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Abstract— Future safety critical space missions call for in-

creasing levels of embedded spacecraft autonomy. Spacecraft

and mission responsiveness will be highly improved via on-

board automation and autonomy functions, simplifying opera-

tions and ground control capabilities. Recently developed real-

time embedded MPC guidance and control strategies have a

great potential for the next generation of high performance

reusable ESA launch vehicles and GNC systems. This paper

addresses these technologies for real-time embedded MPC

covering thrust vectored control that could be proficiently used

during the ascent phase as well as on powered descent enabling

accurate pin-point landing features.

I. INTRODUCTION

Autonomy, when addressed through the availability of on-
board capabilities that resolve in real-time complex mission
objectives in the face of unforeseen events and constraints,
will largely simplify spacecraft operational modes. Pin-point
landing, defined as the ability to land within a hundred
meters from a target, is an excellent example about the future
challenges in space applications [1], [2]. The science return
of planetary missions could be highly increased by improving
the precision of autonomous landing. However, despite many
efforts done, we are still far reaching an ideal level of
precision. A guidance navigation and control (GNC) system
capable to withstand the uncertainties encountered during the
entry descent and landing (EDL) phases is needed to allow
a spacecraft to closely target the most interesting scientific
areas. From a control point of view, also the atmospheric
ascent phase is strictly related to the pin-point landing. To
date, each launch have to be carefully planned with large
advance accounting for wide tolerances on all engineering
aspects; moreover the launch windows are hardly constrained
to the actual weather conditions that can be precisely known
only a few hours in advance. These issues have a great
impact on the time needed, the resources, and costs involved
in launch arrangements. An effective launcher vehicle (LV)
control strategy could allow one to reduce the tolerances on
the requirements, saving time and avoiding delays often due
to weather conditions. Reusability is another key area that
could be enabled by a novel GNC architecture. Recovering
LV’s stages to fly them several times will both reduce
costs and increase mission responsiveness [3]. Recently,
notable steps forward in this direction have been taken
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also by private space companies like SpaceX [4] that is
currently testing a promising first stage re-entry technology.
Focusing on GNC tasks, the use of on-line model-based
control strategies with adaptive prediction horizons is a key
enabling technology that could lead to unprecedented levels
of autonomy for a wide range of space missions. Model
predictive control (MPC) is a systematic design approach
for controlling multivariable systems, maximizing their per-
formance under various restrictions on input and output
variables, that can automatically and smoothly reconfigure
to structural or operational changes. The MPC rationale is
to use a dynamical model of the process to be controlled
to predict its future evolution and choose the best control
action. In this respect, MPC can be considered as an on-line
adaptive control strategy using prediction models that can
be possibly updated at run-time to reflect the actual status
of the system such as in case of failures and degradations.
In the MPC field, various research groups [5]–[13] as well
as previous ESA studies, such as ORCSAT and ROBMPC
projects, have already lead to novel control strategies, and
software packages, like ESA’s MPCTool and MPCSofT,
that assessed successful real-time MPC implementations for
Martian orbit rendezvous [14] and planetary rover control
problems [15], [16]. Continuous advances in more efficient
and higher performance computational platforms, combined
with the availability of fast and reliable optimization codes,
make MPC an even more appealing candidate technology for
embedded space applications [17], [18]. Convex optimization
solvers are indeed the core of this control framework. In the
last few years, advances in the area of the second order cone
programming (SOCP) lead to flights demonstrating on-line
embedded optimization [19]. This important result relies on
the “lossless convexification” technique [20]–[22]. A convex
optimization branch that is crucial to MPC is quadratic
programing (QP). Newly developed algorithms [23]–[25] and
software [26], with dedicated auto-coding functions are en-
abling the use of MPC in effective on-board prototyping tools
that can solve in real time large scale, fast and constrained
optimal control problems.

In this paper, starting from the definition of the thrust
vectoring control problem, we will go from the theoretical
design to the implementation and validation of the proposed
MPC controller on an embedded processor, providing sim-
ulation examples and execution time measurement to assess
the feasibility of the presented approach.

This paper is organized as follows: Section II details
the proposed MPC design for thrust vectoring control; in
Section III a simplified Mars powered descent case study
is presented along with simulation results and consider-
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ations about the problem’s computational complexity; in
Section IV, focusing on performance analysis, we revise our
embedded MPC implementation, while in Section V some
conclusions are drawn.

