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Abstract— This paper describes a model predictive control
(MPC) approach for discrete-time linear systems with hard
constraints on control and state variables. The finite-horizon
optimal control problem is formulated as a quadratic program
(QP), and solved using a recently proposed dual fast gradient-
projection method. More precisely, in a finite number of itera-
tions of the mentioned optimization algorithm, a solution with
bounded levels of infeasibility and suboptimality is determined
for an alternative problem. This solution is shown to be a
feasible suboptimal solution for the original problem, leading
to exponential stability of the closed-loop system. The proposed
strategy is particularly useful in embedded control applications,
for which real-time constraints and limited computing resources
can impose tight bounds on the possible number of iterations
that can be performed within the scheduled sampling time.

I. INTRODUCTION

Model predictive control (MPC) is an approach to design
feedback control laws that optimize a given closed-loop
performance index, taking into account the presence of
constraints on input and state variables (see, e.g., [1] and
the references therein). In the past, MPC could be only
applied to slow processes (e.g., chemical processes), due to
the computation time required for solving an optimization
problem at each sampling interval [2]. However, thanks to
the increase of computing power of modern digital devices,
and to the study of fast algorithms for on-line optimization,
the use of MPC has gradually moved to fast processes, and
the interest towards MPC is increasing in application fields
like mechatronics, automotive, and aerospace.

In the most common case of linear MPC, the problem
formulation is based on linear prediction models, linear
constraints on inputs and states, and quadratic cost functions.
The resulting optimization problem to be solved on line is
translated into a quadratic program (QP), for which fast
solvers have been introduced, mainly based on active-set
methods [3]–[5], and interior-point methods [6], [7]. How-
ever, one of the main issues in the practical implementation
of embedded controllers is the certification of the worst-case
execution time, in order to satisfy requirements for hard real-
time systems. For this reason, the recent research line on
real-time MPC aims at designing optimization algorithms
that give an acceptable (usually, suboptimal) solution of the
QP problem in a number of iterations that can be bounded
a priori. In addition, the algorithm should be as simple as
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possible (to be software-certifiable), and should require a
small amount of memory (to allow its use in microcontrollers
and programmable or application-specific integrated circuits,
see, e.g., [8]).

A first possibility to meet the above requirements is the so-
called explicit MPC approach introduced in [9], where the
optimal control input is obtained during the design phase
as an explicit function of the state vector, by means of
parametric optimization. Such a function is piecewise affine
and continuous, and can be easily implemented in embedded
control systems, giving a precise estimate on the worst-case
execution time. However, the use of explicit MPC is limited
to relatively small problems (typical reasonable values are
one or two control inputs, prediction horizon shorter than
ten steps, up to twelve states+references).

Alternatively, optimization algorithms with guaranteed and
explicitly stated non-asymptotic convergence rate have been
proposed with the goal of providing a solution of the QP in a
prescribed time. Recently, different variants of fast gradient
methods, first proposed by Nesterov [10], [11] have been
applied to MPC [12]–[15]. In [16] the authors proposed an
accelerated dual gradient projection method based on [10],
called GPAD (see also [17], [18]). Although GPAD is a
dual method, bounds on the maximum number of iterations
required to achieve specified levels of primal suboptimality
and infeasibility are provided as complexity certificates.
In [19], a non-accelerated version of GPAD is proposed
for embedded MPC in hardware platforms with fixed-point
arithmetic, where guidelines are provided for selecting the
minimum number of fractional and integer bits that guarantee
convergence to an approximate solution within a prespecified
tolerance on primal suboptimality and infeasibility, after a
specific number of iterations.

