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Abstract— Model predictive control (MPC) strategies can
efficiently deal with constraints on system states, inputs, and
outputs. However, in contrast with linear control techniques,
closed-loop frequency-domain properties of MPC such as sen-
sitivity and robustness to small perturbations are difficult
to enforce a priori. This paper considers the problem of
transforming a given linear feedback control design, referred to
as “favorite controller”, into a model predictive control one. In
this way, the MPC controller inherits all the stability, robustness
and frequency properties of the given favorite controller in the
region around the equilibrium where the constraints are not
active. The added value is that the constructed MPC controller
is able to properly handle constraints that may be activated
during the transient, and that global stability in the set of
feasible initial conditions can be guaranteed.

I. INTRODUCTION

Modern control systems are required to satisfy a large
number of specifications: asymptotic closed-loop stability,
robustness with respect to external disturbances and mod-
eling errors, closed-loop performance, and the capability of
handling constraints on input and state variables. Industrial
control systems are mainly designed to provide stability,
and a certain degree of robustness and performance, but
in general they do not easily account for constraints. Some
modifications have been introduced in standard control sys-
tems to properly handle constraints, such as anti-windup
schemes for input saturation [1], but these often work for
a restricted class of constraints, are complicated to design,
and may yield to reduced closed-loop performance.

Model predictive control (MPC) [2] is a control strategy
that naturally deals with constraints on system states, inputs,
and outputs by solving at every control cycle an optimization
problem. Stability of MPC was surveyed in [3] where it is
shown that MPC stability, robustness, and frequency-domain
behavior are sensibly more difficult to characterize with
respect to linear feedback controllers. This has generated
reluctance in engineers as regards the use of MPC [4] in
industry.

In this paper we propose a set of techniques for solving
the following inverse problem: how to select the performance
index so that the resulting MPC controller behaves as a given
favorite linear controller in a region around the equilibrium
where the constraints are not active. The advantage is that,
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contrary to the linear controller, the resulting MPC is able to
properly handle the constraints during transient operations,
and that stability of the constrained system can be enforced.
We also provide some answers to the question posed in [5]
as regards the inverse optimality problem in the MPC frame-
work.

The paper is structured as follows. In Section II we
formulate the MPC control matching problem and briefly
discuss direct methods for solving it in Section III. In
Sections IV, V we introduce two inverse methods, where the
MPC weights are designed so that the resulting MPC law
equals the favorite control law in the absence of constraints.
Global stability of the inverse methods is guaranteed. The
proposed techniques are exemplified in Section VI, and the
results summarized in Section VII.

A. Notation

Q > 0 (Q ≥ 0) indicates that a symmetric matrix Q is
positive definite (positive semidefinite). Relational operators
between vectors are intended componentwise. R and R0+ are
the set of real and nonnegative real numbers, respectively,
Z, Z+ and Z0+ the set of integers, positive integers, and
nonnegative integers, respectively. Z[a,b] denotes the set {r ∈
Z : a ≤ r ≤ b}. For a given vector v, we indicate by [v]i
its ith component; similarly for a matrix A, [A]j is its jth

column, [A]i is its ith row, and [A]ij is the element at the
ith row, jth column. In denotes the identity matrix of order
n, On,m ∈ R

n×m denotes a matrix entirely composed of
zeros, where subscripts will be dropped when clear from the
context. We denote the interior of a set X by int(X ), and the
origin of a vector space by 0. Given dynamics x(k + 1) =
φ(x(k)), a set X is positively invariant (PI) for φ(·) if for
all x ∈ X , φ(x) ∈ X .

