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Abstract— This paper proposes a novel model predictive
control (MPC) scheme based on multiobjective optimization.
At each sampling time, the MPC control action is chosen
among the set of Pareto optimal solutions based on a time-
varying and state-dependent decision criterion. After recasting
the optimization problem associated with the multiobjective
MPC controller as a multiparametric multiobjective linear
problem, we show that it is possible to compute each Pareto
optimal solution as an explicit piecewise affine function of
the state vector and of the vector of weights to be assigned
to the different objectives in order to get that particular
Pareto optimal solution. Furthermore, we provide conditions
for selecting Pareto optimal solutions so that the MPC control
loop is asymptotically stable, and show the effectiveness of the
approach in simulation examples.

Index Terms— Model predictive control, multiobjective opti-
mization, multiparametric programming.

I. INTRODUCTION

Multiobjective control problems are based on the optimiza-
tion of multiple and often conflicting performance criteria in
order to take into account different control specifications.
Approaches to multiobjective control were proposed in the
nineties in [1] and, more recently, in the context of model
predictive control (MPC) in [2], where the authors, rather
than looking for Pareto optimal solutions in the standard mul-
tiobjective setting [3], look for the optimal control sequence
that minimizes the max of a finite number of objectives.

In this paper we consider a multiobjective MPC formu-
lation where the optimal control sequence corresponds to
one of the Pareto optimal solutions. As multiple Pareto
solutions may exist, we provide conditions for selecting
a Pareto solution that is optimal for a desired weighted
sum of the different objectives and that preserves closed-
loop asymptotic stability. To address computational issues, in
this paper we also investigate multiparametric multiobjective
linear programming (mp-moLP) to handle multiobjective
MPC problems with convex piecewise affine cost functions.
Multiparametric programming has been largely investigated
in the last eight years for providing explicit MPC solu-
tions [4].

For addressing the multiparametric multiobjective prob-
lem, in this paper we exploit the fact that Karush-Kuhn-
Tucker (KKT) conditions for multiobjective optimization
map into standard KKT conditions for a scalar optimization
problem where the cost function is the weighted sum of
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the objectives, and where different weights provide different
Pareto optimal solutions [3]. By exploiting this result, mp-
moLP can be rephrased as a multiparametric LP problem
with parameters (weights) in the cost function, and parame-
ters (current states) in the right-hand-side of the constraints.
Multiparametric LP problems with parameters in both the
cost function and the rhs of the constraints have been
addressed in [5]. Alternatively, by looking at the KKT
conditions, such problems can be treated as multiparametric
linear complementarity (mp-LC) problems (see the work
of [6] and references therein).

The results of this paper are extended in [7].

II. PROBLEM FORMULATION

Consider the problem of regulating a process modeled by
the following linear discrete-time system

x(t + 1) = Ax(t) + Bu(t) (1)

under the linear input and state constraints

x(t) ∈ X , u(t) ∈ U , (2)

where x ∈ R
n is the state vector, u ∈ R

m is the input vector,
and t ∈ N denotes the time step. We assume that X ⊆ R

n

and U ⊆ R
m are convex full-dimensional polyhedral sets

containing the origin in their interior.
The standard model predictive control (MPC) approach is

to introduce a performance criterion to be minimized repeat-
edly at each time step. In this paper, instead of minimizing
a single performance index, we consider the case of having
l + 1 different performance indices with l ∈ N, and follow
a multiobjective optimization approach. Multiobjective op-
timization is the process of simultaneously optimizing two
or more (possibly) conflicting objectives subject to certain
constraints. Consider the following multiobjective optimal
control problem

min
U

J(U, x) (3a)

subject to
xk+1 = Axk + Buk

x0 = x
xk ∈ X , k = 1, . . . , N
uk ∈ U k = 0, . . . , N − 1
xN ∈ Ω,

(3b)

where J(U, x) = [J0(U, x), J1(U, x), ..., Jl(U, x)]′ : R
s ×

R
n → R

l+1 is a vector function, l ≥ 1, s = Nm, U =
[u′0, . . . , u

′
N−1]