The main motivation of the present work is to use these
bounds to derive a modification of the original MPC problem,
in order to be able to apply the algorithm in [18] (or any
other algorithm which guarantees bounded infeasibility and
suboptimality, e.g. [19]) and obtain an asymptotically stable
closed-loop system within a given domain of attraction.The
problem of guaranteeing stability in the presence of subopti-
mal solutions has been pioneered in [20], and subsequently
studied for instance in [21]–[23]. An important result as-
suming a-priori bounds on the level of suboptimality was
presented in [24], where the authors proved the convergence
of the closed-loop system (in the general framework of
MPC for piecewise-continuous systems) to a polytopic set
containing the origin. Following this research direction, we
consider the case in which the solution might be (slightly)
infeasible, with the maximum constraint violation bounded
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a priori by the feasibility tolerance set in the QP solution
code, a rather frequent situation in many QP solvers.

After introducing some preliminary results in Section II,
Section III states the standard linear MPC problem. Assum-
ing to achieve the optimal solution at each sampling instant,
the classical results on recursive feasibility and stability are
recalled from [1]. Then, in Section IV, an alternative MPC
problem is stated, in order to cope with the presence of
solutions with bounded infeasibility and suboptimality. If
these bounds are under a certain threshold, the origin of
the closed-loop system is proved exponentially stable, and
a region of attraction is determined. Also, it is proven that
the alternative solution is a feasible (though suboptimal)
solution of the standard MPC problem, and tends to the
latter as the bounds tend to zero. In Section V, a slightly
modified version of the QP solver in [18] is applied to the
problem introduced in Section IV, showing that the resulting
MPC law can provide stability and invariance for the closed-
loop system within a guaranteed and a-priori determined
computation time. Simulation results are presented in Section
VI. Finally, conclusions are drawn in Section VII. Due to
space limitation, the proofs of lemmas and theorems are
omitted, and are available upon request to the authors.

II. BASIC NOTATIONS, DEFINITIONS, AND RESULTS

Let R>0, R≥0, N>0 and N≥0 denote the sets of pos-
itive reals, non-negative reals, positive integers and non-
negative integers, respectively. Given two integers a ≤ b,
let N[a,b] , {a, a+ 1, ..., b}, and Nb , {0, 1, ..., b}. Given a
vector v ∈ Rn, let ‖v‖ denote its Euclidean norm. Given
two vectors u, v ∈ Rn, the notation u ≤ v refers to
component-wise inequalities. Given a matrix M ∈ Rn×n,
M ′ is its transpose, ρ(M) its spectral radius, and let its
positive definiteness be indicated as M � 0. If M is also
symmetric, we use λmin(M) and λmax(M) to indicate its
minimum and maximum eigenvalues, respectively. Also, we
define 1n , [1 . . . 1]′ ∈ Rn. Given a set X ⊆ Rn, its
interior is denoted by int(X ). Given λ ∈ R≥0, we define
λX , {x ∈ Rn : x = λa, a ∈ X}.

Consider a discrete-time autonomous nonlinear system

x(t+ 1) = ϕ(x(t)) (1)

where x ∈ Rnx is the state vector, and ϕ(·) is a nonlinear
function.

Definition 1: For a given λ ∈ R with 0 < λ ≤ 1, the
set X ⊆ Rnx with 0 ∈ int(X ) is called a λ-contractive set
for system (1) if, for all x ∈ X , one has ϕ(x(t)) ∈ λX . A
1-contractive set is called positively invariant.

III. PROBLEM STATEMENT

The controlled plant is described by the following discrete-
time LTI state-space model

x(t+ 1) = Ax(t) +Bu(t) (2)

where t ∈ N≥0, x ∈ Rnx , u ∈ Rnu , and it is assumed that
the state vector x(t) is available for feedback at each time

t. The state and input values can be represented in a single
vector

z ,

[
x
u

]
∈ Rnz , nz , nx + nu

and are required to satisfy the constraint

z ∈ Z , {z ∈ Rnz : Fzz ≤ 1sz} (3)

with Fz =
[
F G

]
, and F ∈ Rsz×nx , G ∈ Rsz×nu , sz ∈

N>0. Note that (3) implies that Z is nonempty, compact,
and 0 ∈ int(Z). Moreover, the representation of Z in (3)
is without loss of generality [25], since it can represent any
polytope that contains the origin in its interior.

