procedure.

Note that in (5) we could also add a penalty Wu(up(t)−
ur(t))

2 on tracking errors related to input references. Ho-
wever, usually a static model of the open-loop process
is required to generate a consistent input reference ur(t)
from r(t). Here we want to instead restrict ourselves in a
completely model-free setting.

The optimal parameter vector θ? is chosen by solving the
optimization problem

θ? = arg minθ J(θ) (7)

and, correspondingly, the synthesized data-driven optimal
controller is C(ϕ?(θ?), q), c0(ϕ?(θ?)).

The optimization problem (7) is in general nonlinear and
nonconvex, as to evaluate J(θ) it requires an identification
procedure (e.g., the VRFT approach in Section II) to get
ϕ?(θ) in (6b). Nonetheless it involves a limited number
of optimization variables, i.e., the parameters defining the
reference model M(θ, q).

B. Numerical optimization

Particle swarm optimization (PSO) [13] is used in this
work, due to the limited number of optimization variables
and the desire of finding a global optimizer. Algorithm 1
summarizes the main steps of the PSO-based approach
employed to compute the optimal reference model M(θ?, q).

In order to use PSO, the reference model M(θ, q) is
parametrized in its zero-pole-gain representation

M(θ, q) = Kc

∏nzc
i

(
q − zc,rei ± jzc,imi

)∏nzr
i (q − zri )∏npc

i

(
q − pc,rei ± jpc,imi

)∏npr
i (q − pri )

(8)
with nzc, nzcr, npc, npr denoting the number of com-
plex conjugate zeros, real zeros, complex conjugate poles
and real poles, respectively, and {zc,rei , zc,imi }nzci=1, {zri }

nzr
i=1,{

pc,rei , pc,imi

}npc
i=1

, {pri }
npr
i=1 stacked in the parameter vector

θ (Step 2.1.1). The variable Kc is not optimized and it acts
as a normalization constant to enforce M(θ, 1) = 1 (unitary
static gain for stable M ) (Step 2.1.2). For each particle θi,

the controller parameters ϕ?(θi) are estimated through the
VRFT approach presented in Section II (Step 2.1.3). In order
to enforce stability of the reference model M(θi, q) and of
the left inverse M†(θi, q) (needed to compute the virtual
reference rv(θ, t)), a barrier function b : R → R penalizing
the violation of the stability conditions:

hpj (θ) := (pc,rej )2 + (pc,imj )2 − 1 < 0, j = 1, . . . , npc

hpj (θ) := |prj |2 − 1 < 0, j = npc + 1, . . . , npc + npr

hzl (θ) := (zc,rel )2 + (zc,iml )2 − 1 < 0, l = 1, . . . , nzc

hzl (θ) := |zrl |2 − 1 < 0, l = nzc + 1, . . . , nzc + nzr
(9)

is added to the computation of the performance index J(θi)
(Step 2.1.4). Among many possible choices, the following
piecewise-polynomial barrier function b has been used:

b(h) =


0 if h < 0√
kh if 0 ≤ h < 1√
kh2 if h ≥ 1

(10)

where k denotes the current PSO iteration.
The global best particle θ? is computed as the particle

providing the minimum value of the performance indexes
J(θi), i = 1, . . . , Npart (Step 3). Finally, particles’ position
is updated based on common rules in PSO (Step 4). Note
that, instead of using barrier functions, the new particles
can be projected onto the set defined by constraints (9). The
algorithm is iterated until the maximum number of iterations
is reached.

C. Constraint handling

The data-driven direct controller synthesis formulation
described above can be also extended to take into account
constraints on input and output variables.

One way is to add bounds on up(θ, t) in (7) for all
t = 0, . . . , N −1 to limit the input range. Output constraints
can be enforced on yp(θ, t) in a similar way. Clearly, only
the inputs/outputs corresponding to the data set generated
by r(0), . . . , r(N − 1) will be guaranteed to satisfy the
constraints. Alternatively, the control law C(ϕ, q) can be
parametrized in a different way, for example using basis
functions that include saturations, such as sigmoids, to en-
force input constraints.

Another approach is to keep C(ϕ, q) a linear discrete-time
controller, motivated by the fact that for small signals, assu-
ming the underlying process is a smooth one, the behavior of
the closed-loop system can be approximated as a linear one.
The idea is then to synthesize a control law that is optimal for
small signals using the approach described above, and then
design an MPC controller on top of the closed-loop system
to handle constraints, as done in [11]. Alternatively, one can
extend the synthesized linear controller C(ϕ?(θ?), q) to an
MPC controller by using the approach described in [14].

