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Abstract— Least Squares Support Vector Machine (LS-SVM)
is a computationally efficient kernel-based regression approach
which has been recently applied to nonparametric identification
of Linear Parameter Varying (LPV) systems. In contrast to
parametric LPV identification approaches, LS-SVM based
methods obviate the need to parameterize the scheduling
dependence of the LPV model coefficients in terms of a-priori
specified basis functions. However, an accurate selection of
the underlying model order (in terms of number of input
lags, output lags and input delay) is still a critical issue in
the identification of LPV systems in the LS-SVM setting. In
this paper, we address this issue by extending the LS-SVM
method to sparse LPV model identification, which, besides non-
parametric estimation of the model coefficients, achieves data-
driven model order selection via convex optimization. The main
idea of the proposed method is to first estimate the coefficients
of an over-parameterized LPV model through LS-SVM. The
estimated coefficients are then scaled by polynomial weights,
which are shrunk towards zero to enforce sparsity in the final
LPV model estimate. The properties of the proposed approach
are illustrated via simulation examples.

I. INTRODUCTION

Identification and control of Linear Parameter-Varying
(LPV) systems has attracted attention of several researchers
in the past two decades. LPV systems can be seen as an
extension of Linear Time-Invariant (LTI) systems, with a
linear dynamic relation between the input and the output
signals. Unlike LTI systems, the input/output relation can
change over time, according to a measurable time-varying
signal, the so called scheduling vector p. In this way, LPV
models can accurately describe the dynamic behaviour of
a large class of nonlinear and time-varying systems like air-
crafts [10], automobiles [4], [11] and distillation columns [1],
preserving input/output linearity. The nonlinear and time-
varying dynamics are embedded in the scheduling variables.

Motivated by the need of accurate and low-complexity
LPV models, significant efforts have been spent in the last
years for developing efficient approaches for identification of
discrete-time LPV models, both in state-space [23], [6], [21]
and input-output (IO) representation [2], [9], [12]. The reader
is referred to [17] for an overview on LPV identification.

As known, a challenging issue in identification is the
choice of the model structure. In terms of LPV identification,
choosing the model structure requires to specify both the
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model order (in terms of number of output lags, input
lags, and input delay) and the nonlinear dependence of the
model coefficients on p. In the input-output case, a first
possible choice is to use an over-parameterized model, by
approximating the p-dependent coefficients as the sum of
a large set of a-priori specified nonlinear basis functions
(e.g., polynomials). Then, sparse parametric estimation like
the LASSO [16], the Non-Negative Garrote (NNG) [3] and
SPARSEVA [14] can be used to select the p-dependent nonlin-
ear basis functions. Application of the NNG and SPARSEVA
for sparse identification of LPV-ARX models is discussed
in [20] and [18], respectively. However, although sparse
estimators extend the fixed parametric nonlinearity modeling,
the adequate a-priori selection of the basis functions remains
an open-problem.

In order to deal with the basis functions selection prob-
lem, kernel-based methods for LPV identification have been
recently proposed in [8], [19], [5]. The main idea behind
kernel methods is to introduce a feature function mapping
the scheduling vector p to a high-dimensional space. The
feature maps are not fixed a priori and can be potentially
infinite-dimensional. Only the inner products between the
feature maps is specified by the user in terms of non-
linear kernel functions, such as radial basis functions or
polynomial kernels. However, although these methods offer
strong flexibility in modeling the nonlinear dependence on
the scheduling vector p, they do not address the problem of
selecting the LPV model order. To the best of our knowledge,
the only contribution addressing the issue of LPV model
order selection in a kernel-based setting is [13], where Least-
Squares Support Vector Machines (LS-SVM) (i.e., a specific
kernel-based method developed in [15]) are reformulated in
order to achieve data-driven model order selection along with
non-parametric identification of the p-dependent LPV model
coefficients. Specifically, the problem is formulated by using
an extra penalty term aiming at minimizing the maximum
absolute value of the LPV model coefficient functions over
a set of grid points in the scheduling vector space. However,
the method in [13] suffers from the following drawbacks:
1. since it is necessary to grid the scheduling space, the
number of grid points grow exponentially with the dimension
of p, thus increasing the computation load of the optimization
problem; 2. the LPV model coefficient functions are enforced
to be null only at the chosen gridding points, but nothing can
be said outside these points.