II. THE CONTROLLER MATCHING PROBLEM

Model predictive control is based on solving at every
control cycle k ∈ Z0+ the finite horizon optimal control
problem

V(x(k)) = min
U(k)

N−1∑
i=0

x′(i|k)Qx(i|k) + u′(i|k)Ru(i|k)

+x′(N |k)Px(N |k) (1a)
s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i∈Z[0,N−1] (1b)

xmin ≤ x(i|k) ≤ xmax, i∈Z[0,N] (1c)
umin ≤ u(i|k) ≤ umax, i∈Z[0,N−1] (1d)
x(0|k) = x(k), (1e)
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where x ∈ R
n, u ∈ R

m, N is the prediction horizon,
U(k) = [u′(0|k) . . . u′(N −1|k)]′ ∈ R

Nm is the vector to be
optimized1, and V : R

n → R0+ is the value function. The
performance criterion to be optimized is defined by (1a),
where Q, P ∈ R

n×n, R ∈ R
m×m, Q = Q′ ≥ 0, P = P ′ ≥

0, R = R′ > 0. From now on, we will always assume that
Q, R, P are symmetric matrices, even if not stated explicitly.
Equation (1b) defines the prediction model, a linear model
with state x and input u which is assumed to be completely
reachable, and (1c), (1d) define the constraints.

Given the current state x(k), the finite horizon optimal
control problem (1) can be reformulated as a quadratic
program2 (QP) with respect to U(k),

min
U(k)

U ′(k)HU(k) + 2x′(k)FU(k) (2a)

s.t. G U(k) ≤ W + Mx(k). (2b)

In (2), G ∈ R
q×Nm, M ∈ R

q×n and W ∈ R
q define the

problem constraints, while the cost function is defined by

H = (R + S ′QS), F = T ′QS, (3)

where S is the N -steps state reachability matrix, T is the
N -steps free state evolution matrix

S =

⎡
⎣

B 0 ... 0
AB B ... 0
...

...
. . .

...
AN−1B AN−2B ... B

⎤
⎦ , T =

⎡
⎣

A
A2

...
AN

⎤
⎦ ,

and Q ∈ R
Nn×Nn and R ∈ R

Nm×Nm are block-diagonal
matrices

Q =

⎡
⎢⎢⎣

Q 0 0 ... 0
0 Q 0 ... 0

...
...

. . .
...

...
0 0 ... Q 0
0 0 ... 0 P

⎤
⎥⎥⎦ , R =

⎡
⎣

R 0 ... 0
0 R ... 0
...

...
. . .

...
0 ... 0 R

⎤
⎦ .

We denote by U∗(k) the optimizer of problem (2).
Definition 1: Given U∗(k), the ith constraint, i ∈ Z[1,q],

is active at optimality if [G U(k)∗]i = [W + Mx(k)]i.
If no constraint is active, the optimizer of problem (2) is

the unconstrained solution

U∗(k) =

⎡
⎣

u∗(0|k)

...
u∗(N−1|k)

⎤
⎦ = −H−1F ′x(k). (4)

In this case, the MPC command at step k ∈ Z0+ is

uMPC(x(k)) = u∗(0|k) = −ΨH−1F ′x(k), (5)

where matrix Ψ = [ Im O ··· O ] extracts the first move
actually applied to the process from the optimal sequence
U∗(k). For given system dynamics and prediction horizon
(i.e., for fixed S and T ), the matrix −H−1F ′ obtained by
P̄ , Q̄, and R̄ is the same as the one obtained by σP̄ , σQ̄,
and σR̄, where σ ∈ R, σ > 0, is an arbitrary positive scaling

1The results of this paper can be extended to the case of a control horizon
Nu < N , u(i|k) = u(Nu − 1|k), i = Nu, . . . , N − 1.

2The reformulation of (1a) results also in a constant term Y = x(k)′(Q+
T ′QT )x(k) which is not included in (2a), since it does not affect the
optimizer.

factor. Thus, since R > 0, it is not restrictive to require
R ≥ σI , where σ > 0 is a (small) positive constant. Such a
constraint avoids numerically ill-conditioned solutions.