′ is the sequence of future control moves to
be optimized, xk is the k-steps ahead predicted state from
the initial state x = x(t), and Ω is a terminal polyhedral set
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containing the origin in its interior. Each performance index
is defined as

Ji(U, x) =
N−1∑
k=0

Li(xk, uk) + Fi(xN ), (4)

where the stage costs Li : R
n+m → R and the terminal costs

Fi : R
n → R, i = 0, . . . , l, satisfy the following assumption.

Assumption 1: For all i = 0, . . . , l function Li : R
n+m →

R is jointly convex with respect to (x, u), function Fi :
R

n → R is convex with respect to x, Li(0, 0) = 0,
Fi(0) = 0, and there exist K-functions1 σ, σ2 such that
Li(x, u) ≥ σ(‖x‖) for all u ∈ U , Fi(x) ≥ σ(‖x‖) and
Fi(x) ≤ σ2(‖x‖) for some norm ‖ · ‖.
In general, the performance indices Ji(U, x) are conflicting
and it is not possible to obtain a solution that optimizes
all the objectives at the same time. In order to obtain an
optimal input trajectory U , an additional decision criterion
must be taken into account that provides a trade-off between
the different performance indices. In this work we propose to
choose the optimal input trajectory among the set of Pareto
optimal solutions of (3).

Definition 1 ([3]): A feasible point Up is Pareto optimal
if and only if there exists no other feasible point U such
that Ji(U, x) ≤ Ji(Up, x), ∀i = 0, . . . , l and Jj(U, x) <
Jj(Up, x) for at least one index j ∈ {0, . . . , l}.

Finding the set of Pareto optimal solutions of a multiob-
jective optimization problem (i.e., solving the multiobjective
optimization problem) can be a hard task. For the class of
problems considered here it is possible to use the so-called
weighting method to solve the Problem (3) [3], [8] through
the scalarization of the multiobjective problem (3)

U∗(x, α) = arg min
U

α′J(U, x)

s.t. (3b)
(5)

where α = [α0, . . . , αl]′ ∈ R
l+1 is a weight vector, αi ≥ 0,

∀i = 0, . . . , l,
∑l

i=0 αi = 1.
As described in [8, Chapter 4.7.4], for each given α > 02

the solution U∗(x, α) of (5) is also a Pareto optimal solution
of (3), usually different for different values of α ∈ R

l+1. For
convex vector optimization problems as in (3), it is also true
that for every Pareto optimal point Up there exists a vector
α ≥ 0 such that Up = U∗(x, α). Hence, the corresponding
solutions of (5) for all possible weight vectors α cover the
whole set of Pareto optimal solutions of (3). We can either
restrict α > 0 in (5) or, alternatively, tolerate possibly non-
Pareto optimal solutions by leaving α ≥ 0. Both choices
are not harmful, as will be discussed in Remark 1. In
order to uniquely define a Pareto optimal solution to the
multiobjective MPC problem (3), at each time step t a
weight vector α(t) must be selected. The optimal future input
trajectory associated with the MPC controller is then given
by the optimizer of (3) for that particular weight vector.

1A K function σ : R → R is a strictly increasing function of its argument
and satisfies σ(0) = 0.

2Vector inequalities denote the corresponding set of element-wise com-
parisons.