The main contribution of this paper is to present a new
method for data-driven order selection along with non-
parametric identification of the p-dependent LPV model
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coefficients, overcoming the main drawbacks of [13]. This
is achieved with the following three-step approach:

S1. estimate the coefficients for an over-parameterized
LPV model using the non-parametric LS-SVM ap-
proach proposed in [19];

S2. scale the estimated coefficients using scheduling-
variable dependent polynomial weights, which are then
penalised to shrink the previously estimated model
coefficients towards zero;

S3. re-estimate the non-null model coefficients.
In this way, an accurate model of the system is determined

with low bias and less variance in the estimated coefficients.
Overall, the proposed method can be seen as a reformulation
of the Non-Negative Garrotte approach in a nonparametric
framework. The advantage of this approach over [13] is
that it is applicable for identification of LPV systems which
are dependent on multi-dimensional scheduling variables,
as the scheduling space does not need to be gridded. The
polynomial weights also provide flexibility in reshaping and
correcting the LPV model coefficients obtained in stage S1.

The paper is organized as follows: In Section II, a short
review of LPV-ARX model structure and problem state-
ment are given. The standard LS-SVM method for LPV
identification is described in Section III. In Section IV,
the mathematical details of the proposed regularized LS-
SVM approach for model order selection are discussed.
The proposed method is tested on two academic examples
and simulation results are presented in Section V. Finally,
conclusions are given in Section VI.

II. PROBLEM FORMULATION

The analysis driven in this paper is dedicated to LPV
models in an I/O form. For clarity of exposition, we consider
single-input single-output (SISO) LPV systems, described by
the autoregressive with exogenous input (ARX) structure:

y(t) =

no
a∑

i=1

aoi (p(t))y(t−i)+

no
b∑

j=0

boj (p(t))u(t−j)+eo(t) (1)

where, t ∈ N denotes the discrete time; u(t) ∈ R and y(t) ∈
R are the measured input and output signals of the system,
respectively; eo(t) is an additive zero-mean white noise;
p(t) : N → P is the measured np-dimensional scheduling
vector (which may include also past observations of the
scheduling signals) and P ⊆ Rnp is a compact set where
p(t) is assumed to take values. The p-dependent coefficient
functions aoi and boj , as well as the parameters no

a and no
b

defining the dynamical order of the system, are unknown
and they have to be estimated from an N -length observed
sequence DN = {u(t), y(t), p(t)}Nt=1 of data generated by
the system in (1).

The following model structure is therefore suitable to
describe the true LPV data-generating system in (1):

y(t) =

na∑
i=1

ai(p(t))y(t−i)+

nb∑
j=0

bj(p(t))u(t−j)+e(t), (2)

with e(t) denoting the residual term. The parameters na and
nb defining the dynamical order of the model in (2) are
chosen large enough so that na > no

a and nb > no
b (i.e.,

the true system belongs to the chosen model class).
In the following section, we briefly describe the LPV LS-

SVM identification method in [19], which is used for non-
parametric estimation of the model coefficients {ai}na

i=1 and
{bj}nb

j=0. The main advantage of the LPV LS-SVM identifi-
cation method proposed in [19] is that it obviates the need
to specify the underlying dependency of coefficients{ai}na

i=1

and {bj}nb
j=0 on the scheduling vector p.

III. LS-SVM FOR LPV IDENTIFICATION

Let us consider the LPV-ARX model introduced in (2),
which is rewritten in the compact form

y(t) =

ng∑
i=1

ci(p(t))xi(t) + e(t), (3)

where xi(t) and ci(p(t)) denote the i-th component of the
ng = na + nb + 1-dimensional vector x(t) and c(p(t)),
respectively, defined as

x(t) = [y(t− 1) . . . y(t− na) u(t) . . . u(t− nb)]
⊤
,

c(p(t)) = [a1(p(t)) . . . ana(p(t)) b0(p(t)) . . . bnb
(p(t))]

⊤
.