In industrial practice, MPC strategies are often used more
for their capability to handle constraints than for performance
optimization, meaning that there are several unexploited
degrees of freedom in choosing the weight matrices P , Q, R.
On the other hand, these affect the robustness properties and
the frequency-domain response for small signals of MPC [3],
[4], which are very difficult to shape by design. This often
results in the reluctance of engineers to use MPC as a
substitute for simpler control schemes, such as PID or linear
state feedback, that do not allow for constraint handling but
are well suited for enforcing robust stability and frequency
response specifications.

In this paper we want to obtain by design an MPC
controller that behaves as a pre-assigned “favorite” controller
when the constraints are not active:

Problem 1 (MPC matching): Given a favorite controller

ufv = Kx (6)

where K ∈ R
m×n, define the cost function (1a) such that

when the constraints are not active the MPC control (5)
based on (1) is equal to the favorite control (6). The problem
is approximately solved if, when the constraints are inactive,
(5) is as close as possible to (6) in a given criterion.
Of course the MPC behavior in general will be different from
the linear one during transients to properly deal with active
constraints and possibly achieve global stability.

Before discussing techniques that synthesize MPC feed-
back laws that solve Problem 1, we briefly discuss techniques
based on tracking adequately generated references, called
direct techniques.

III. DIRECT MATCHING TECHNIQUES

A direct approach to solve Problem 1 is to use the behavior
of (1b) in closed loop with (6) to generate a reference
signal for the state and input vectors, and to modify (1)
to be in the form of state and input tracking [2]. This
amounts to consider the state reference dynamics rx(i +
1|k) = (A + BK)rx(i|k), rx(0|k) = x(0|k), the reference
input ru(i|k) = Krx(i|k), and to modify (1a) to weight
x(i|k)−rx(i|k) and u(i|k)−ru(i|k). However, this approach
has some drawbacks. It results in a time-varying reference
tracking formulation, while most of the stabilization results
apply to regulation. As the reference generation model is
linear, such formulation can be transformed into a state-
regulation problem by extending the state vector, but in this
case the overall extended system would not be controllable,
although stabilizable. This, combined with the initialization,
rx(0|k) = x(0|k) makes the use of standard stabilization
approaches [3] more difficult.

Remark 1: Most of the approaches for stabilization by
MPC [3] are based on the existence of a feasible solution
for (1) at time k obtained by extending the solution computed
at time k−1. However, whenever uMPC(x(k)) �= ufv(x(k)),
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rx(0|k) = x(0|k) �= rx(1|k − 1), hence the input se-
quence obtained at time k − 1 cannot be extended, due to
a different initial state. A solution in which the reference
closed-loop dynamics evolves autonomously, i.e., rx(k) =
rx(1|k − 1), cannot guarantee that whenever (6) is feasible
uMPC(x(k)) = ufv(x(k)), due to cumulated errors.

An approach for which stability can be analyzed is based
on input tracking only. In particular, one can use

J(x(k), U(k)) = (u(0|k) − Kx(k))′QK(u(0|k) − Kx(k)),
(7)

as the cost function in (1a), where QK > 0 has to be
determined. Cost function (7) provides u(0|k) = Kx(k)
for any QK > 0 whenever the constraints (1c)–(1d) are not
active. The minimum value of the cost function is achieved
when the MPC algorithm produces the same input as the
favorite controller. Thus, whenever the favorite controller is
feasible, the MPC controller behaves as such. However, by
this approach we almost completely cancel the performance
optimization capabilities of MPC, since only the first input
is accounted for in the cost, and the objective is only related
to the favorite controller local approximation, even though
constraints are still enforced along the whole prediction
horizon. Furthermore, cost function (7) is not strongly related
with closed-loop stability, but it shall be adjusted for this
purpose. Let P,Q ∈ R

n×n be matrices such that

(A + BK)′P (A + BK)−P ≤ −(1 + α)Q, P > 0, Q > 0
(8)

where α > 0 is a fixed (small) scalar, so that x(k)′Px(k) is
a Lyapunov function for the system in closed-loop with the
favorite controller. Modify cost function (7) into

J(x(k), U(k)) = 2x(k)′(A + BK)PB(u(0|k) − Kx(k))+
(u(0|k) − Kx(k))′B′PB(u(0|k) − Kx(k))

(9)

Proposition 1: Let U∗(k) be the solution at time k ∈ Z0+

of (1), where (1a) is replaced by (9). If there exists k̄ ∈ Z0+

such that for all k ≥ k̄ J(U∗(k), x(k)) ≤ x(k)′Qx(k), the
system is asymptotically stable.