Assumption 1: the pair (A,B) is stabilizable.

A. Standard MPC problem

The problem of regulating x(t) to the origin can be solved
by a standard MPC law for linear systems. In particular,
we refer to the procedure hereafter described as a starting
point for the theoretical development of the paper. Given
two weight matrices Q ∈ Rnx×nx and R ∈ Rnu×nu , defined
such that Q = Q′ � 0 and R = R′ � 0, we define the stage
cost `(x, u) , 1

2 (x′Qx + u′Ru). Also, we define the linear
auxiliary control law, κ(x) , Kx, where K ∈ Rnu×nx is
the gain associated to the infinite-horizon linear quadratic
regulator (IH-LQR) defined by matrixes A, B, Q, and R.
The application of the auxiliary control law determines the
closed-loop system

x(t+ 1) = AKx(t) (4)

where AK , A+BK. By virtue of Assumption 1, ρ(AK) <
1. The terminal cost is defined as Vf (x) , 1

2x
′Px, where

P = P ′ � 0 is the solution of the algebraic Riccati equation
associated the above-mentioned IH-LQR. Finally, we define
the terminal set as

Xf , {x ∈ Rnx : Ffx ≤ 1sf }, (5)

with Ff ∈ Rsf×nx , sf ∈ N>0, which is assumed to be a
(not necessarily maximal) positively invariant set in

XK , {x ∈ Rnx |(F +GK)x ≤ 1sz}, (6)

for the closed loop system (4), i.e.,

x ∈ Xf ⇒
[

x
Kx

]
∈ Z, AKx ∈ Xf . (7)

The MPC control law is determined by solving the following
optimization problem:

V ?(x) = min{VN (z)|z ∈ SN (x)}, (8)

where z ,
[
z′0 · · · z′N−1 x′N

]′
, zk ,

[
x′k u′k

]′
, the

finite-horizon cost function is

VN (z) =

N−1∑
k=0

`(xk, uk) + `N (xN ), (9)

the parametric constraint set is

SN (x) = {z ∈ A(x) | zk ∈ Z, k ∈ NN−1, xN ∈ Xf } ,
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with

A(x) = {z| x0 = x, xk+1 = Axk +Buk, k ∈ NN−1},

while N ∈ N>0 is the length of the prediction horizon.
The set of states x for which a feasible solution of (8) with
horizon length N exists is referred to as DN . It is well known
that for x ∈ DN , the (unique) optimal state-input sequence,
z?(x), can be obtained by solving a quadratic program (QP).
Then, according to the receding horizon principle, only the
first control move u?0(x) is applied to the system at time
t, while the optimization process with the same prediction
horizon N is repeated at time t + 1. The following result
(which is an extension of the result of Theorem 2.2.4 in [1]
to the case of mixed constraints) holds:

Theorem 1: Let Assumption 1 hold for system (2) and
apply, at each t ∈ N≥0, the control law

u(t) = u?0(x(t)). (10)

Then, the set DN is positively invariant for the closed-loop
system (2), (10). Moreover, the origin is an exponentially
stable equilibrium point of the closed-loop system with
domain of attraction equal to DN .

The above described MPC strategy requires finding, at
each time instant t, the optimal solution of (8). However,
in practice it can happen that there is no guarantee that the
control sequence obtained from the QP solver is optimal,
not even feasible, especially if the QP solution algorithm
cannot exceed a pre-determined number of iterations, due
to real-time requirements. In the next section, we formulate
an alternative problem with respect to (8). This latter is
modified, in order to determine a stabilizing control law,
assuming that known bounds on suboptimality and constraint
violation are given.