The p-dependent coefficient functions ci(p(t)) are written as

ci(p(t)) = ρ⊤i ϕi(p(t)) i = 1, . . . , ng. (4)

where ρi ∈ RnH is an unknown vector of parameters and
ϕi : P → RnH (with i = 1, . . . , na + nb + 1) maps
the observed scheduling variable p(t) to an nH-dimensional
space, commonly referred to as the feature space. Unlike the
LPV parametric identification approaches, neither the maps
ϕi nor the dimension nH of the vectors ρ⊤i and ϕi(p(t)) are
explicitly specified by the user. Potentially, ρ⊤i and ϕi(p(t))
can be infinite-dimensional vectors (i.e., nH = ∞).

Based on the previously introduced notation, the LPV
model (3) is rewritten in the linear regression form:

y(t) =

ng∑
i=1

ρ⊤i ϕi(t)xi(t) + e(t), (5)

where ϕi(t) is used as a shorthand notation for ϕi(p(t)).
In the LS-SVM formulation, the following quadratic pro-

gramming (QP) problem with a regularized ℓ2 loss function
is considered to estimate the LPV model (5) from the data
observations DN :

min
ρi,e

1

2

ng∑
i=1

ρ⊤i ρi +
λ

2

N∑
t=1

e2(t) (6a)

s.t. e(t) = y(t)−
ng∑
i=1

ρ⊤i ϕi(t)xi(t), t ∈ IN1 (6b)

where IN1 denotes the set of indexes {1, . . . , N}, and λ > 0

is a tuning hyper-parameter. The term
N∑
t=1

e2(t) in the
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cost function (6a) aims at minimizing the prediction error,
while the regularization term ρ⊤i ρi is added in (6a) to
prevent overfitting. The hyper-parameter λ should be then
tuned to balance the bias/variance tradeoff. Note that the
parameters ρi minimizing (6) cannot be computed since this
would require an explicit representation of the feature maps
{ϕi(t)}

ng

i=1. Thus, the dual formulation of Problem (6) is
considered. The Lagrangian L(ρ, e, α) associated with the
primal Problem (6) is given by:

L(ρ, e, α) = 1

2

ng∑
i=1

ρ⊤i ρi +
λ

2

N∑
t=1

e2(t)

−
N∑
t=1

αt

(
e(t)− y(t) +

ng∑
i=1

ρ⊤i ϕi(t)xi(t)

)
, (7)

where α = [α1 · · ·αN ]⊤ ∈ RN is the vector of Lagrange
multipliers associated with the equality constraints (6b). The
optimal solution of the primal QP problem (6) is then
achieved when the following KKT conditions are satisfied:

∂L
∂ρi

= 0 → ρi =
N∑
t=1

αtϕi(t)xi(t), (8a)

∂L
∂e(t)

= 0 → e(t) =
1

λ
αt, (8b)

∂L
∂αt

= 0 → e(t) = y(t)−
ng∑
i=1

ρTi ϕi(t)xi(t). (8c)

Substituting equations (8a) and (8b) into (8c) leads to:

y(t) =

ng∑
i=1

(
N∑
t=1

αtxi(t)ϕ
T
i (t)

)
ϕi(t)xi(t) +

1

λ
αt t ∈ IN1

(9)
Equations in (9) can be written in the matrix form

Y =
(
Ω+ λ−1IN

)
α, (10)

where, Y = [y(1) · · · y(N)]⊤, IN is the identify matrix of
size N , and Ω is the Kernel Matrix whose (j, k)-th entry is
given by: [Ω]j,k =

∑ng

i=1[Ω
i]j,k with

[Ωi]j,k = xi(j)ϕ
T
i (p(j))ϕi(p(k))xi(k) (11)

= xi(j)Ki(p(j), p(k))xi(k) (12)

where, Ki is a positive definite kernel function defining the
inner product ϕ⊤

i (p(j))ϕi(p(k)). Specification of the kernel
instead of the feature maps ϕ is called kernel trick [22] and
it obviates the need to specify the feature maps explicitly,
thus allowing the identification of the coefficient functions
ci by only specifying the kernel functions. A typical choice
of kernel, which provides uniformly effective representation
of a large class of smooth functions, is the Radial Basis
Function (RBF) function:

Ki(p(j), p(k)) = exp

(
− (p(j)− p(k))

2

σ2
i

)
, i = 1, . . . , ng,

(13)

where σi > 0 is a hyper-parameter tuned by the user to
control the width of the RBF.