Proof: Let d(k) = u∗(0|k) − Kx(k) and Acl =
A + BK. The evolution of the system in closed-loop with
the MPC controller is x(k + 1) = Aclx(k) + Bd(k). Since
x′(k + 1)′Px(k + 1) − x(k)′Px(k) = −x(k)′Px(k) +
x(k)′A′clPAclx(k) + d(k)′B′PBd(k) + 2x(k)′A′clPBd(k),
and by (8) x′(k + 1)′Px(k + 1) − x(k)′Px(k) ≤ −(1 +
α)x(k)′Qx(k)+d(k)′B′PBd(k)+2x(k)′AclPBd(k), hence
for all k ≥ k̄, x′(k + 1)′Px(k + 1) ≤ −x(k)′Px(k) − (1 +
α)x(k)′Qx(k) + J(U∗(k), x(k)) ≤ −αx(k)′Qx(k). Thus,
P is a Lyapunov function for all k ≥ k̄, which proves
asymptotic Lyapunov stability of the closed-loop system.

The condition in Proposition 1 is sufficient, but is not
necessary. The global minimum of the cost function (9) can
be smaller than zero, and it can be achieved for u∗(0|k) �=
Kx(k), which means that when the constraints are not active
the MPC controller does not behave as the favorite controller.
In order to force the behavior required by Problem 1 we need

to add to the MPC optimal control problem (1) the linear
constraint3

x(k)′A′clPB(u(0|k) − Kx(k)) ≥ 0. (10)

It is immediate to prove that a lower bound to the optimum
is J(U∗(k), x(k)) = 0, achieved when d(k) = 0, i.e., when
u∗(0|k) = Kx(k) is a feasible input. Thus, when all the
original constraints of (1) are not active (while constraint (10)
is in general active), the MPC behaves as (6).

The MPC-based controller obtained by (9) does not
provide global stability guarantee. However, Proposition 1
ensures that even when constraints are active, the MPC
controller tries to optimize the decrease of the Lyapunov
function, and thus it tries at its best to stabilize the system.

The direct approaches for controller matching are based on
the reformulation of MPC problem (1) as a tracking problem.
Even though they are simple, global stability is hard to
guarantee and they reduce optimization capabilities of MPC.
Also, direct approaches only force MPC to track a reference
signal, but they do not give provide any relation between
MPC feedback law and (6). To address these limitations we
investigate the capability of MPC to be locally functionally
equivalent to the favorite controller. We aim at solving
Problem 1 by selecting appropriate weight matrices in (1a).

IV. MATCHING BASED ON QP MATRICES

Problem 1 is immediately solved if one can find weight
matrices Q, R, P in (1) such that

−ΨH−1F ′x(k) = Kx(k). (11)

Unfortunately (11) is not trivial to solve, due to the non-
invertibility of matrix Ψ and the way the inverse of H
depends on Q, R, P .

To solve Problem 1, we start removing Ψ in (11) by setting

H−1F ′x(k) = −

⎡
⎣

κ0
κ1

...
κN−1

⎤
⎦ x(k), (12)

where κ0 = K, while κi ∈ R
m×n, i ∈ Z[1,N−1] are free

matrices. In (12) we account for the whole optimal input
sequence of problem (1), but we enforce the equality with the
favorite control action only for the first control action. As the
remaining optimal control functions κi, i = 1, . . . , N −1 are
left as free variables, they do not introduce further constraints
on the original problem.

