
Identification of Hybrid and Linear Parameter Varying Models via
Recursive Piecewise Affine Regression and Discrimination

Valentina Breschi, Alberto Bemporad and Dario Piga

Abstract— Piecewise affine (PWA) regression is a supervised
learning method which aims at estimating, from a set of training
data, a PWA map approximating the relationship between
a set of explanatory variables (commonly called regressors)
and continuous-valued outputs. In this paper, we describe a
recursive and numerically efficient PWA regression algorithm,
and discuss its application to the identification of multi-input
multi-output PWA dynamical models in autoregressive form
and to the identification of linear parameter-varying models.

I. INTRODUCTION

One of the most challenging problems in regression learn-
ing is choosing a proper structure to describe the underlying
relation between input (or regressor) vectors x ∈ Rnx and
continuous-valued target outputs y ∈ Rny . On the one hand,
too simple models (e.g., linear functions of the independent
variable x) might not be flexible enough to describe the
input/output relationship. On the other hand, complex model
structures tend to be computationally difficult and to overfit
the training data.

Motivated by the need of simple and flexible model
structures, algorithms for computing PieceWise Affine (PWA)
approximations of nonlinear regression functions have been
developed, and extended to the identification of PieceWise
Affine autoRegressive with eXogenous inputs (PWARX) sys-
tems (see [14] for a literature overview). Among the devel-
oped algorithms, we mention the bounded-error methods [7],
[13], the clustering-based procedures [2], [9], [11], the mixed
integer quadratic programming approach [18], the Bayesian
method [10], and the sparse optimization method [12]. Some
discussions on the identifiably of PWARX systems are pro-
vided in [15], [16]. All these algorithms are executed in a
batch fashion, and thus they are not suitable for an on-line
implementation, apart from the method in [2].

This paper reviews an alternative, numerically efficient
PWA regression algorithm recently developed by the authors
and detailed in [6], showing how the presented method can
be applied for the identification of discrete-time multi-input
multi-output PWARX and Linear Parameter-Varying (LPV)
models. In this case, a PWA approximation of the scheduling
variable dependent LPV model coefficients is estimated from
the training data, along with a polyhedral partition of the
scheduling variable domain. The main idea of the algorithm
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is to sequentially process the observed regressor/output pairs
and assign each pair to the affine submodel that is most
compatible to it, updating the corresponding parameters at
the same time through recursive least-squares. The second
stage starts once all the observations have been classified. At
this stage, the regressor domain is partitioned into polyhedral
regions through a piecewise linear separator, which can be
efficiently computed either off-line through a regularized
piecewise-smooth Newton method or recursively through an
averaged stochastic gradient descent algorithm.

The paper is organized as follows. The general PWA
regression problem is formulated in Section II. The specific
problems of identification of PWARX models and LPV
models are formulated in Section II-B and Section II-C,
respectively. Section III summarizes the general PWA re-
gression method, and its application to the identification of
PWARX and LPV models is discussed in Section IV through
two numerical examples.

A. Notation

Let I ⊂ {1, 2, . . . , } be a finite set of integers and denote
by |I| the cardinality of I . Given a vector a ∈ Rn, let ai
denote the i-th entry of a, aI the subvector obtained by
collecting the entries ai for all i ∈ I , ∥a∥2 the Euclidean
norm of a, a+ a vector whose i-th element is max{ai, 0}.
Given two vectors a, b ∈ Rn, max(a, b) is the vector whose
i-th component is max{ai, bi}. Given a matrix A ∈ Rn×m,
A′ denotes the transpose of A, Ai the i-th row of A . Given
two matrices A and B, A⊗B denotes the Kronecker product
between A and B. Let In be the identity matrix of size n
and 1n be the n-dimensional column vector of ones.