IV. SIMULATION RESULTS

We show the effectiveness of the proposed approach in
two examples.
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Algorithm 1 Particle swarm optimization for reference
model selection

Input: number of particles Npart, maximum number of
iterations kmax; positive weights Wy , W∆u

, Wfit; barrier
function b.

1. populate particle swarm θi, i = 1, . . . , Npart with
random initial values under constraints (9);

2. for k = 1, . . . , kmax do
2.1. for i = 1, . . . , Npart do

2.1.1. parametrize M(θi, q) as in (8);
2.1.2. set Kc such that M(θi, 1) = 1;
2.1.3. compute C(ϕ?(θi), q), c0(ϕ?(θi)) through

VRFT;
2.1.4. set the fitness function

J(θi) =
1

N

N−1∑
t=0

Wy(r(t)− yp(θi, t))2

+W∆u∆u2
p(θ

i, t) +Wfit(u(t)− uv(θi, t))2

+

npc+npr∑
j=1

b(hpj (θ
i))+

nzc+nzr∑
l=1

b(hzl (θ
i))

(11)

2.2. end for;
3. choose the best particle θ? based on the computed

fitness functions J(θi), i = 1, . . . , Npart;
4. update particles’ position as in [13, Algorithm 1];
5. end for;
6. end.

Output: Best particle θ?, reference model parameters θ?,
controller parameters ϕ?(θ?).

A. Example 1

We consider data generated by the linear time-invariant
asymptotically stable process

G(q) =
q − 0.4

q2 + 0.15 q − 0.325
. (12)

The transfer function G(q) is supposed to be unknown for
the design of the data-driven controller, it is only used for
data collection and simulation. An open-loop experiment
is performed to collect a dataset of N = 5000 input and
output samples. The process is excited with a white Gaussian
noise input signal u(t) ∼ N (0, 1) and the output signal
is corrupted by a white Gaussian noise disturbance ζ(t) ∼
N (0, 10−4). The sampling time is 0.1 s. The reference signal
r(t) used to design the controller, that is to construct the
cost J(θ) in (5), is a pseudo-random binary signal taking
values in {−1, 1}. The values of the weights are Wy = 1,
W∆u = 1.5, and Wfit = 50. Algorithm 1 is executed
for a maximum number kmax = 100 of iterations, with
Npart = 10 particles and piecewise polynomial barrier
function b as in (10). Each reference model M(θi, q) in
Step 2.1.1 is parametrized as in (8), with nzr = 2, npr = 3,
and nzc = npc = 0. For a given M(θi, q), a third-order
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Fig. 2: Example 1. Closed-loop experiment: reference
signal r(t) (black); output under data-driven controller
C(ϕ?(θ?), q) (red), and the model-based optimal controller
CLQG(q) (blue).

linear controller C(ϕ, q) is synthesized through the VRFT
approach (Step 2.1.3), with feedforward term c0(ϕ) = 0.
The closed-loop performance achieved by the synthesized
controller C(ϕ?(θ?), q) are compared with the performance
obtained by the optimal linear quadratic Gaussian (LQG)
controller CLQG(q). The controller, which clearly requires
the knowledge of the open-loop process model (12), is based
on the extended model G(q) q

1−q and the same weights Wy ,
W∆u

used for the data-driven synthesis. The performance
of the designed controllers is evaluated by the following
cumulated cost

Jcl =
1

τ

τ−1∑
t=0

{
Wy(r(t)− y(t))2 +W∆u∆u2(t)

}
(13)

where τ = 110, r(t) is the reference signal to be tracked,
y(t) is the output of (12), and ∆u(t) = u(t) − u(t − 1)
is the input increment of the signal u(t) generated by the
controller. In the closed-loop tests we consider the signal
r(t), composed of steps and sine waves, depicted in Fig. 2,
along with the output responses obtained when the loop
is closed with the data-driven controller C(ϕ?(θ?), q) and
the model-based optimal controller CLQG(q). The time in-
terval [2.4, 3.7] s is zoomed in Fig. 3. Fig. 4 shows the
corresponding input increments. It is apparent that the two
controllers achieve almost the same closed-loop behavior,
which confirms that Algorithm 1 successfully synthesized
an almost optimal controller directly from data and without
an open-loop model. More quantitatively, the data-driven
controller C(ϕ?(θ?), q) scores Jcl = 3.8552, while the
model-based controller CLQG(q) scores Jcl = 3.8058.