Proposition 2: Let (K̃, Q̃, R̃, P̃ ) be any feasible solution
of the following problem

min
K,Q,R,P

J(K, Q, R, P ) (13a)

s.t. Q ≥ 0, P ≥ 0, R ≥ σI (13b)
(R + S ′QS)K + S ′QT = 0 (13c)
κ0 = K (13d)

where K = [κ′0 · · · κ′N−1]
′, and J(·) is any convex objective

function. Then the MPC strategy based on the optimal

3At any control cycle in the MPC algorithm x(k) is fixed. Hence
constraint (10) is linear in the optimization variables.
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control problem (1) where we set Q = Q̃, P = P̃ , R = R̃,
solves Problem 1.

Proof: Equality (13c) represents (12) after multiply-
ing both sides by H , which is invertible. Constraint (13d)
enforces the equality between the MPC command (5) and
the favorite controller (6). Finally, (13b) ensures that the
obtained matrices define a valid cost function for the MPC
problem (1). Any solution satisfying (13b), (13c), (13d)
results in (11) when the constraints in (1) are not active.

Problem (13) is nonconvex due to bilinear constraint (13c).
Different cost functions (13a) can be used to define an
optimal triplet of matrices (Q, R, P ) among those which
solves Problem 1. As an example, for a given reference triplet
(Q̄, R̄, P̄ ) set

J(K, Q, R, P ) = ‖Q−Q̄‖+wR‖R−R̄‖+wP ‖P−P̄‖ (14)

where wR, wP ∈ R0+, and ‖ · ‖ is any matrix norm.
In case it is impossible to find matrices Q, R and P that

satisfy (13b), (13c), (13d), Problem 1 does not have an exact
solution. Hence, we must accept a different behavior u =
K̃x, where K̃ �= K. Problem (13) can be modified to return
matrices Q∗, R∗, P ∗ so that K̃ approximates K. Consider

min
K,Q,R,P,V

‖K + V S ′QT ‖ (15a)

s.t. Q ≥ 0, P ≥ 0, R ≥ σI, κ0 = K (15b)
V R + V S ′QS = I (15c)

and let K∗, Q∗, R∗, P ∗ be the optimizer of problem (15), and
J∗ be the corresponding optimal value. Problem 1 is exactly
solved only if J∗ = 0. Otherwise, the solution matrices Q∗,
R∗ and P ∗ define the MPC controller that, when constraints
are nor active, corresponds to the static linear state-feedback
controller that is closest to (6) in the matrix norm ‖ · ‖.

Problem (15) is also nonconvex due to the bilinear
constraints (15c). Even though nowadays solvers exist for
bilinear problems [6], the convergence to a solution is not
guaranteed. In problems (13), (15), the main cause of
bilinearity are the free variables κi, i ∈ Z[1,N−1]. In fact,
these variables are free because only the first step of the
optimal input sequence is applied by the MPC and must be
equal to the command of the favorite controller (6).

In order to formulate problem (13) as a linear matrix
inequality (LMI), one can fix the whole vector

K = K̄ �

⎡
⎣

K
κ̄1

...
κ̄N−1

⎤
⎦ . (16)

This obviously further constrains the design problem, be-
cause constraints are imposed on the whole sequence of
command laws. In order to recover some degrees of freedom,
the cost function in problem (13) can be made time-varying,

Q =

⎡
⎢⎣

Q1 0 0 ... 0
0 Q2 0 ... 0

...
...

. . .
...

...
0 0 ... QN−1 0
0 0 ... 0 P

⎤
⎥⎦ , R =

⎡
⎣

R0 0 ... 0
0 R1 ... 0

...
...

. . .
...

0 ... 0 RN−1

⎤
⎦ ,

where Qi = Q′i ≥ 0, for all i ∈ Z[1,N−1], Ri = R′i ≥ σI ,
for all i ∈ Z[0,N−1]. When K is fixed by (16), problem (13)
straightforwardly becomes a problem with LMI constraints
in the variables Qi, i ∈ Z[1,N−1], Ri, i ∈ Z[0,N−1], and
P . Also, a problem similar to (15) can be formulated that
returns an MPC controller that approximates the favorite
controller (6) when its precise behavior cannot be obtained.