A. Proposed multiobjective MPC scheme

In MPC design the performance index is used to tune the
properties of the closed-loop system (stability, robustness,
speed of convergence to the target state, etc.). In general,
different choices of weights in the performance index provide
a different closed-loop response. In this paper we propose
to use a time-varying target weight αd(t) ∈ R

l+1 as an
additional tuning parameter. On the other hand, arbitrary
switching of α(t) may lead to instability, so the objective
of the proposed MPC controller is to choose α(t) as close
as possible to the desired αd(t) at each sampling time t in
a way that closed-loop stability is guaranteed. Hence, let

α∗(x, αd, Ja) = arg min
α

f(α− αd) (6a)

s.t. V ∗(x, α) ≤ Ja (6b)
l∑

i=0

αi = 1 (6c)

αi ≥ 0, i = 0, . . . , l, (6d)

where V ∗ : R
n+l+1 → R is the value function associ-

ated with Problem (5), V ∗(x, α) = α′J(U∗(x, α), x), f :
R

l+1 → R is a convex function that penalizes the deviation
of α from the target weight vector αd and Ja is a value that
depends on the optimal solution of the MPC at the previous
time step, defined below in (7).

The proposed multiobjective MPC algorithm is summa-
rized by Algorithm II.1, which is executed at each time step t,
where, with a slight abuse of notation, we have set α∗(t) =
α∗(x(t), αd(t), Ja(t)) and U∗(t) = U∗(x(t), α∗(t)). Note
that the multiobjective MPC controller can be thought as a
stabilizing MPC controller with a time-varying and possibly
state-dependent performance index.

1. Acquire x(t), compute αd(t);
2. Let U∗(t − 1) = [u′0, u′1, . . . , uN−1]′, set Us(t) =

[u′1, u′2, . . . , u′N−1, (KxN )′]′, where xN is the optimal state for
time step t − 1 + N predicted at time t − 1 starting from x(t − 1);

3. Evaluate
Ja(t) = α∗(t − 1)′J(Us(t), x(t)); (7)

4. Compute α∗(t) by solving (6) for x = x(t), αd = αd(t), Ja = Ja(t);
5. Compute U∗(t) by solving (5) for x = x(t), α = α∗(t);
6. Set u(t) equal to the first optimal of U∗(t);
7. End.

Algorithm II.1: Multiobjective MPC algorithm

B. Stability properties

Closed-loop stability properties are guaranteed by fol-
lowing a standard terminal region/terminal constraint ap-
proach [9].

Theorem 1: Let Li and Fi, i = 0, . . . , l, satisfy Assump-
tion 1. Assume that there exists a linear feedback u = Kx
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such that the following conditions hold:

Fi((A + BK)x)− Fi(x) + Li(x, Kx) ≤ 0,

i = 0, . . . , l (8a)
x ∈ Ω → (A + BK)x ∈ Ω, (8b)
K(x) ∈ U, ∀x ∈ Ω. (8c)

Then, if Problem (3) is feasible at t = 0, Problem (3) is
feasible at all time steps t ≥ 0 and system (1) in closed-
loop with the MPC controller defined by Algorithm II.1 is
asymptotically stable.

Proof: See [7] for a complete proof.
Since now on, we assume that in (4) the costs are convex

and piecewise affine. For example, as in [10],

Li(x, u) = ‖Qix‖∞ + ‖Riu‖∞, Fi(x) = ‖Pix‖∞ (9)

satisfy Assumption 1 if Qi ∈ R
qi×n, Ri ∈ R

ri×m are
matrices with full column-rank, ∀i = 0, . . . , l [11]. It is
easy to enforce the assumptions of Theorem 1 when using
stage and terminal costs as in (9). In fact, in the special case
of matrix A stable, one can apply the techniques reported
in [10] to find a common matrix P that satisfies condition (8)
for K = 0. More generally, as proposed in [12], one can use
nonlinear optimization to find a set of matrices Pi and a
gain K satisfying ‖Pi(A + BK)P−L

i ‖∞ + ‖QiP
−L
i ‖∞ +

‖RiKP−L
i ‖∞ ≤ 1, where P−L

i = [P ′iPi]−1P ′i .

III. MULTIPARAMETRIC MULTIOBJECTIVE LINEAR
PROGRAMMING

Let Assumption 1 hold and assume Li : R
n+m → R

and Fi : R
n → R are convex and piecewise affine functions.