Once the kernel matrix Ω is defined, the Lagrange mul-
tipliers α are computed from (10), and the estimates of the
coefficients ci are obtained by substituting (8a) into (4):

ĉi(·) = ρ⊤i ϕi(·) =
N∑
t=1

αtKi(p(t), ·)xi(t), i ∈ Ing

1 (14)

IV. MODEL ORDER SELECTION

In this section, we present an extension of the LS-SVM
method, which aims at estimating a sparse LPV model struc-
ture, thus minimizing the number of non-zero p-dependent
coefficients {ci}

ng

i=1. The key idea of the proposed method
is to start with an over-parameterized LPV model, whose
coefficient functions {ci}

ng

i=1 are estimated through the LS-
SVM approach presented in Section III. Then, the estimated
coefficients {ĉi}

ng

i=1 are reshaped, multiplying them by poly-
nomial weights depending on the scheduling variable p.
A regularization term aiming at shrinking the polynomial
weights towards zero is considered in order to enforce
sparsity in the final estimated model.

Let us introduce the polynomial weights

wi(p(t)) = w⊤
i φ(p(t)), i = 1, . . . , ng, (15)

where φ(p(t)) is a vector of monomials in the variable p(t)
and wi ∈ Rnw is the (unknown) vector of parameters. The
monomials in the vector φ(p(t)) are specified a-priori.

Given the estimate of the coefficients obtained from LS-
SVM (see eq. (14)) and their corresponding values at the
training points {p(t)}Nt=1, i.e.,

ĉi(p(t)) =

N∑
k=1

αkKi(p(k), p(t))xi(k), i ∈ Ing

1 (16)

we scale ĉi(p(t)) with the polynomial weights wi(p(t)), i.e.,

c̃i(p(t)) = wi(p(t))ĉi(p(t)) = w⊤
i φ(p(t))ĉi(p(t)), i ∈ Ing

1 ,

where c̃i are the scaled LPV coefficients.
With the scaled coefficients, the considered LPV-ARX

model becomes:

y(t) =

ng∑
i=1

w⊤
i φ(p(t))ĉi(p(t))xi(t) + e(t). (17)

Now, to enforce the sparsity in the estimate of the (scaled)
coefficients c̃i(p(t)), a group LASSO term penalizing the l∞-
norm of the polynomial coefficient vectors wi is minimized
together with the residual error, leading to the following
convex optimization problem:

min
{wi}

ng
i=1

N∑
t=1

(
y(t)−

ng∑
i=1

w⊤
i φ(p(t))ĉi(p(t))xi(t)

)2

+µ

ng∑
i=1

∥wi∥∞
(18)

Note that the group LASSO term in (18) penalizes the
mixed ℓ1,∞-norm (i.e., sum of the infinity norms) of the
parameter vectors wi, with i = 1, . . . , ng. The infinity
norm is considered as a norm of the group so that, at the
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solution, the vector wi is enforced to be either identically
to zero or full. Indeed, only the component of the vector
wi with largest absolute value affects the objective function
in (18). Note that, when wi is zero, the polynomial weight
wi(·) = w⊤

i φ(·) is null. Thus, the corresponding scaled
coefficient function c̃i is also null. The hyper-parameter
µ ≥ 0 is tuned by the user to balance the tradeoff between
minimizing the fitting error and minimizing the number of
non-zero functions {c̃i}

ng

i=1 defining the LPV-ARX model
with scaled coefficients reported in (17).

Summarizing, the shape of the p-dependent LPV model
coefficients {ci}

ng

i=1 is initially obtained through a standard
LS-SVM dedicated to LPV identification. Then, polynomial
weights {wi(p(t))}

ng

i=1 are used to reshape the estimated
model coefficients {ĉi}

ng

i=1 and, at the same time, to shrink
the LPV model coefficients towards zero, thus reducing the
complexity of the estimated LPV model (by minimizing the
number of nonzero model coefficients {c̃i}

ng

i=1).
As the final estimate of the scaled coefficients {c̃i}

ng

i=1 will

be biased because of the regularization term
ng∑
i=1

∥wi∥∞ (see

eq. (18)), an LPV model with reduced complexity, containing
only the coefficients {c̃i}

ng

i=1 which have been detected to be
nonzero, should be re-identified by using the non-regularized
LS-SVM approach discussed in Section III.