Consider the problem

min
Q,R

‖(R + S ′QS)K̄ + S ′QT ‖ (17a)

s.t. P ≥ 0, Ri ≥ σI, i ∈ Z[0,N−1] (17b)
Qi ≥ 0, i ∈ Z[1,N−1] (17c)

which is a convex problem subject to LMI constraints, where
we have set

K̄ =

⎡
⎣

K
K(A+BK)

...
K(A+BK)N−1

⎤
⎦ . (18)

If the optimum is 0 for the optimizer Q∗i , i ∈ Z[1,N−1], R∗i ,
i ∈ Z[0,N−1], P ∗, the MPC controller with time-varying cost
function (1a) defined by Qi = Q∗i , i ∈ Z[1,N−1], Ri = R∗i ,
i ∈ Z[0,N−1], P = P ∗ and for any4 Q0 ≥ 0 behaves as the
favorite controller (6) when the constraints are not active. If
the optimum is not 0, when constraints are not active the
MPC behaves as the best approximation of the controller in
the norm ‖ · ‖, weighted by the positive definite matrix H .
Note that by (16) we require that the MPC behaves as the
favorite controller along the whole prediction horizon, which
is a tighter requirement than what is needed by Problem 1.

When the constraints are inactive, the MPC controller
obtained as the solution of Problem 1 behaves as the fa-
vorite controller (6), which is reasonably assumed to yield
asymptotically stable closed-loop dynamics. Thus, if the
constraints are not active in a neighborhood of the origin, the
closed-loop dynamics are locally asymptotically stable. The
exact region of the state space where the matching occurs
(i.e., where the constraints are inactive) is the polyhedron
P = {x ∈ R

n : −(GH−1F + M)x ≤ W} where the
unconstrained optimizer −H−1Fx satisfies the constraints
of the QP problem (2) [7].

As for general MPC [3], global stability is more com-
plicated to guarantee, especially when the local equivalence
with the favorite controller has to be maintained. The ap-
proach described in [3] based on terminal cost and terminal
set can be specialized for this purpose.

Theorem 1: Let XT ⊆ R
n be a polyhedral PI set for (1b)

in closed loop with (6) such that 0 ∈ int(XT ) and XT ⊆
{x ∈ R

n : x ∈ [xmin, xmax], Kfvx ∈ [umin, umax]}. Add
constraint x(N |k) ∈ XT to (1) with Q, R, P are computed
by (13) (or by (17), with Qi = Q, Ri = R, i ∈ Z[0,N−1],
and the optimum is J∗ = 0), and denote by Xfeas ⊆ R

n the
set of states x ∈ R

N such that (1) is feasible when x(k) = x.
Let P ≥ 0 be such that

(A + BK)′P (A + BK) + K ′RK + Q − P ≤ 0. (19)

4Since x(0|k) is fixed in (1), the optimizer does not depend on Q0.
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Then (i) the closed-loop dynamics are asymptotically stable
and remain in Xfeas, for all x(0) ∈ Xfeas; (ii) there exists
a set Xfv ⊇ XT such that the MPC behaves as the favorite
controller; (iii) if Q > 0, Xfv is reached in a finite time
k(x(0)), for all x(0) ∈ Xfeas and, if in addition Xfeas is
bounded, there exists a finite k̄ = maxx(0)∈Xfeas k(x0).

Proof: Due to space limitations, the proof is omitted
here and can be found in [8].

In order to satisfy the assumption of Theorem 1, the
LMI (19) is to be added to the cost design problems, e.g.,
(13) or (17), while XT can be computed for instance as the
maximum positively invariant set as described in [9].

V. MATCHING BASED ON INVERSE LQR

In this section we propose an alternative to solve Prob-
lem 1, which is computationally simpler. Instead of solv-
ing (11), we use the following theorem [10].