II. PROBLEM STATEMENT

A. Piecewise affine regression

Consider the vector-valued PWA function f : X → Rny

f(x) =


A1 [ 1x ] if x ∈ X1,...
As [ 1x ] if x ∈ Xs,

(1)

where x ∈ Rnx , X ⊆ Rnx , s ∈ N denotes the number
of modes (i.e., the number of affine functions defining f ),
Ai ∈ Rny×(nx+1) are parameter matrices, and the sets Xi,
i = 1, . . . , s are polyhedra defined by the linear inequalities

Xi
.
= {x ∈ Rnx : Hix ≤ Di} , (2)

with Hi and Di being real-valued matrices, that form a
complete polyhedral partition of the space X. The PWA
regression problem can be summarized as follows.
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Problem 1: PWA regression
Consider the data-generating system:

y(k) = fo(x(k)) + eo(k), (3)

where eo(k) ∈ Rny is a zero-mean additive random noise
independent of x(k) and fo : X → Rny is an unknown
function, possibly discontinuous and not necessarily PWA.
The PWA regression problem aims at finding a PWA
approximation f of the unknown regression function fo
based on a set of N observations {x(k), y(k)}Nk=1. �

Estimating a PWA approximation f of the true function fo
requires (i) choosing the number of modes s, (ii) computing
the parameter matrices {Ai}si=1 that characterize the PWA
submodels defining f , and (iii) finding the polyhedral par-
tition {Xi}si=1 of the regressor space X where those PWA
submodels are defined. In this work, we assume that the
number of modes s is fixed by the user and can be chosen
through cross-calibration based procedures.

The following subsections show how the problems of
identifying hybrid dynamical models in PWARX form and
Linear Parameter-Varying models can be cast as the PWA
regression problem 1.

B. Identification of PWARX models

Model (1) represents a Multi-Input Multi-Output (MIMO)
PWARX discrete-time dynamical system if the regressor
vector x(k) is a collection of past inputs and outputs, i.e.,

x(k) = [y′(k − 1) y′(k − 2) · · · y′(k − na)

u′(k − 1) u′(k − 2) · · · u′(k − nb)]
′, (4)

where u(k) ∈ Rnu and y(k) ∈ Rny denote the observed
input and output signals at time k, respectively.

C. Identification of LPV models

Linear parameter-varying systems can be seen as an exten-
sion of Linear Time-Invariant (LTI) systems, as the dynamic
relation between input and output signals is linear but it can
change over time according to a measurable time-varying
signal p(t) ∈ Rnp , the so-called scheduling vector.

The identification problem of MIMO LPV systems can be
formulated as the PWA regression Problem 1 by adopting
the following MIMO LPV-ARX form

y(k)=a0(p(k))+

na∑
j=1

aj(p(k))y(k−j)+
nb∑
j=1

aj+na(p(k))u(k−j)

where aj(p(k)), j = 0, . . . , na + nb, are PWA functions of
p(k) defined as:

aj(p(k)) =


Aj

1(p(k)) if p(k) ∈ P1,
...
Aj

s(p(k)) if p(k) ∈ Ps,

(5)

and p(k) ∈ P ⊆ Rnp is the value of the scheduling
vector at time k. By imposing that each entry of matrix
Aj

i (p(k)) depends affinely on the scheduling vector p(k),
the LPV identification problem reduces to reconstructing

the PWA mapping of the p-dependent coefficient functions
{aj(p(k))}na+nb

j=0 over the polyhedral partition {Pi}si=1 of
the scheduling vector set P . In this case, the N -length
sequence of observations {x(k), y(k)}Nk=1 requires x(k) =
[y′(k−1) . . . y′(k−na) u

′(k−1) . . . u′(k−nb)]
′⊗[1 p′(k)]′.

Note that, since the polyhedral partition {Pi}si=1 is not
fixed a priori, the underlying dependencies of the functions
aj(p(k)) on the scheduling vector p(k) are directly recon-
structed from data. This represents one of the main advan-
tages w.r.t. to widely used parametric LPV identification
approaches (see, e.g., [3], [17]), which in turn require to
parameterize aj(p(k)) as a linear combination of some basis
functions specified a priori (e.g., polynomial functions).

III. PWA REGRESSION ALGORITHM

In this section, we summarize the two-stage algorithm to
solve the general PWA regression problem (namely, Prob-
lem 1) proposed in [6]. Its application to the identification of
PWARX and LPV models is discussed in Section IV through
two simulation examples.