Following an approach similar to the one in [10], Problem (3)
can be recast into a multiparametric multiobjective linear
program

min
z

Cz

Gz ≤ b + Sx
(10)

where z ∈ R
d, d = s + (2N − 1)(l + 1), is the vector

of optimization variables (which includes U and additional
slack variables, see [10]), x ∈ R

n is a vector of parameters,
C ∈ R

(l+1)×d defines the linear vector function of dimension
l + 1, where each row of matrix C defines a different scalar
objective function

C = [c0 . . . cl]′, ci ∈ R
d, i = 0, . . . , l.

According to the weighting method, the set of Pareto optimal
points of Problem (10) can be fully characterized from
the corresponding solutions of the following optimization
problem

min
z

α′Cz

Gz ≤ b + Sx
(11)

for all possible weight vectors α such that α =
[α0, . . . , αl]′ ∈ R

l+1, αi ≥ 0, ∀i = 0, . . . , l,
∑l

i=0 αi = 1.
Problem (11) is equivalent to

min
z

(c′0 + μ′Cμ)z
Gz ≤ b + Sx,

(12)

where in order to get rid of the equality constraint
∑l

i=0 αi =
1 we have expressed α0 = 1−∑l

i=1 αi, μ = [α1 . . . αl] ∈
R

l, and Cμ = [(c1 − c0) . . . (cl − c0)]′ ∈ R
l×d.

Most of the multiparametric LP solvers only handle pa-
rameters either in the cost function or in the rhs of the
constraints (which, by duality, is totally equivalent). In this
paper we are going to characterize the explicit solution of
this class of problems by exploiting the KKT conditions of
Problem (12)

(c0 + C ′μμ) + G′λ = 0 (13a)
λ′(Gz − b− Sx) = 0 (13b)
Gz − b− Sx ≤ 0 (13c)
λ ≥ 0 (13d)
μ ≥ 0. (13e)

By assuming that all the components of z are lower-bounded
3 by a quantity zmin, Problem (12) can be recast as the
multiparametric linear complementarity problem (mp-LCP)[

w1

w2

]
−

[
0 −G
G′ 0

] [
z1

z2

]
=[

b−Gzmin

c0

]
+

[
0 S

C ′μ 0

] [
μ
x

]
, [ w1

w2 ]′ [ z1
z2 ] = 0,

(14)
where z2 = z−zmin, z1 = λ, w2 are the Lagrange multipliers
associated with the constraints z ≥ zmin, and w1 is the
vector of slack variables satisfying Gz + w1 = b + Sx.
Problem (14) can be solved by existing mp-LCP solvers [6].
To the authors’ knowledge, however, no algorithms exist
that are specialized for the structure (12), in which some
of the parameters (μ) appear only in the cost function, the
remaining parameters (x) only appear in the right hand side
(rhs) of the constraints. For this reason, in the following
paragraphs we characterize the particular structure of the
solution to (12), that will be exploited in Section III-D to
evaluate the proposed multiobjective MPC law.

The optimal multiparametric solution of the optimization
problem (12) is fully defined by the combinations of con-
straints that are active at (one of) the optimizer(s) z∗(x, μ).
The following concepts of degeneracy play a fundamental
role in solving multiparametric problems of the form (12).

Definition 2: For a fixed (μ, x) ∈ R
l+n, the LP prob-

lem (12) is said to be primal degenerate if there exists an
optimizer z∗(x, μ) such that the number of active constraints
at the optimizer is larger than the number d of optimization
variables. In this case more than one basis describes the
optimal primal solution. Dual degeneracy occurs when the
dual problem of (12) is primal degenerate. In this case more
than one primal solution z∗(x, μ) is optimal.

Definition 3: Given an active set of constraints G̃z = b̃+
S̃x, the linear independence constraint qualification (LICQ)
property is said to hold if the set of active constraint gradients
are linearly independent, i.e., the associated submatrix G̃ has
full row rank.