II. MPC FOR THRUST VECTORING CONTROL

From a control point of view, the powered descent (PD)
phase for pin-point landing is a thrust vectoring problem.
The attitude, the velocity and the position of a LV or a
lander can be indeed regulated by means of its thrust vector
that is defined as the magnitude and direction of the forces
generated by the spacecraft’s engines and control surfaces.

A. Prediction Model
In the presented study the vehicle has been modeled as

a rigid body with six degrees of freedom (6-DoF). The
aerodynamics, the gravity and the propulsion system generate
the forces and the torques about the spacecraft’s center
of gravity (CoG) that influence its motion. Introducing the
inertial and body reference frames as depicted in Figure 1,
where the first one is fixed in space, while the second
one is moving linked to the rocket, it is possible to define
the equations of motion (EoM) for the translational and
rotational dynamics by means of Newton’s second law:
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Fig. 1. Inertial [XI ,YI ,ZI ] and body [Xb,Yb,Zb] frames
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where [ẍ ÿ z̈]> are the body’s linear accelerations along the
XI , YI , and ZI inertial frame axes respectively, m is mass,
Cb

I is the rotation matrix between the body and the inertial
frames, [Fbx,Fby,Fbz]> are the forces applied to the body and
[gIx gIy gIz]

> is the gravity force vector already expressed
in the inertial frame. In (1b) [f̈ q̈ ÿ]> are the angular

accelerations, Ixx, Ixy, Ixz, Iyy, Iyz, Izz are the inertia tensor
components, [Mx,My,Mz]> are the moments about the CoG,
and ⇥ denotes the cross product operator. While a detailed
description of 6-DoF dynamics can be found in [27],
considering the application domain, it is safe to assume the
following model simplifications: a) no planet rotation; b)
flat planet surface; c) uniform gravity field; d) negligible
aerodynamic effects; e) diagonal inertia matrix. Moreover
regarding the control inputs a special consideration have to
be made. Depending on the rocket’s design, the spacecraft
can have single or multiple nozzles, that can be gimbaled
or fixed, and also the thrust magnitude can be predefined or
dynamically adjusted. The vehicle can be steered by varying
the nozzle’s swiveling angle, exploiting the differential
thrust or, in a more flexible fashion, by a combination of
these methods. Furthermore, during atmospheric flight, fins
or other passive aerodynamic control surfaces could be used.
The actuators allocation problem can be then addressed
by means of a dedicated module or, if needed, it can be
included in the optimal control design. Because of the great
variability in the rocket’s actuation scheme, for the sake of
generality in this paper we will consider four virtual control
inputs U1,U2,U3,U4 to pilot the spacecraft, where U1 is the
rolling moment, U2 is the pitching moment, U3 is the yawing
moment, and U4 is the thrust force. The main idea behind
our control framework is not to design a set of controllers
to follow a previously designed optimal trajectory, but
rather is to use MPC to optimally steer the vehicle toward a
desired state. In other words the trajectory is a controller’s
outcome and not a flight reference or constraint. Following
the EoM (1) and the mentioned simplifying assumptions, by
adopting Euler’s angles the rocket’s dynamical model used
the control design can be written as

ẍ = U4
m cosq cosy �g, ÿ = U4

m cosq siny, z̈ =�U4
m sinq

f̈ = U1
Ixx
, q̈ = U2

Iyy
, ÿ = U3

Izz
(2)

By linearizing (2) with U4 = m ·g and [f ,q ,y]> = [0,0,0]>,
such that the thrust compensates for the weight force
and the rocket nose is pointing upwards, it is possible
to obtain the linear time invariant (LTI) model that, once
discretized with a sampling time of Ts = 0.01 s, will be
used as prediction model in the following MPC design.
This linearization point is similar to the hovering condition
in rotary winged aircraft, that is the rocket stands still at
mid air balancing the externally applied constant forces.
For this optimal control problem we define a constraint
set on both state and input variables. Specifically, hard
box constraints on Ui, i = 1, . . . ,4, soft box constraints on
attitude angles q ,f ,y , plus an additional hard one on the
minimum altitude, z � 0. Depending on the mission scenario
this set could be extended to include for instance constraints
on angular velocity to prevent excessive mechanical stress
on the rocket.
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B. Linear MPC Problem Formulation
We can now formulate the MPC problem through equa-

tions (3a), and (3b),
8
><

>:

c(k+1) = Ac(k)+Bu(k)+ f
h(k) = Eh c(k)+Hh u(k)+Ph Du(k)
g(k) = Eg c(k)+Hg u(k)+Pg Du(k)