V. SIMULATION EXAMPLES

This section shows the effectiveness of the proposed
method on two simulation examples. To study the statistical
properties of the estimation, Monte-Carlo simulations of 100
runs are performed for each example. At each Monte-Carlo
run, a new data set of inputs, scheduling variables and
noises is generated. The output used in the training phase
is corrupted by an additive zero-mean white noise eo with
Gaussian distribution. The effect of the noise eo on the output
signal is quantified through the Signal-to-Noise Ratio (SNR),
defined as

SNR = 10 log

∑N
t=1 (y(t)− eo(t))

2∑N
t=1 (e

o(t))
2

, (19)

Radial basis functions are used as kernels to define the inner
product among the feature maps ϕi. The values of the hyper-
parameters λ, µ (eq. (18)) and σi (characterizing the RBF
Ki in (13)) are chosen through a cross-calibration procedure,
that is by maximizing (with a grid search) the Best Fit Rate
(BFR) w.r.t. a calibration data set of length NC. The BFR is
defined as

BFR = max

1−

√√√√∑NC

t=1 (y(t)− ŷ(t))
2∑NC

t=1 (y(t)− ȳ)
2

, 0

 (20)

with ŷ(t) being the simulated model output and ȳ being the
sample mean of the output over the calibration set. In order
to speed up the calibration procedure, the parameters σi are
equal among each others (i.e., σi = σ for all i = 1, . . . , ng).
The results obtained after the training and calibration phase

are validated on a noiseless data sequence. The BFR is used
to assess the quality of the estimated models.

All computations are carried out on a i5 1.7GHz Intel core
processor with 4 GB of RAM running MATLAB R2013a.
The CVX package [7] is used to solve Problem (18).

A. Example 1

The aim of the academic example reported in this subsec-
tion is threefold: 1. showing the capabilities of the presented
regularization approach in detecting the correct structure of
the underlying LPV data-generating systems; 2. showing that
the variance of estimate obtained by non-regularized LS-
SVM can be reduced by first detecting the model structure; 3.
comparing the performance, in terms of computational time,
of the presented approach w.r.t. to the regularization approach
proposed in [13]. Consider the LPV data-generating system
taken from [13]:

y(t) = ao
1(p(t))y(t−1)+ao

2(p(t))y(t−2)+bo5(p(t))u(t−5)+eo(t).
(21)

The p-dependent coefficients ao1(p(t)), a
o
2(p(t) and bo5(p(t))

are described by the nonlinear functions:

ao1(p(t)) =


−0.5, if p(t) > 0.5

−p(t), if − 0.5 ≤ p(t) ≤ 0.5

0.5, if p(t) < −0.5

ao2(p(t)) = sin(2πp(t)); bo5(p(t)) = p3(t)

The system is estimated from a training data set DN of
length N = 500, while a calibration data set of length
NC = 200 is used to tune the hyper-parameters λ, µ and
σ. To gather data, the input u and the scheduling parameter
p are chosen to be white-noise processes independent of
each other with uniform distribution U(−1, 1). The standard
deviation of the noise eo is 0.3. The average of the SNR over
the over 100 Monte-Carlo runs is 7 dB. The identification
problem is formulated in the LS-SVM setting by using over-
parameterized LPV model structure (2) with na = nb = 10.

First, the estimates of the coefficients {ai}na
i=1 and {bj}nb

j=0

are obtained using the non-regularized LS-SVM approach
described in Section III. The chosen hyper-parameters,
maximizing the BFR w.r.t. the calibration data set, are:
λ = 600 and σ = 0.4. Then, second-order polynomials
{wi(p(t))}

ng

i=1 are used as weights to re-shape the estimated
coefficients {âi}na

i=1 and {b̂j}nb
j=0, and thus to detect the LPV

model structure by solving Problem (18). The chosen hyper-
parameter µ, maximizing the BFR w.r.t. the calibration data
set, is µ = 5.