In the absence of primal and dual degeneracy and assum-
ing that the LICQ condition holds, given a combination of d
active constraints G̃z = b̃ + S̃x in which all the rows of G̃

3This is always the case when the set U of admissible inputs is bounded.
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are linearly independent, the set of the parameters (μ, x) for
which this combination yields the optimal solution and the
primal z∗(x, μ) and dual λ∗(x, μ) optimizers can be easily
characterized as in [14]

z∗(x, μ) = G̃−1(b̃ + S̃x) (15a)
λ̃∗(x, μ) = −(G̃′)−1(c0 + C ′μμ) (15b)

λ̂∗(x, μ) = 0, (15c)

where λ̂ are the Lagrange multipliers corresponding to in-
active constraints Ĝz ≤ b̂ + Ŝx. We denote CR the region
of the state and weight vector in which a particular solution
is optimal. Note that although in each critical region CR z∗
only depends on x while λ̃ only depends on μ, the critical
region CR itself of validity of (15) depends on conditions
involving both μ and x. More precisely, the critical region
CR containing all and only parameters (μ, x) for which (15)
is the optimal solution for the particular combination of
active constraints we have chosen is CR = CRx × CRμ,
where, by substituting (15) in (13c), (13d)

CRx = {x : ĜG̃−1(b̃ + S̃x)− b̂− Ŝx ≤ 0}
CRμ = {μ : (G̃′)−1(c0 + C ′μμ) ≤ 0}. (16)

Several methods have been proposed to characterize com-
pletely the optimal solution z∗(μ, x) on the remaining set
CRrest = (M×X ) \ CR, where M and X are the set of
parameters of interest over which we want to characterize
the multiparametric solution. Unfortunately here we cannot
adopt the approach described in [15], also used in the
Hybrid Toolbox [16] for solving mp-LPs. In fact, such an
approach relies on the satisfaction of the so-called “facet-
to-facet” property [17], which in general does not hold for
Problem (12) (see Figure 1 below). As an alternative, one
can use the approach of [14] to partition CRrest. The final
result is an explicit description of the Pareto optimal points
of the multiobjective linear problem (10) in the form of a
PWA function of the parameters x and of the weights μ.
In this paper we will adopt the approach of [6] to solve
Problem (12) through its reformulation (14).

So far we have neglected degeneracy issues. Unfortunately,
it is well known that explicit MPC based on piecewise affine
cost functions often lead to degenerate multiparametric linear
programs [10].

A. Dual degeneracy

Dual degeneracy may occur and can be tackled for in-
stance as in [14]. Note that, however, full-dimensional critical
regions of dual degeneracy in multiparametric multiobjective
LPs are less likely to occur than in multiparametric LPs.
In fact, assume that a region CR of dual degeneracy exists
in the (μ, x) space and let (μ0, x0) in the interior of CR
such that B((μ0, x0), τ) ⊂ CR for some τ > 0, where
B((μ0, x0), τ) is the Euclidean ball of radius τ centered in
(μ0, x0). Let γ = μ − μ0 ∈ R

l and consider the optimality
conditions

G̃z = b̃ + S̃x (17a)
−G̃′λ = c0 + C ′μμ. (17b)

By transposing and multiplying by z (17b) we get

−λ′G̃z = (c0 + C ′μμ)z (18)

and, by substituting (17a) in (18),
[

G̃
c′0+γ′Cμ

]
z =

[
I
−λ̃′

]
(b̃+

S̃x)−
[

0
μ′

0Cμ

]
. Assuming that the LP is not primal degener-

ate, by (17a) it must hold that G̃ has less than d linearly in-
dependent rows. Similarly, absence of primal degeneracy and
presence of dual degeneracy imply that multiple solutions z

are possible if and only if rank
[

G̃
c′0+γ′Cμ

]
< d, ∀γ ∈ R

l,
‖γ‖ ≤ τ .