(3a)

8
>>>>>>><

>>>>>>>:

min
Du,e1,e2

r1e2
1 +r2e2

2 +
N�1
Â

k=0
(h(k)� r(k))>(h(k)� r(k))

subject to

Du(k) = 0, 8k = Nu, ...,N
g(k) gmax +Vg e1, k = 0, ...,Ncy �1

(3b)

where c = [f , ḟ ,q , q̇ ,y, ẏ,x, ẋ,y, ẏ,z, ż]> is the state vec-
tor of the dynamical system, k is the discrete-time
instant, u = [U1,U2,U3,U4] is the control input vector,
Du(k) = u(k)�u(k�1) is the input increment, h is the
“performance” vector defining what we want to optimize,
g is the constraint vector, and E,H,P are matrices of op-
portune dimensions used to shape MPC performance and
constraints. In Eq. (3b) r1 and r2 are weighting terms for
the slack variables e1 and e2 respectively, used to deal with
infeasibility, N is the prediction horizon, r is the reference
vector, Nu is the control horizon, Ncy is the constraint horizon,
gmax is the constraint upper-bound vector, and Vg defines
whether a constraint is hard (Vg = 0) or soft (Vg > 0). At
each time instant k, the linear MPC controller sets u(k) =
u(k� 1)+Du⇤(k), where Du⇤(k) is the first element of the
computed optimal input sequence. We complete the MPC
setup by mapping equations (3a), and (3b) in the QP problem

8
<

:

min
w

1
2 w>Hw+ c>w

subject to Gw  b
(4)

In (4) w represents the optimization vector, H is the Hessian
matrix, c the linear weighting vector, G is the matrix of
linear constraints, and b is the right-hand-side vector with
dimensions

H 2 R nvar⇥nvar c 2 R nvar G 2 R ncon⇥nvar

b 2 R ncon nvar = nu ·Nu ncon = Ncy ·nc
(5)

where nu is the number of control inputs, and nc is the
number of constraints, corresponding to the rows in the Eg
matrix.

III. MARS POWERED DESCENT CASE STUDY

We test the MPC setup (3) in a simulation scenario similar
to the one detailed in [28]. The powered descent is the final
step in the EDL sequence that starts after the release of
the parachute and terminates with the touchdown. Firing the
rocket engine, dynamically adjusting the thrust vector, the
controller has to guide the lander to the desired position,
computing the optimal descent trajectory and the actuation
profile on-line in real-time. The simulation starts with the
lander at [x,y,z]> = [1500,500,2000]> m, the initial velocity

vector is [ẋ, ẏ, ż]> = [�75,40,100]> m/s, and the initial
spacecraft’s attitude is aligned with the velocity vector having
the nozzle(s) pointing downward leading to [f ,q ,y]> =
[0,0.8863,�0.49]> rad. Without loss of generality the set-
point is zero on all state variables. Regarding the envi-
ronment and the lander parameters, Mars gravity is set to
g = 3.711 m/s2, the spacecraft mass is m = 919.200 Kg,
while the principal components of the inertia matrix are
Ixx = 330.472 Kg · m2, Iyy = 332.721 Kg · m2, and Izz =
334.931 Kg ·m2.

A. Simulation Results

The MPC horizons are set to N = 20, Nu = 1, Ncy = 5. By
shaping the performance vector h(k) in (3a) by means of
Eh , Hh , and Ph matrices it is possible to focus the controller
action on different aspects. For the simulations shown in
Figure 2, the performance variable h in (3a) is defined as