IV. ALTERNATIVE MPC PROBLEM

Given a scalar ε ∈ R≥0 (which is a design parameter
whose meaning will be clarified in Section V) and k ∈ N>0,
we define

Zεk , (1− kε)Z
= {z ∈ Rnz | Fzz ≤ (1− kε)1sz} ⊆ Z. (11)

Assumption 2: The nonnegative scalar ε satisfies

ε < min
{

1
N , 1− ρ(AK)

}
. (12)

The first term in the min in (12) implies that 0 ∈ int(ZεN ),
while the second term implies that ρ((1 − ε)−1AK) < 1,
which by [26, Lemma 3], [27, Theorem 2.1], ensures that the
maximal (1 − ε)–contractive set for (4) contains the origin
in its interior. As ρ(AK) < 1, an ε satisfying (12) always
exists. A different terminal set with respect to Xf is defined
as

X εf ,
{
x ∈ Rnx | F εfx ≤ 1sεf

}
, (13)

with F εf ∈ Rs
ε
f×nx and sεf ∈ N>0, and is assumed to be a

(not necessarily maximal) (1− ε)-contractive set in

X εK , {x ∈ Rnx | (F +GK)x ≤ (1−Nε)1sz}, (14)

for the closed-loop system (4), i.e.,

x ∈ X εf ⇒
[

x
Kx

]
∈ ZεN , AKx ∈ (1− ε)X εf . (15)

Notice that by Assumption 2, such a set exists. The set (1−
ε)X εf can be described as

(1− ε)X εf =
{
x ∈ Rnx | F εfx ≤ (1− ε)1sεf

}
(16)

which is analogous to the definition of the set Zεk in (11).
We are now ready to introduce the modified finite-horizon
optimal control problem

V ?ε (x) = min{VN (z)| z ∈ SεN (x)}, (17)

where

SεN (x)=
{
z∈A(x)

∣∣ zk∈Zεk+1, k∈NN−1, xN ∈ (1− ε)X εf
}
.

The set DεN is defined as the set of states x for which there
exists a feasible solution for (17). For every x ∈ DεN , the
unique optimal solution of (17) is denoted by z?ε (x).

For every x ∈ DεN , we suppose that a vector z̄(x) ∈
RNnz+nx can be computed, satisfying the following assump-
tion:

Assumption 3: For every x ∈ DεN , vector z̄(x) =[
z̄′0 · · · z̄′N−1 x̄′N

]′
is such that

VN (z̄(x))− V ?ε (x) ≤ δ, (18a)

z̄(x) ∈ A(x), (18b)

z̄k ∈ Zεk, k ∈ NN−1, (18c)

x̄N ∈ X εf , (18d)

z̄(x) = z?ε (x), if x ∈ X εf , (18e)

where z̄k , [x̄′k ū
′
k]′, k ∈ NN−1 and δ ∈ R≥0 is a constant

to be determined as a tuning parameter (see Section V),
analogously to ε. For each x ∈ DεN , let Zε,δ(x) denote the set
of all vectors z̄(x) ∈ RNnz+nx satisfying (18), and Uε,δ(x)
the set of all ū0(x) corresponding to vectors z̄(x).

Remark 1: Conditions (18c)-(18d) imply that the se-
quence z̄(x) leads to a maximum violation of each of the
Nsz + sεf linear inequalities, zk ∈ Zεk+1, k ∈ NN−1,
xN ∈ (1−ε)X εf which is equal to ε. Also notice that Zε,δ(x)
(and consequently Uε,δ(x)) is nonempty for any x ∈ DεN ,
since it contains z?ε (x).
The following lemma will be needed to prove the main result
of this section.

Lemma 2: If Assumptions 1, 2, 3 hold, then

VN (z̄) = V ?ε (x) = V ?(x) = Vf (x), x ∈ X εf , (19)

for any z̄ ∈ Zε,δ(x). �
In order to prove the theoretical properties of the proposed

control law, the following technical assumption is introduced.
Assumption 4: There exists ξ ∈ R>0, with ξ < λmin(Q),

such that

Bξ ,
{
x ∈ Rnx | ‖x‖2 ≤ 2δ

λmin(Q)− ξ

}
⊆ X εf .
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Analogously to the considerations made for Assumption 2,
for any given X εf of the form (13) it is possible to satisfy
Assumption 4 if the parameter δ is chosen to be small
enough.