The proposed PWA regression algorithm consists of two
stages:
S1. Simultaneous clustering of the regressor vectors
{x(k)}Nk=1 and estimation of the parameter matrices
{Ai}si=1 describing the PWA map in (1). This is per-
formed recursively, by processing the training pairs
{x(k), y(k)} sequentially.

S2. Computation of a polyhedral partition of the regressor
space X through a multi-category linear separation
method. This stage is performed after stage S1, and it
can be executed either offline or online (recursively).

A. Iterative clustering and parameter estimation

Stage S1 is carried out as described in Algorithm 1. The
algorithm is an extension to the case of multiple linear
regressions and clustering of the approach proposed in [1]
for solving recursive least squares problems using inverse
QR decomposition.

Algorithm 1 requires an initial guess for the matrices Ai

and the centroids ci, i = 1, . . . , s. Clearly, the final estimate
of {Ai}si=1 and of the clusters {Ci}si=1 depends on their
initial values. Among the possible choices introduced in [6],
in this paper the initial guess for the parameters is obtained
executing Algorithm 1 without the first term in (6) and
updating the cluster centroids and covariance matrices only
once all the data have been classified. When working offline
on a batch of data, estimation quality may be improved by
repeating Algorithm 1 iteratively, by using its output as initial
condition for its following execution.

After computing the estimation error ei(k) for all models
i at Step 2.1, Step 2.2 picks up the “best” mode i(k) to
which the current sample x(k) must be associated with (the
reader is referred to [6] for details on the choice of the weight
Λe and for a stochastic interpretation of the discrimination
criterium (6) used to cluster the data).

Step 2.4 updates the parameter matrix Ai(k) associated
to the selected mode i(k) using the recursive least-squares
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Algorithm 1 Recursive clustering and parameter estimation
Input: Sequence of observations {x(k), y(k)}Nk=1, desired

number s of modes, noise covariance matrix Λe; initial
condition for matrices Ai, cluster centroids ci, and centroid
covariance matrices Ri, i = 1, . . . , s.

1. let Ci ← ∅, i = 1, . . . , s;
2. for k = 1, . . . , N do
2.1. let ei(k)← y(k)−Ai

[
1

x(k)

]
, i = 1, . . . , s;

2.2. let
i(k)← arg min

i=1,...,s
(x(k)− ci)

′
R−1

i (x(k)− ci)+

ei(k)
′Λ−1

e ei(k);
(6)

2.3. let Ci(k) ← Ci(k) ∪ {x(k)};
2.4. update the parameter matrices Ai(k) using the inverse

QR factorization approach of [1];

2.5. let δci(k) ←
1∣∣Ci(k)∣∣ (x(k)− ci(k));

2.6. update the centroid ci(k) of the cluster Ci(k):

ci(k) ← ci(k) + δci(k); (7)

2.7. update the centroid covariance matrix Ri(k) for clus-
ter Ci(k)

Ri(k) ←
∣∣Ci(k)∣∣− 2∣∣Ci(k)∣∣− 1

Ri(k) + δci(k)δc
′
i(k)+ (8)

1∣∣Ci(k)∣∣− 1

[
x(k)− ci(k)

] [
x(k)− ci(k)

]′
;

3. end for;
4. end.

Output: Estimated matrices {Ai}si=1, clusters {Ci}si=1.

algorithm of [1] based on inverse QR factorization. Note
that only the parameters of the matrix Ai(k) associated to
the selected mode i(k) are updated at time k, while the
parameters associated to the other modes are not.

B. Partitioning the regressor space

When one is interested in getting also the partition
{Xi}si=1, besides the affine models {Ai}si=1, the clusters
{Ci}si=1 must be separated via linear multicategory discrim-
ination.

The linear multicategory discrimination problem amounts
to computing a convex piecewise affine separator function
ϕ : Rnx → R discriminating between the clusters C1, . . . , Cs.
The piecewise affine separator ϕ is defined as the maximum
of s affine functions {ϕi(x)}si=1, i.e.,

ϕ(x) = max
i=1,...,s

ϕi(x). (9)

The affine functions ϕi(x) are described by the parameters
ωi ∈ Rnx and γi ∈ R, namely: ϕi(x) = [ x′ −1 ]

[
ωi

γi

]
.