h =
p
[Wf Wḟ Wq Wq̇ Wy Wẏ Wx Wẋ Wy Wẏ Wz Wż ]c

+
p

[WU1 WU2 WU3 WU4 ]u+
p
[WDU1 WDU2 WDU3 WDU4 ]Du

(6)
where Wf = Wq = Wy = 5; Wḟ = 0.5 Wq̇ = Wẏ = 0.01;
Wx = 10; Wy =Wz = 1; Wẋ = 15; Wẏ =Wż = 0.5; WU1 =WU2 =
WU3 =WU4 = 0; WDU1 =WDU2 =WDU3 =WDU4 = 0. Varying
the weight on a state variable affects the effort and the speed
in tracking the corresponding reference cf. Figure 3 in where
only Wẏ and Wż were changed by setting them as Wẏ =Wż =
1. When increasing the weights on ẋ and ẏ the spacecraft
slows down faster, implying a different thrust modulation, an
alternative attitude time evolution, and a slower translation
on the x and y axes toward the landing point. Depending
on the application scenario, it may be advisable to adjust
the weighting factors to better meet mission requirements. A
detailed analysis about possible tuning for h(k) is beyond
the purpose of this paper, we will rather focus on the key
parameters in the QP that have the largest impact on the
computational effort required to converge to a solution. To
this end, some details about the selected QP solver are
needed.

B. Computational Complexity

For the implementation of the MPC controller we use
the accelerated dual gradient projection (GPAD) algorithm
of [23] for solving the QP (4). The method is particularly
suitable for embedded applications in that it is extremely
simple to program and involves only sums, products and
comparisons. Hence, it is a code that is very easy to ver-
ify, a fact of major importance for aerospace applications.
Additionally, GPAD comes with an a priori complexity
certification, that is an upper bound that can be computed
in advance on the maximum number of iterations required
to terminate the algorithm within a desired accuracy. One
additional detail is that GPAD assumes a strictly convex
primal problem, (i.e., the primal Hessian H in (4) needs to
be positive definite). The main drawbacks of dual methods
are that a) if stopped prematurely a feasible solution will
not be produced, b) the matrix vector operations require
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Fig. 2. Baseline simulation results
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Fig. 3. Alternative weighting simulation results

the computation of the dual Hessian matrix M = GH�1G>

which is generally of higher dimension than the primal
one, and c) as for primal methods, the convergence rate is
sensitive to problem scaling. To face these issues we have
a) to ensure that the computational time for the maximum
number of iterations will not exceed the given controller
sampling time, b) minimize the QP matrices dimension,
and c) precondition the QP problem to enforce numerical

stability. It is worth noting that the only parameters that affect
uniquely the required number of iterations are the upper
bounds on the primal optimality and infeasibility tolerances
eV ,eG. By setting eV = eG = 10�1, the QP solver converges
within nitermax = 6 iterations, while if eV = eG = 10�8 the
same QP problem requires nitermax = 90 iterations in the
worst case. Varying such bounds influences the quality of the
solution, so a trade off must be found. Recently [29] showed
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that MPC controllers can preserve stabilization properties in
spite of numerical inaccuracy. In the simulations presented
in Section III-A we used the tolerances eV = 10�4 and
eG = 10�4, which lead to nitermax = 23 iterations maximum to
converge without showing any noticeable degradation in the
solution’s quality with respect to smaller tolerance values.
All the other variables, such as the MPC’s horizons and the
enforced constraints, affect not only the convergence rate,
but also the dimension of the QP problem as detailed in
Eq. (5). For the GNC application examined in this paper we
have nvar = 4 optimization variables, with a total number
of constraints ncon = 35 or ncon = 55 if including also box
constraints on roll and pitch on top of the minimum altitude
limit and the lower and upper bounds for the control inputs.
Concerning problem scaling, let the dual QP problem be
defined as 8

<

:

min
v

1
2 v>Mv+d>v

subject to v � 0
(7)

where v, is the dual optimization variable, M = GH�1G>

and d = GH�1c+b. A simple and effective way to scale is
to define the following matrix [30]

P = diag
✓

1p
Mii

◆
(8)

let v = Pvs, and consider the scaled dual QP problem
8
<

:

min
vs

1
2 v>s (PMP)vs +d>Pvs

subject to vs � 0
(9)

Without scaling the dual QP as in (9), for the same problem
the maximum number of iterations grows from nitermax = 23
to nitermax = 1337.