B. Primal degeneracy
Primal degeneracy occurs when more than d constraints

are active at optimality and the dual solution is not unique.
In this case matrix G̃ is not square and formulas (15) cannot
be applied. We propose below two alternative approaches to
handle primal degeneracy.

1) Projection method: Given a set I of active constraints,
the critical region CRI = CRxI × CRμI can be obtained
by choosing CRxI as suggested in [14], and CRμI by
projection of the polyhedron defined by

C ′μμ + c0 + G̃′λ̃ = 0
λ̃ ≥ 0

(19)

onto the μ-space.
2) Active constraint set selection: Projection can be a time

consuming task, so we propose next an alternative method. In
the case of primal degeneracy there may be multiple choices
for the combination I of active constraints for which the
corresponding submatrix G̃ has d linearly independent rows.
As suggested in [18], one can select arbitrarily a combination
I of active constraints and proceed. The drawback of this
approach is that overlapping regions of primal degeneracy
may be generated. Although overlaps do not change the so-
lution (they only augment the memory space used for storing
the solution), overlaps may be eliminated by processing the
solution a posteriori.

C. Properties of the explicit solution
Lemma 1: Consider the multiparametric linear prob-

lem (12) with parameters μ ∈ R
l in the cost function and

x ∈ R
n in the r.h.s. of the constraints. Then the set F ∗ of

parameters (μ, x) for which (12) has a solution is a convex
polyhedron, the value function V ∗ : F ∗ → R is continuous
w.r.t. (μ, x), convex and piecewise affine w.r.t. μ for any
given x and w.r.t. x for any given μ. Moreover, there exists
a piecewise affine optimizer function z∗ : F ∗ → R

d of (μ, x)
defined as

z∗(μ, x) = φix + γi if
[
Hμ

i 0
0 Hx

i

] [
μ
x

]
≤ Ki,

i = 1, . . . , nr.
(20)

Proof: As F ∗ = {μ ∈ R
l : [ 1 ... 1 ] μ ≤ 1, μ ≥

0} × Πx{(z, x) ∈ R
d+n : Gz ≤ b + Sx}, where Πx is the

projection operator over the x-space, clearly F ∗ is a convex
polyhedron. Piecewise affinity of z∗ follows by construction,
as by (15a) z∗ depends in an affine way on μ and x,
respectively (in case of dual degeneracy, affine solutions
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from (15) can be extracted as described in [14]) and therefore
is piecewise affine with respect to (μ, x) once the partition
of F ∗ in polyhedral cells is defined by the multiparametric
solver. In each region CRi, the value function V ∗(μ, x) =
(c0 + μ′Cμ)(φix + γi) where φix + γi = z∗(μ, x) is the
affine expression of the optimizer in CRi. Convexity and
continuity of V ∗ with respect to x for any given μ follow by
the properties of the multiparametric LP (12) [19, p. 180],
and, by duality, the same properties hold with respect to
μ. As V ∗ = (c0 + μ′Cμ)z∗(μ, x) is the composition of
continuous functions, it is also continuous with respect to
(μ, x). The particular structure of the critical regions CRi =
CRxi×CRμi = {[ μ

x ] :
[

Hμ
i 0

0 Hx
i

]
[ μ
x ] ≤ Ki} in (20), in the

absence of degeneracy, follows from (16). In case of dual
(and/or primal) degeneracy, from (17) (and/or (19)) it also
follows the same structure of CRi by imposing primal and
dual feasibility on z and λ.

Continuity of the optimizer w.r.t. (μ, x) could be proved
through mathematical tools from point-to-set maps the-
ory [20].

Remark 1: As discussed earlier, non-strictly positive val-
ues of μ may lead to non-Pareto optimal solutions. However,
we can either restrict μ > 0 in (22) or, alternatively, tolerate
possibly non-Pareto optimal solutions by leaving μ ≥ 0. In
the first case, the stability result of Theorem 1 still holds.