Theorem 3: Let Assumptions 1-4 be satisfied and consider
the closed-loop system

x(t+ 1) = ϕ(x(t)) = Ax(t) +Bµ(x(t)), (20)

where µ(x(t)) ∈ Uε,δ(x(t)). Then, the following hold:
(i) recursive feasibility for (17) is ensured, i.e., the set DεN

is a positively invariant set for the closed-loop system;
(ii) (x(t), µ(x(t))) ∈ Z , t ∈ N≥0;

(iii) the origin is an exponentially stable equilibrium point
for system (20) with domain of attraction DεN . �

Remark 2: Note that (18e) plays a fundamental role in
proving the exponential stability of the origin, and the
assumption that (18e) holds will be justified in Section V.
However, in case (18e) does not hold, it would be still
possible to prove the convergence of the closed-loop system
to a polytope including the origin, analogously to Theorem
16 in [24]. �
In the particular case where δ = 0, i.e., VN (z̄) ≤ V ?ε (x), for
any z̄ ∈ Zε,δ(x) (which is possible since z̄ may not belong to
Sε(x)), Assumption 4 is not needed anymore, and the result
in Theorem 3 can be simplified as follows.

Corollary 1: Consider system (2) fulfilling Assumption 1,
and apply the control law u(t) = µ(x(t)) ∈ Uε,0(x(t)),
being Assumptions 2-3 satisfied. Then, all the assertions of
Theorem 3 are valid. �

Remark 3: Note that, if ε = 0, one has Zεk ≡ Z for all
k ∈ N≥0, and X εf could be chosen equal to Xf , also implying
DεN ≡ DN . This would lead to automatic satisfaction of
Assumption 2. Also, assuming δ = 0, Assumption 3 would
be satisfied, with conditions (18c)-(18d) coinciding with
zk ∈ Z , k ∈ NN−1, xN ∈ Xf . Assumption 4 would be
satisfied as well for any ξ < λmin(Q), since 0 ∈ X εf . In
conclusion, ε = δ = 0 would automatically lead to the
satisfaction of Assumptions 2-4. Therefore, Theorem 1 is
proven as a particular case of Theorem 3.

Remark 4: Note that any solution of (17) which satisfies
Assumption 3 is also a feasible, but possibly suboptimal,
solution of (8). Therefore, the alternative problem (17) can
be seen as a way to obtain a suboptimal solution to the
original problem (8), in the presence of known bounds on
suboptimality, δ, and on constraint violation, ε.

V. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

In this section we briefly summarize GPAD [16], a Dual
Accelerated Gradient Projection algorithm based on [10], see
also [17], [18]. Problem (17) can be expressed as

V ?ε (x)= min
z∈A(x)

{VN (z)|gε(z) ≤ 0}, (21)

where gε(z) = (gε1(z1), · · · , gεN (xN )), with gεk : Rnx+nu →
Rsz , k ∈ NN−1, defined as gεk(z) , Fzz−(1−(k+1)ε)1sz ,
while gεN (x) = F εfx− (1− ε)1sεf . The dual function

Ψε(y, x) , min
z∈A(x)

VN (z) + gε(z)′y

Algorithm 1 Accelerated Dual Gradient Projection (GPAD)

y(0) = y(−1) = 0. z̄(−1) = 0. θ0 = θ−1 = 1. ν ← 0
Step 1. w(ν) = y(ν) + θν(θ−1

ν−1 − 1)(y(ν) − y(ν−1)).
Step 2. z(ν) = arg minz∈A(x) VN (z) + w′(ν)g

ε(z)
Step 3. z̄(ν) = (1− θν)z̄(ν−1) + θνz(ν)

Step 4. If ‖[gε(z̄(ν))]+‖∞ ≤ ε, z̄(x)← z̄(ν) stop.
Step 5. y(ν+1) =

[
w(ν) + 1

LΨε
gε(z(ν))

]
+

Step 6. θν+1 =

√
θ4
ν+4θ2

ν−θ
2
ν

2 . ν ← ν + 1. Go to Step 1.

is Lipschitz-continuous, with Lipschitz constant equal to
LΨε . Algorithm 1 is based on the accelerated gra-
dient method of [10] applied to the dual problem
maxy≥0 Ψε(y, x).