For i = 1, . . . , s, let Mi be a mi×nx dimensional matrix
(with mi denoting the cardinality of cluster Ci) obtained by
stacking the regressors x(k)′ belonging to Ci in its rows.

According to [8], in case of linearly separable clusters, the
piecewise-affine separator ϕ satisfies the conditions:[

Mi −1mi

] [
ωi

γi

]
≥

[
Mi −1mi

] [
ωj

γj

]
+ 1mi , (10)

i, j = 1, . . . , s, i ̸= j.

1) Off-line multicategory discrimination: Rather than
solving a robust linear programming (RLP) problem as
in [8], the parameters {ωi, γi}si=1 are computed by solving
the convex unconstrained optimization problem

min
ξ

λ

2

s∑
i=1

(
∥ωi∥22 + (γi)2

)
+ (11)

s∑
i=1

s∑
j = 1
j ̸= i

1

mi

∥∥∥∥([Mi −1mi ]
[
ωj−ωi

γj−γi

]
+ 1mi

)
+

∥∥∥∥2
2

,

with ξ = [ (ω1)′ ... (ωs)′ γ1 ... γs ]
′. Problem (11) aims at

minimizing the averaged squared 2-norm of the violation
of the inequalities in (10). The regularization parameter
λ > 0 is introduced so that the objective function in (11) is
strongly convex. Problem (11) can be efficiently solved via
the Regularized Piecewise-Smooth Newton (RPSN) method
explained in [6] and originally proposed in [5].

2) Recursive multicategory discrimination: As an alterna-
tive to the off-line approach, or in addition to it for refining
the partition ϕ on-line based on streaming data, a recursive
approach to solve problem (11) based on on-line convex
programming can be used.

Let us treat the data-points x ∈ Rnx as random vectors
and assume that an oracle function i : Rnx :→ {1, . . . , s}
exists that, to any x ∈ Rnx , assigns the corresponding mode
i(x) ∈ {1, . . . , s}. Function i implicitly defines clusters
in the data-point space Rnx . Let us also assume that the
following values πi = Prob[i(x) = i] are known for all
i = 1, . . . , s. The multicategory discrimination problem (11)
can be the generalized to the following convex regularized
stochastic optimization problem

ξ∗ = min
ξ

Ex∈Rnx [ℓ(x, ξ)] +
λ

2
∥ξ∥22 (12)

ℓ(x, ξ) =
s∑

j = 1
j ̸= i(x)

1

πi(x)

(
x′(ωj − ωi(x))− γj + γi(x) + 1

)2

+

where Ex [·] is the expected value w.r.t. x. Problem (12)
aims at violating the least, on average over x, the condition
in (10) for i = i(x). For details the reader is referred to [6].
The solution of (12), which provides the piecewise affine
multicategory discrimination function ϕ, can be computed by
online convex optimization, through the Averaged Stochastic
Gradient Descent (ASGD) method in [6].

IV. SIMULATION EXAMPLES

In this section, we consider two numerical examples
to show the application of the reviewed PWA regression
approach to the identification of PWARX and LPV systems.
All computations are carried out on an i7 2.40-GHz Intel core
processor with 4 GB of RAM running MATLAB R2014b.
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In both examples, the output used in the training phase is
corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of measurement noise on
the output signal is quantified through the Signal-to-Noise
Ratio (SNR), that is defined for the i-th output channel as

SNRi = 10 log

∑N
k=1 (yi(k)− eo,i(k))

2∑N
k=1 e

2
o,i(k)

, (13)

with eo,i(k) denoting the i-th component of eo(k).
The results obtained after the training phase are vali-

dated on a noiseless data sequence. Let yo and ŷ denote,
respectively, the vectors staking the actual and the simulated
outputs of the estimated model, let ȳo,i be the sample mean
of the i-th output, and NV the length of the validation data
sequence. The Best Fit Rate (BFR) indicator

BFRi = max

{
1− ||ŷi − yo,i||2
||yo,i − ȳo,i||2

, 0

}
· 100% (14)

defined for each output channel i, i = 1, . . . , ny , is used to
assess the quality of the estimated models.