Table I and II show the maximum absolute values (over
the training points {p(t)}Nt=1) of the coefficient functions ai
and bj obtained from the non-regularized LS-SVM approach,
along with ones computed through the regularized LS-SVM
version (denoted as R-LS-SVM) proposed in this paper. The
obtained results show that the proposed regularized LS-SVM
approach is able to detect the correct underlying structure of
the LPV data-generating system. Indeed, the only coefficients
ai and bj which have been detected to have an (average)
maximum absolute value larger than a threshold of 10−6 are:

1652



a1, a2 and b5. Results in Table I and II also show that, as
expected, the estimate of the nonzero coefficients obtained
by the regularized LS-SVM is biased, because of the reg-

ularization penalty
ng∑
i=1

∥wi∥∞ in eq. (18) (note that this a

well-known problem affecting also parametric regularization
methods like the LASSO). Therefore, the nonzero coefficient
functions are re-estimated without the regularization term.
Precisely, the coefficient functions which are detected to be
null are discarded in the description of the LPV model (2)
and a lower-complexity LPV model is re-identified through
non-regularized LPV LS-SVM approach. The estimates of
the nonzero coefficient a1 is plotted in Fig. 1, which shows
the mean estimate, along with the standard deviation intervals
computed over the 100 Monte-Carlo runs. The estimate of
the same coefficients obtained with the non-regularized LPV
LS-SVM approach is also plotted in the same figure. The
obtained results show that detecting the LPV model structure
is beneficial, in terms of variance reduction, in the final
estimate of the coefficient functions.

For the sake of comparison, the regularization method
of [13] is also run, by gridding the scheduling variable space
into 20 equidistant points. In terms of model quality, the
method in [13] is also able to detect the true LPV model
structure. However, the benefits of the proposed method
w.r.t. [13] can be appreciated in terms of computational time.
For fixed values of the hyper-parameters λ, µ and σ, the
average CPU time (over the 100 Monte-Carlo runs) required
by the proposed identification algorithm is 2 s. On the other
hand, the average overall time required by the method of [13]
to solve the same identification problem is 24 s (12x slower
than the method proposed in this paper).

B. Example 2. Multidimensional scheduling variable

The aim of the academic example considered in this
section is to show the effectiveness of the proposed regu-
larization scheme in the identification of LPV systems with
multidimensional scheduling signals. This represents one of
the main advantage of the proposed method over [13]. In fact,
the method in [13] requires to grid the scheduling space,
thus limiting its applicability to the identification of LPV
systems with one/two-dimensional scheduling variables. The
considered LPV data-generating system is described by the
difference equation:

y(t) = ao1(p(t))y(t− 1) + ao2(p(t))y(t− 2)+

+ bo4(p(t))u(t− 4) + bo5(p(t))u(t− 5) + eo(t),
(22)

where, p(t) = [p1(t) p2(t) p3(t)]
⊤ ∈ R3. The un-

known functions are: ao1(p(t)) = 0.3p21(t) + 0.2p22(t) −
0.1p23(t), ao2(p(t)) = 0.2p1(t) − 0.3p2(t) + 0.1p3(t),
bo4(p(t)) = 0.2 sin(2πp1(t)) + sin(2πp2(t)), bo5(p(t)) =
0.4 cos(2πp2(t))+0.3 sin(2πp3(t)). Training data set DN of
length N = 3000 is used for estimation, while a calibration
data set of length NC = 1000 is used to tune the hyper-
parameters λ, µ and σ. To generate the data set, the input
u and the scheduling signals p1, p2 and p3 are chosen to
be white-noise processes independent of each other with
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Fig. 2. Example 2. Average (over 100 Monte-Carlo runs) of the maximum
absolute value of the LPV model coefficients {ai}10i=1 and {bj}10j=0
obtained through non-regularized LS-SVM (left panels) and through reg-
ularized LS-SVM (right panels).

uniform distribution U(−1, 1). The standard deviation of the
noise eo is 0.08. The average of the SNR over the over 100
Monte-Carlo runs is 15 dB.