The only complicated part of Algorithm 1 is Step 2. If
Problem (21) is posed in condensed form, i.e., the equality
constraints corresponding to the state equations have been
eliminated (off-line), then Step 2 consists of a matrix-vector
product which requires O(N2) operations. One can do even
better, by viewing Step 2 as an unconstrained linear-quadratic
optimal control problem, and applying the modified Riccati
approach proposed in [16], which requires only O(N) flops
to compute z(ν).

The following theorem provides an upper bound on the
maximum number of iterations to compute a solution that
satisfies Assumption 3, with δ = 0. Specifically, since the
initial dual iterate is equal to the zero vector, GPAD is doing
always better than optimal, therefore one has to care only
about ε-feasibility, and this is the only termination criterion
employed at Step 4. The following theorem gives complexity
and stability guarantees for Algorithm 1.

Theorem 4: For any x ∈ DεN Algorithm 1 will terminate
after at most

ν?ε =

⌈(
8LΨε∆ε

y

ε

) 1
2

⌉
− 2 (22)

iterations, with z̄(x) ∈ Zε,0(x), where

∆ε
y , max

x∈DεN
min

y?ε (x)∈Y?ε (x)
‖y?ε (x)‖1 (23)

The corresponding MPC law µ(x) = ū0(x) produced by
Algorithm 1 renders the origin exponentially stable for the
closed-loop system (20) with region of attraction DεN . �
Bounds on dual optimal solutions such as the one of (23)
are called Uniform Dual Bounds (UDBs) in [16], [18].

Remark 5: According to Theorem, 4 GPAD reaches ε-

feasibility in O
(√

LΨε∆ε
y

ε

)
iterations, while the complexity

estimate to achieve the same level of suboptimality for the
dual cost, which is the standard result found in the literature

(see, e.g., [10]) is of order O
(√

LΨε

ε ∆ε
y

)
, which may be

much larger.
Remark 6: Notice that the bound on dual optimal solu-

tions, ∆ε
y , must be valid on the entire DεN , in order to

be able to guarantee stability and invariance of domain of
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DεN for the closed-loop system. In [18], it is shown that
a tight upper bound to ∆ε

y can be computed by solving a
Linear Program with Linear Complementarity Constraints
(LPLCC) for which specialized efficient algorithms exist for
its solution. Notice that the techniques proposed in [15], [16],
lead to bounds which are valid only on a subset interior of
DεN , since they are based on Slater’s condition, and thus
cannot be used to derive an iteration bound on the entire set
DεN .

VI. SIMULATION EXAMPLES

Consider the problem of regulating the state of the
discrete-time unstable system

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

to the origin, where

A =

[
1.09 0.22
0.49 0.02

]
, B =

[
1.22 0.88
−0.78 −0.34

]
,

C =

[
1.34 −0.16
−3.19 −0.56

]
, D =

[
1.60 1.01
−0.68 0.77

]
.

The system is subject to input and output constraints,
‖u(t)‖∞ ≤ 1, ‖y(t)‖∞ ≤ 1. The state and input weight
matrices are

Q =

[
5.44 5.80
5.80 7.01

]
, R =

[
1.14 0.68
0.68 0.62

]
.