A. Identification of a multivariable PWARX system

Let the system generating the data be a MIMO PWARX
system described by the difference equation[
y1(k)
y2(k)

]
=

[−0.83 0.20
0.30 −0.52

] [ y1(k−1)
y2(k−1)

]
+
[−0.34 0.45
−0.30 0.24

] [ u1(k−1)
u2(k−1)

]
+ [ 0.200.15 ] + max

{[
0.20 −0.90
0.10 −0.42

] [ y1(k−1)
y2(k−1)

]
+ [ 0.42 0.20

0.50 0.64 ]
[
u1(k−1)
u2(k−1)

]
+ [ 0.400.30 ] , [

0
0 ]
}
+ eo(k),

which is characterized by s̄ = 4 operating modes, given
by the possible combinations of sign of the components
of the first vector argument of the “max” operator. The
excitation input u(k) is a white noise sequence with uniform
distribution in the box [−1 0]× [−0.4 0.6] and length N =
4000, eo(k) ∈ R2 is a zero-mean white noise with covariance
matrix Λe = [ 0.02 0.02

0.02 0.02 ]. This corresponds to signal-to-noise
ratios equal to SNR1 = 8.7 dB and SNR2 = 6.9 dB on the
first and second output channels, respectively.

We run Algorithm 1 with s = s̄ = 4 for 15 times. The
clusters generated by Algorithm 1 are then separated through
the off-line multicategory discrimination method described
in Section III-B.1, by solving (11) via the RPSN method
described in [6], which is initialized with {ωi, γi}si=1 = 0.
The regularization parameter λ is set to 10−5.

The quality of the estimated PWA model is assessed w.r.t.
a validation set of 500 samples. The true output yo and the
open-loop simulated output ŷ generated by the estimated
model are plotted in Fig. 1, along with the simulation error
yo(k)− ŷ(k). For the sake of visualization, only the samples
from time 101 to 200 related to the first channel are shown in
Fig. 1. The obtained BFR is 96.1% and 96.3% for the first
and the second output channel, respectively. The estimated
polyhedral partition of the regressor space is such that only
12 out of 500 data samples are misclassified.

As the accuracy of the final model estimate and the
total CPU time is influenced by the number M of runs

TABLE I
PWARX : BFR VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000

B
FR

1 (Off-line) RLP [8] 96.0 % 96.5 % 99.0 %
(Off-line) RPSN 96.2 % 96.4 % 98.9 %
(On-line) ASGD 86.7 % 95.0 % 96.7 %

B
FR

2 (Off-line) RLP [8] 96.2 % 96.9 % 99.0 %
(Off-line) RPSN 96.3 % 96.8 % 99.0 %
(On-line) ASGD 87.4 % 95.2 % 96.4 %

TABLE II
PWARX: CPU TIME VS LENGTH N OF THE TRAINING SET.

N = 4000 N = 20000 N = 100000
(Off-line) RLP [8] 0.308 s 3.227 s 112.435 s
(Off-line) RPSN 0.016 s 0.086 s 0.365 s
(On-line) ASGD 0.013 s 0.023 s 0.067 s

5 10 15 20 25 30

B
F
R

1

0.8

0.9

1

runs
5 10 15 20 25 30

B
F
R

2

0.8

1

Fig. 2. PWARX: BFR on the first and on the second
output channel vs number of runs of Algorithm 1
(N : 4000 (black), 20000 (blue) and 100000 (red)).

of Algorithm 1, the performance of the proposed learning
approach has been tested with respect to both M and the
dimension N of the training set. The obtained BFR as a
function of iterations of Algorithm 1 is plotted in Fig. 2 for
different values of N . Clearly, there is no improvement in
BFR on the two output channels after about 8 runs.