IV. EMBEDDED MPC
To asses the performance of the proposed MPC design

we performed Processor In the Loop (PIL) simulations [31]
on a popular embedded board, namely the BeagleBone
Black (BBB). In these tests, while Simulink computes the
plant’s response, the embedded processor is running the MPC
controller. The core of the BBB is an ARM Cortex-A8
processor running at 1 GHz. The embedded target support
available in Matlab R2014b provides an easy and effective
way to generate C code out of the EML Simulink block used
to implement the controller. We selected the most computa-
tional demanding phase of the PD and measured the CPU
time required by the MPC controller running on the board.
We tested it against different problem sizes and number of
iterations. The results are detailed in Table I. As baseline we
compared the embedded CPU results with a MEX version
of the controller running on an Intel Xeon E5507 clocked at
2.27 GHz. All the time values are expressed in milliseconds.
We recall that the control loop frequency is 100Hz hence
each single MPC step cannot take longer than Tmax = 10ms.

In Figure 4 we show the measured execution time for the
QP problem detailed in the first row of Table I. The time
variance among different runs is mainly due to the processor

TABLE I
ELAPSED CPU TIME

ncon niter BBB Xeon
Tmax Tavg Tmax Tavg

35 23 0.66 0.51 0.0153 0.0152
55 83 3.18 2.9 0.086 0.085
140 23 1.86 1.77 0.075 0.07
220 74 8.67 8.31 0.34 0.3
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1 200 400 600 800 1000 1200

T
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e 
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Fig. 4. Timing measurements on the BeagleBone Black board

architecture [32] and to the non-hard real-time nature of
tasks created by the PIL verification framework provided by
Simulink. Clearly, in a production environment hard real-
time performances must be ensured. The longer the job has
to be executed, the higher is the probability for the task to be
preempted, which can lead to deadline miss and catastrophic
consequences on the GNC side. In Figure 5 we show an
example of this behavior. While the general trend tracks
the number of iterations of the QP solver, the spikes in the
recorded task execution time are due to the Linux scheduler
that has to distribute the available computational resources
among all the concurrently running processes. When the
CPU resources are assigned to a different process, the MPC
task is suspended and then resumed when the CPU is newly
available. This wait time translates in delays in the execution
of the MPC code that can lead to a violation of the previously
fixed 10ms time constraint.
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Fig. 5. Spikes due to task preemption
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It is worth noting that also the code executing on the
BBB is using double-precision floating point arithmetic,
switching to single-precision will cut the timing at least
by a factor of two. For the ncon = 35, niter = 23 test the
time is Tmax = 0.24ms, Tavg = 0.14ms. No attempt was done
to improve and speed-up the automatically generated code;
significant improvements can be achieved by coding solvers
directly in C or by adopting different QP solvers [33].

V. CONCLUSIONS

This paper has shown how to take advantage of MPC
techniques not only for path following but also to guide
and control a lander to a desired position without a pre-
configured path, taking into account the full system dynamics
and actuator and state constraints. Recently developed QP
solvers, such as GPAD, and embedded processors like the
ARM Cortex-A family are key enabling technologies to meet
the real-time requirements for spacecraft control applications,
releasing linear MPC from being bound to slow processes
and high performance computing platforms. The LTI nature
of the models used in this paper did not consider mass budget
and the achieved landing ellipse; the investigation has been
initiated in order to understand and benchmark the numerical
performance of MPC on various targets. Ongoing and future
work will include actuation delays, wind and other external
disturbances along with a full linear parameter varying (LPV)
setup. As this involves the extra load of constructing the QP
problem on-line, a primary concern will be guaranteeing it
can be still implemented in low-power embedded platforms.
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generation for embedded, real-time second order cone programming,”
in Proc. IFAC World Congress, 2014.

[23] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans.
Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[24] B. O’Donoghue, G. Stathopoulos, and S. P. Boyd, “A splitting method
for optimal control.” IEEE Trans. Control Systems Technologies,
vol. 21, no. 6, pp. 2432–2442, 2013.

[25] P. Patrinos, L. Stella, and A. Bemporad, “Douglas-Rachford splitting:
Complexity estimates and accelerated variants,” in Proc. 53rd Conf.
on Decision and Control, Los Angeles, CA, 2014, pp. 4234–4239.

[26] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1,
pp. 1–27, 2012.

[27] A. L. Greensite, Analysis and design of space vehicle flight control
systems. New York: Spartan Books, 1970, vol. 11.
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