The IH-LQR gain is

K =

[
−1.50 −0.17
3.39 0.48

]
,

and ρ(AK) = 0.081, therefore, according to Assumption 2,
ε can take values smaller than min{ 1

N , 0.919}.
Table I gives bounds on the maximum number of iterations

on DεN , according to Theorem 4, for ε ∈ {10−3, 5 ×
10−3, 10−2, 5 × 10−2}. For each value of ε, ν?ε is the
theoretical bound given by Eq. (22), with a tight upper bound
on ∆ε

y (cf. (23)) computed by solving the LPLCC described
in [18], while ν̂?ε is the maximum number of iterations
encountered by simulating the closed-loop system from 100
different initial states belonging to DεN . One can observe that
for the specific example, the theoretical bound is quite tight.
For ε ∈ {10−3, 5 × 10−3, 10−2} it is less than twice the
observed iteration bound, while for ε = 5× 10−2 it reaches
a factor of around 2.7.

Another significant conclusion that can be drawn from
Table I, is that the iteration bounds ν?ε , ν̂?ε decrease as
ε increases. For embedded applications, this means that
according to hardware specifications and sampling time, one
can select the appropriate value of ε that will guarantee
stability and invariance of the corresponding closed-loop
system. However, the price to pay is a smaller region of
attraction, DεN , as can be seen in Figure 1.

Figures 2 and 3 depict the input and output trajectories
corresponding to the feedback law obtained by Algorithm 1
with ε = 5×10−2, and by solving the original MPC problem

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4
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2
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x
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ǫ = 0

ǫ = 10
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−3

ǫ = 10
−2

ǫ = 5 × 10
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Fig. 1: Region of Attraction, Dε
15, for ε ∈ {10−3, 5 ×

10−3, 10−2, 5× 10−2}.

TABLE I: Complexity certification analysis (ν?: Theoretical
Iteration Bound, ν̂?: Practical Iteration Bound)

N ε
10−3 5× 10−3 10−2 5× 10−2

ν?ε ν̂?ε ν?ε ν̂?ε ν?ε ν̂?ε ν? ν̂?ε
5 6868 3626 3086 1634 2195 1165 1188 447
7 6914 3651 3107 1645 2210 1173 1196 450
9 6934 3661 3116 1649 2217 1177 1199 452
11 6944 3667 3121 1652 2220 1178 1202 453
13 6950 3670 3123 1653 2222 1179 1408 531
15 6954 3672 3125 1654 1980 1180 1569 736

(8) (using GUROBI with maximum accuracy), respectively,
starting from x0 =

[
−0.101 −3.548

]′
. As expected, the

closed-loop system respects input and output constraints at
all times. Furthermore, the infinite-horizon closed-loop cost
is 52.98, very close to the one corresponding to the system
obtained by solving problem (8), which is 52.80.

VII. CONCLUSIONS

This paper has proposed an MPC approach for linear sys-
tems subject to mixed state-input constraints that is based on
a very-simple-to-implement QP algorithm and with proved
stability and suboptimality guarantees. Given the optimal
control problem to be solved, the QP algorithm, that is
based on dual gradient projection iterations, is applied to
a modified problem with tightened constraints, in order to
obtain a suboptimal solution of the original problem that
enjoys guarantees of recursive feasibility and exponential
stability. The solution is obtained at each time step within a
finite number of iterations of the QP algorithm, and tends to
the optimal solution of the original problem as the allowed
number of iterations tends to infinity. Finally, simulation
examples show the potential of the proposed approach in
practical applications of embedded MPC under hard real-
time constraints and low-cost control hardware.
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Fig. 2: Input trajectory for MPC law obtained using Algo-
rithm 1 applied to the modified MPC problem (17) (magenta,
dot-circle) and using the MPC law obtained by solving (8)
with high accuracy (blue, solid-asterisk).
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Fig. 3: Output trajectory for MPC law obtained using Algo-
rithm 1 applied to the modified MPC problem (17) (magenta,
dot-circle) and using the MPC law obtained by solving (8)
with high accuracy (blue, solid-asterisk).
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