D. On-line selection of the weight vector
We consider now the on-line selection problem (6) of

the weight vector α∗(x, αd, Ja) for the particular case of
f convex and piecewise affine

f(α−αd) = max{fα
j (α−αd) + f0

j }, j = 1, . . . , nf (21)

A possible choice for f in (21) is f(α−αd) = ‖α−αd‖∞.
Theorem 2: Let I(x) ⊆ {1, . . . , nr} be the set of indices

i of the regions CRx defined in (16) to which x belongs.
Given αd = [αd0, μd1, . . . , μdl] ∈ R

l+1, with αd0 =
1 − ∑

μdi, the solution to Problem (6) α∗(x, αd, Ja) =
[1−∑l

i=1 μ∗i , μ
∗
1, . . . , μ

∗
l ]
′, where μ∗ can be determined by

solving the linear programming problem

minμ,β β
s.t. β ≥ fα

j

[
0

μ−μd

]
+ f0

j , j = 1, . . . , nf

(φix + γi)′(c′0 + C ′μμ) ≤ Ja, ∀i ∈ I(x)∑l
i=1 μi ≤ 1

μi ≥ 0, i = 1, . . . , l,

(22)

with l + 1 variables and nf + card(I(x)) + 2 constraints.
Proof: For a fixed x, the value function V ∗(μ, x) is

a piecewise affine and convex function of μ that, by the
structure of the critical regions CRi proved in Lemma 1,
is defined over the regions CRμi indexed by i ∈ I(x).
Hence, thanks to the result of [13] for convex piecewise
affine functions, for every fixed x the value function V ∗(μ, x)
by Lemma 1 can be evaluated as the maximum of the affine
functions {(φix + γi)′(c′0 + C ′μμ)}i∈I(x).
Unfortunately Problem (22) in general is not jointly convex
with respect to (μ, β) and (x, μd, Ja), due to the fact that
V ∗(μ, x) may not be a jointly convex function of (μ, x).
Problem (22) needs to be solved on-line for the given values
of x(t), μd(t), Ja(t) and the corresponding set of constraints
indexed by I(x(t)).

IV. EXAMPLE

Consider a linear system (1) defined by matrices A =
[ 1 1
0 1 ], B = [ 0.5

1 ] subject to the constraints |x(t)| ≤ 10,
|u(t)| ≤ 10. We consider two different objective functions
based on the infinity norm defined by Q0 = [ 0.1 0

0 1 ], R0 =
0.1, P0 = [ 3.5669 1.3986

0.0001 3.1040 ], and Q1 = [ 1 0
0 0.1 ], R1 = 0.1,

P1 =
[

9.6085 1.1401−0.2965 9.4107

]
. These matrices satisfy the constraint

1−‖Pi(A+BK)P−L
i ‖∞−‖QiP

−L
i ‖∞−‖RiKP−L

i ‖∞ ≥ 0
with P−L

i = [P ′iPi]−1P ′i , K = [−0.5 − 1.4], for i = 0, 1.
This implies that each cost function satisfies (8a) for the
common local controller u = Kx, see [12]. In order to
guarantee stability, we consider the terminal region

Ω =

⎧⎨
⎩x ∈ R

2|
⎡
⎣

0 1
1 0
0 −1
−1 0
−0.5 −1.4
0.5 1.4

⎤
⎦ x ≤

⎡
⎣

10
10
10
10
10
10

⎤
⎦

⎫⎬
⎭

defined by the positive invariant set of the system in closed-
loop with the local controller. The set Ω satisfies (8b)
and (8c) for the common local controller u = Kx. This
implies that the cost function and the terminal region satisfy
the assumptions of Theorem 1, so that the multi-objective
MPC loop is asymptotically stable.