The total CPU time for estimating the PWARX model
is 0.76 s, of which 0.016 s are taken to solve the linear
multi-category discrimination problem (11). For the sake of
comparison, both the RLP approach of [8] and the on-line
method described in Section III-B.21 are also run to generate
the partition. Results in Table I show that all of the three
algorithms used to compute the partition of the regressor
space lead to an accurate estimate of the system, with BFRs
larger then 95 % (except when N = 4000 and the on-line
multi-category discrimination method is used). Furthermore,
the results show that the estimated models become more
accurate as the number of training samples increases. The
CPU times taken to compute the polyhedral partition are
reported in Table II, which shows that, for a large training
set (i.e., N = 100000), the RPSN and the ASGD method are
about 300x and 1600x faster, respectively, than the robust
linear programming method of [8].

B. Identification of an LPV system

Let the data be collected from the MIMO LPV system[
y1(k)
y2(k)

]
=
[
ā1,1(p(k)) ā1,2(p(k))
ā2,1(p(k)) ā2,2(p(k))

] [
y1(k−1)
y2(k−1)

]
+
[
b̄1,1(p(k)) b̄1,2(p(k))

b̄2,1(p(k)) b̄2,2(p(k))

] [
u1(k−1)
u2(k−1)

]
+ eo(k),

1In executing the on-line approach the weights πi and the initial guess
of ϕ used by the stochastic gradient method are computed by executing the
batch Algorithm in Section III-B.1 on the first 3000 training samples.
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(a) First output channel (output signal): black = true, red = estimated

time (samples)
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y
o
−

ŷ
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-0.02

0
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(b) First output channel (simulation error)

Fig. 1. PWARX: output signal and simulation error on the first output channel.

where

ā1,1(p(k)) =

 −0.3 if 0.4 (p1(k) + p2(k)) ≤ −0.3,
0.3 if 0.4 (p1(k) + p2(k)) ≥ 0.3,
0.4 (p1(k) + p2(k)) otherwise,

ā1,2(p(k)) =0.5 (|p1(k)|+|p2(k)|) , ā2,1(p(k))= p1(k)−p2(k),

ā2,2(p(k)) =

 0.5 if p1(k) < 0,
0 if p1(k) = 0,

−0.5 if p1(k) > 0,

b̄1,1(p(k)) = 3p1(k) + p2(k),

b̄1,2(p(k)) =

{
0.5 if 2

(
p21(k) + p22(k)

)
≥ 0.5,

2
(
p21(k) + p22(k)

)
otherwise,

b̄2,1(p(k)) = 2 sin {p1(k)− p2(k)} , b̄2,2(p(k)) = 0.

Both the input u(k) and the scheduling vector p(k) are white
noise sequences (independent of each other) of length N =
11000 with uniform distribution in the boxes [−0.5 0.5]×
[−0.5 0.5] and [−1 1] × [−1 1], respectively. The noise
covariance matrix of eo(k) ∈ R2 is Λe = [ 0.25 0

0 0.25 ]. This
corresponds to signal-to-noise ratios on the first and on the
second output channel equal to SNR1 = 4 dB and SNR2 = 7
dB, respectively. The goal is to estimate, from the gathered
data, a PWA approximation of the p-dependent nonlinear
functions āi,j and b̄i,j defining the behaviour of the LPV
data-generating system.

1) Choice of the number of modes: The number s of
polyhedral regions defining the partition of the scheduling
vector space P = [−1 1] × [−1 1] is chosen through
cross validation. Specifically, the 11000-length training data
set is split into two disjoint sets. The first 10000 samples
are used to estimate a PWA approximation of āi,j and b̄i,j ,
along with the polyhedral partition of the scheduling vector
space P , for different values of s in the range 5–30. For
each value of s, the identification Algorithm 1 is run 10
times. The second part of training data (i.e., the remaining
1000 samples) is used to assess the quality of the identified
LPV models. Among the identified LPV models, the one
providing the largest aggregated BFRT = BFR1+BFR2 is
selected, which corresponds to s = 10 polyhedral regions.
The computed polyhedral partition, obtained by solving
problem (11) through the RPSN method explained in [6],
is plotted in Fig. 3 (the Hybrid Toolbox for MATLAB [4]
has been used to plot the polytopes in Fig. 3).