First, the estimates of the coefficients are obtained using
the non-regularized LS-SVM approach described in Sec-
tion III with hyper-parameters, λ = 900 and σ = 0.8.
Then, second-order polynomials {wi(p(t))}

ng

i=1 are used as
weights to re-shape the estimated coefficients {âi}na

i=1 and
{b̂j}nb

j=0, and thus to detect the LPV model structure by
solving Problem (18). The chosen hyper-parameter µ, is
µ = 25. The total computational time (including calibration
phase) required to solve the estimation problem is 302 s.
For fixed values of λ, σ and µ, the average computational
time is 15.1 s (i.e., 20 different combinations of the hyper-
parameters λ, σ and µ have been tested in calibration).
Fig. 2 depicts the average maximum absolute values of the
estimated coefficient functions over 100 Monte-Carlo runs.
Results in Fig. 2 show that the proposed regularized LS-SVM
detects the true structure of the underlying dynamics, while
a non-sparse LPV model is obtained by using standard LS-
SVM. This has an impact on the generalization properties
of the model to unseen data. In fact, the BFR (in validation)
obtained using standard LS-SVM is 0.62, while a BFR equal
to 0.88 is achieved by regularized LS-SVM.

VI. CONCLUSIONS

This paper has proposed a regularized LS-SVM method
for sparse identification of LPV-ARX models. The depen-
dence of the LPV model coefficients on the scheduling
variable is not a-priori parameterized, and it is estimated, at
the first stage, by using a standard (i.e., non-regularized) LS-
SVM based regression approach. The obtained coefficients
are then re-shaped by polynomial weights, and a penalty
term is minimized in order to shrink the scaled model
coefficients towards zero, thus enforcing a sparse structure
in the estimated LPV model. The proposed method exploits
the flexibility of the LS-SVM to reconstruct the underlying
dependence of the LPV model coefficients on the scheduling
signal, while the parametric structure of the scaling weights
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Fig. 1. Example 1. Estimate of the non-zero coefficients obtained via non-regularized LS-SVM (left panels) and after model order selection (right panels).
True function (solid black line), mean estimate (solid gray line) and standard deviation intervals (dashed black line) over the 100 Monte Carlo runs.

TABLE I
EXAMPLE 1. AVERAGE AND STANDARD DEVIATION (OVER 100 MONTE-CARLO RUNS) OF THE MAXIMUM ABSOLUTE VALUE OF THE ESTIMATED LPV

MODEL COEFFICIENTS ai(p(t))
Coefficients a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
True Value 0.5 1 0 0 0 0 0 0 0 0

Mean (LS-SVM) 0.6245 1.0498 0.1853 0.1788 0.1858 0.1939 0.1987 0.1891 0.1935 0.1904
Mean (R-LS-SVM) 0.4766 0.9667 2.61e-11 2.25e-11 2.63e-11 3.29e-11 2.47e-11 2.24e-11 2.31e-11 3.02e-11

std (LS-SVM) 8.54e-02 3.56e-02 9.80e-02 9.12e-02 8.61e-02 0.1052 0.1033 8.16e-02 9.06e-02 9.45e-02
std (R-LS-SVM) 6.63e-02 3.81e-02 5.51e-11 3.48e-11 4.01e-11 6.14e-11 3.78e-11 3.17e-11 3.43e-11 5.96e-11

TABLE II
EXAMPLE 1. AVERAGE AND STANDARD DEVIATION (OVER 100 MONTE-CARLO RUNS) OF THE MAXIMUM ABSOLUTE VALUE OF THE ESTIMATED LPV

MODEL COEFFICIENTS bj(p(t))

Coefficients b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
True Value 0 0 0 0 0 1 0 0 0 0 0

Mean (LS-SVM) 0.1236 0.1372 0.1292 0.1204 0.1213 1.0133 0.1270 0.1350 0.1333 0.1201 0.1329
Mean (R-LS-SVM) 1.79e-11 1.68e-11 1.78e-11 1.73e-11 1.56e-11 0.8748 1.85e-11 1.99e-11 1.96e-11 1.74e-11 1.71e-11

std (LS-SVM) 6.30e-02 7.10e-02 5.80e-02 5.64e-02 6.32e-2 0.1009 5.62e-02 5.66e-02 5.92e-02 5.66e-02 5.63e-02
std (R-LS-SVM) 3.46e-11 2.66e-11 2.63e-11 3.11e-11 2.56e-11 7.62e-03 2.65e-11 2.71e-11 3.12e-11 2.69e-11 2.64e-11

allows to select the dynamical structure of the model through
a group-LASSO based approach. The reported simulation
results show the capabilities of the proposed approach and
its advantages with respect to an other regularized LS-SVM
approach available in the literature.
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