B. Example 2

We want to test our synthesis approach on a simple
nonlinear process. To this end, we consider the nonlinear
Wiener process obtained by cascading the linear transfer
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Fig. 3: Example 1. Detail of Fig. 2 in the time interval
[2.4, 3.7] s.
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Fig. 4: Example 1. Closed-loop experiment: input increments
under data-driven controller C(ϕ?(θ?), q) (red), and control-
ler CLQG(q) (blue).

function G(q) in (12) with the static nonlinear function
f : R→ R,

f(yL(t)) = |yL(t)| arctan(yL(t))

where yL(t) = G(q)u(t). As in Example 1, we perform
an open-loop experiment by exciting the process with a
white Gaussian noise u(t) ∼ N (0, 1) and collect a dataset
of N = 5000 input/output samples. The measured output
signal is y(t) = f(yL(t)) + ζ(t), where the measurement
noise ζ(t) ∼ N (0, 10−4). The sampling time is 0.1 s.
Algorithm 1 is executed with the same settings as in Example
1. The performance obtained by the resulting controller
C(ϕ?(θ?), q) is compared with the one achieved by a linear
quadratic controller CLQG(q) designed based on a linear
model of the process Ĝ(q) estimated from Nf = 3000

0 2 4 6 8 10 12 14 16 18
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0
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Fig. 5: Example 2. Closed-loop experiment: reference
signal r(t) (black); output under data-driven controller
C(ϕ?(θ?), q) (red), and under controller CLQG(q) (blue).

samples in the available dataset. The best fit rate (BFR)

BFR = 100

(
1− ‖y − ŷ‖
‖y − ym‖

)
% (14)

of the model is 81%, where in (14) ŷ is the output trajectory
obtained by simulating Ĝ(q) in open-loop on inputs from the
validation data-set of the remaining N −Nf samples, y the
corresponding output data-set, and ym the average of y.

As in Example 1, the reference r(t) is composed of
steps and sinusoids, as shown in Fig. 5, which also dis-
plays the closed-loop output responses when C(ϕ?(θ?), q)
and CLQG(q), respectively, are in feedback with the given
nonlinear process. A zoom of the output signal in the interval
[0, 2] s is provided in Fig. 6 for clarity. The input increments
generated by the two controllers are shown in Fig. 7.
While the closed-loop behavior of the two controllers looks
quite similar, C(ϕ?(θ?), q) slightly outperforms CLQG(q),
as C(ϕ?(θ?), q) scores Jcl = 0.2989 while the model-based
LQG controller CLQG(q) scores Jcl = 0.3909 over the same
horizon τ = 190 of steps.

The weight Wfit in (5) is a key tuning parameter of
our method. In order to analyze its effects, we consider
different choices for Wfit between 10−9 and 1011, while
keeping Wy = 1 and W∆u = 1.5 fixed. Fig. 8 shows the
closed-loop performance Jcl (13) as a function of Wfit. As
expected, performance deteriorates when Wfit is too small
(the reference model is loosely matched) or too high (too
little emphasis on tracking performance). In this particular
example very small and large values of Wfit lead to a
very similar value of the cumulated cost Jcl, although the
time evolution of y(t) and ∆u(t) (not reported here) are
considerably different.

V. CONCLUSIONS

This paper has presented a novel approach towards direct
data-driven model-free design of optimal controllers. We
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Fig. 6: Example 2. Detail of Fig. 5 in the time interval
[0, 2] s.
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Fig. 7: Example 2. Closed-loop experiment: input increments
under data-driven controller C(ϕ?(θ?), q) (red), and under
controller CLQG(q) (blue).

have described the approach in a linear time-invariant frame-
work for simplicity of notation, but it can be immediately ge-
neralized to linear parameter-varying (LPV) structures using
the LPV-VRFT method of [8] to design LPV controllers
and to invert LPV reference models. Moreover, nonlinear
basis functions can be used in synthesizing the controller.
The approach has also the benefit of providing, as a by-
product, the optimal reference model M corresponding to the
synthesized controller. Hence, in the spirit of the hierarchical
architecture in [11], M can employed to design a reference
governor, such as a model predictive controller, in order
to handle input and output constraints. Further research
activities will address the issue of data-driven selection of
the optimal controller structure, as well as of the inclusion
of a data-based stability criterion, like the one in [10], to
guarantee robust stability for handling the mismatch between
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Fig. 8: Example 2. Closed-loop performance index Jcl vs
weight Wfit.

the computed reference model and the actual closed-loop
system.
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