2) Model quality assessment: The quality of the estimated
LPV model is then assessed w.r.t. a validation dataset,
consisting of a new sequence of 2000 noiseless samples used
neither to estimate the LPV model nor to select the number
of modes s. For the sake of comparison, the nonlinear

Fig. 3. LPV: polyhedral partition of the scheduling vector space P .

coefficient functions āi,j(p(k)) and b̄i,j(p(k)) are also es-
timated through the parametric LPV identification approach
proposed in [3], by parameterizing the nonlinear functions
āi,j(p(k)) and b̄i,j(p(k)) as fourth-order polynomials in the
two-dimensional scheduling vector p(k).

The true outputs yo and the simulated output sequences
ŷ of the estimated LPV models are plotted in Fig. 4,
along with the simulation error yo(k) − ŷ(k). For the sake
of visualization, only the samples from time 101 to 200
related to the second channel are reported. The BFR on the
two output channels is reported in Table III. The obtained
results show that the proposed LPV identification approach
based on the PWA approximation of the coefficient functions
āi,j(p(k)) and b̄i,j(p(k))) outperforms the parametric LPV
identification approach in [3].

We also remark that the “online” computational time
required to evaluate the output of the LPV model, given
the current value of the scheduling vector p̄ and the past
input/output observations is about 120 µs, 40 µs of which
are required to evaluate which region the current scheduling
vector belongs to. This relatively “low” online computational
time is mainly due to the PWA structure of the coefficient
functions describing the LPV model, and it allows to use
the estimated LPV model in applications requiring a “fast”
online determination of the operating mode, such as in gain
scheduling or in LPV model predictive control.

3) Performance of multi-category discrimination algo-
rithms: The CPU time required to estimate the LPV model
through the proposed PWA regression approach is 759 s. This
includes the cross-validation phase to compute the number of
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(a) Second output channel (output signal): black = true, red = PWA
regression, green =polynomial parametrization [3]
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(b) Second output channel (simulation error): red = PWA regression,
green =polynomial parametrization [3]

Fig. 4. LPV: output signal and simulation error on the second output channel.

TABLE III
LPV: BFR OBTAINED WITH PWA REGRESSION AND POLYNOMIAL

PARAMETRIZATION [3]

BFR1 BFR2

PWA regression 87 % 84 %
parametric LPV [3] 80 % 70 %

modes s. For s = 10, the CPU time required to compute the
LPV model is 14 s, 0.4 s of which are spent to compute the
polyhedral partition via problem (11) (RLP discrimination
algorithm of [8] takes 4.2 seconds, i.e., almost 10x slower).

For a more exhaustive comparison between the RPSN
approach and the RLP algorithm of [8], the CPU time
required by the two algorithms to partition the scheduling
parameter space is plotted, as a function of s, in Fig. 5.
Fig. 5 also shows the CPU time required by the ASGD
algorithm in [6] to compute the solution of problem (12).
The weights πi and the initial estimate used by the aver-
aged stochastic gradient descent algorithm are computed by
solving problem (11) on the first 1000 training samples. The
remaining 9000 training samples are processed recursively.
The regularization parameter λ in problems (11) and (12)
is set to 10−5. Results in Fig. 5 show that: (i) the CPU
time required by all of the three discrimination algorithms
to partition the scheduling vector space increases with the
number of modes s (Fig. 5), as the number of parameters ξ
defining the piecewise affine separator ϕ(x) in (9) increases
linearly with s; (ii) the (offline) RPSN method and the
(online) ASGD method used to solve problem (11) and (12),
respectively, are faster (from 6x to 20x) than the robust linear
programming based approach of [8].

V. CONCLUSIONS

In this paper we have reviewed the PWA regression
algorithm introduced in [6], and discussed its application to
the identification of PWARX and LPV systems. Through the
examples, it has been shown that the presented approach is
computationally effective for off-line and on-line learning
of PWARX and LPV models. Future research includes the
extension of the PWA regression algorithm presented in

s
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tim
e 
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10-2
10-1
100
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102

Fig. 5. LPV: CPU time vs number of modes (s). (black dashed: RLP [8];
red: RPSN; blue dash-dot: ASGN).

the paper to the identification of hybrid and LPV systems
under different noise conditions and the generalization to
piecewise-nonlinear models (such as piecewise polynomial).
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