We compare three different controllers: (i) h0(x(t)) =
E0U

∗(x(t), [1 0]′), (ii) h1(x(t)) = E0U
∗(x(t), [0 1]′), and

(iii) hmo(x(t)) = E0U
∗(t), where U∗(x, α) is the solution

of (3b), U∗(t) is the optimal input trajectory of the proposed
multi-objective scheme and E0 = [I 0 . . . 0] is such that
E0U = u0. We use the target weight vector αd(t) = [(1 −
μd(t)) μd(t)]′ with

μd(t) =
{

1 if ‖x(t)‖2 > 10
‖x(t)‖2/10 otherwise.

The control laws h0 and h1 correspond to the standard
MPC controllers based on the cost functions J0(·) and
J1(·) subject to the same set of constraints. Note that
although both controllers clearly provide different closed-
loop performance, they guarantee that the closed-loop system
is asymptotically stable and they have the same feasibility
region. For this particular example, h0 provides a slower
convergence to the origin than h1 but is more robust with
respect to measurement noise. Hence, when the state is far
from the origin, it is desirable to drive the system fast to the
equilibrium point, however, once the origin has been reached
it is desirable to improve the robustness with respect to noise.
This can be achieved by switching between both standard
MPC controllers, however in this case, stability is not guar-
anteed. The proposed multi-objective MPC controller allows
us to profit from the properties of both controllers, while
guaranteeing closed-loop stability. The target weight vector
αd(t), which is a tuning parameter for the multi-objective
controller hmo, has been chosen in order to give priority to
h1 when the state is far from the origin, and to h0 once is
near the origin.

A set of simulations was carried out starting from different
states inside the feasibility region of the controllers (note that
this region is equal for all of them). In the simulations we
consider random measurement noise, u(t) = hi(x(t)+w(t)),
‖w(t)‖∞ ≤ 0.5, where w(t) = 0 for all t ≤ 30. In
order to measure the robustness to measurement noise the
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Fig. 1. Explicit solution for N = 4 with respect to the parameter vector
[x′ μ]′

following values are measured: SNRu =
Pf

t=31 ‖u(t)‖2
Pf

t=31 ‖w(t)‖2 ,

SNRx =
Pf

t=31 ‖x(t)‖2
Pf

k=31 ‖w(t)‖2 , where f is the length of the
simulation. Performance is evaluated according to the time
tr needed for the norm of the state to go below the 10%
of its initial value. The average results over 100 simulations
with N = 4 and f = 100 are:

Controller SNRu SNRx tr
h0 0.4989 0.5934 7.62
h1 1.1168 0.7972 3.1

hmo 0.5797 0.5959 3.13

The results show that the multi-objective controller provides
signal to noise ratios similar to h0, with a time tr similar
to h1. To carry out the simulations, the explicit solution
of (5) was obtained using the LCP multiparametric solvers
described in [6]. The resulting multi-parametric optimization
problem is defined by three parameters, namely the two
states and the weight vector μ. Figure 1 shows the regions
of the PWA explicit solutions. This PWA function is has
290 regions. It can be seen that the partitions in the μ-
space are orthogonal to the plane defined by the state vector
parameters, consistently with (16). It is interesting to note
that the facet-to-facet property [17] does not hold for this
class of problems.

V. CONCLUSIONS

This paper has proposed an MPC formulation based on
multiple performance criteria that enjoys closed-loop sta-
bility properties. Compared to standard MPC formulations
based on a single performance index, the multiobjective
criterion allows one to take into account several and often
irreconcilable control specifications, such as high-bandwidth
(closed-loop promptness) far away from convergence, and
low-bandwidth (good noise rejection properties) near conver-
gence. The corresponding optimization problem was solved
as a multiparametric linear complementarity problem that
provides the optimal Pareto solution as a piecewise affine
function of the state vector and of the set of parameters
that weight the different criteria in the equivalent scalarized
problem. Thanks to such an explicit characterization of the

solution, given a higher-level reference signal specified at
each time step for the preferred weights, an optimal selection
of the weights can be computed on-line by solving a simple
convex programming problem, namely a linear programming
problem in case all objectives are convex piecewise affine
functions.
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