Theorem 2: Given Q̄ ∈ R
n×n, Q̄ = Q̄′ ≥ 0, and R̄ ∈

R
m×m, R̄ = R̄′ > 0, let P̄ ∈ R

n×n, P̄ = P̄ ′ > 0 be the
solution of the Riccati equation

P̄ = A′P̄A − A′P̄B(B′P̄B + R̄)−1B′P̄A + Q̄. (20)

Set Q = Q̄, R = R̄, and P = P̄ in (1a). For any prediction
horizon N ∈ Z+, when constraints are not active, the MPC
command (5) obtained by solving (1) is uMPC(x(k)) =
KLQRx(k), where KLQR = −(B′P̄B + R̄)−1B′P̄A is the
LQR gain.

Proof: See e.g. [10] and the references therein.
Theorem 2 establishes a relation between the linear quadratic
regulator (LQR) and the model predictive controller. In
fact, under the hypothesis of Theorem 2, the MPC con-
troller that has no (active) constraints behaves as the
linear state feedback gain that optimizes the LQR cost
minu(·)

∑∞
k=0 x(k)′Qx(k) + u(k)′Ru(k) for the linear dy-

namics x(k + 1) = Ax(k) + Bu(k).
We look for weights Q, R and P such that the favorite

controller (6) is the LQR gain with respect to them. In this
way by exploiting Theorem 2, the MPC controller, which
behaves as the LQR for any horizon N ∈ Z+, will be also
equal to the favorite controller (6).

Corollary 1: Consider the optimization problem

min
Q,R,P

J(Q, R, P ) (21a)

s.t. P ≥ 0, R ≥ σI, Q ≥ 0 (21b)
P = A′PA + A′PBK + Q (21c)
B′PA = −(B′PB + R)K (21d)

where J(·) is a convex cost function of its arguments
(e.g., as in (14)) and (21b), (21c), (21d) are linear matrix
(in)equalities. Let Q̃, R̃, P̃ be any feasible solution (i.e.,
not necessarily the optimal one) of (21). Then the MPC
strategy based on the optimal control problem (1) where we
set Q = Q̃, P = P̃ , R = R̃, solves Problem 1.

Proof: Equalities (21c), (21d), and constraint (21b)
enforce P and K to be the solution of the Riccati equation
and the corresponding LQR gain, respectively, and Q, R, to
be the corresponding cost function matrices. Thus, given any

Q̃, R̃, P̃ that are a feasible solution of (21), K is the LQR
gain that optimizes the LQR cost, where Q = Q̃, R = R̃.
Theorem 2 guarantees that the optimal control problem (1)
where we set Q = Q̃, P = P̃ , R = R̃ results in an
MPC command (5) that is equal to the one of the favorite
controller (6) whenever the constraints in the MPC quadratic
program (2) are not active.

Cost function (21) can be used to define the reference
performance criterion of the MPC problem that comes into
play when the constraints are active, for instance as in (14).
Also, Q can be removed from (21), by formulating (21c) as
an inequality and evaluating Q from the obtained P and R.

Problem (21) is not guaranteed to be feasible, because it
is not true that any K ∈ R

n×m is the LQR gain for some
choice of matrices P ∈ R

n×m, Q ∈ R
n×m, R ∈ R

n×m that
satisfies (21b).

The problem of checking whether a given controller is
optimal with respect to some performance criterion (inverse
optimality problem) was first introduced by Kalman [11], in
the sixties. In the late eighties the inverse LQ design problem
has been studied [12], where the conditions for a linear
state-feedback controller to be an LQR gain were analyzed.
The works [11]–[13] focused on continuous-time systems,
and provided algebraic conditions for a given linear state
feedback law to be an LQR. Equation (21) provides a way
to solve the inverse LQR design for discrete-time systems
by convex optimization.

Working with LQR gains introduces additional constraints
but reduces problem complexity, since the size of (21), is not
related to the MPC horizon N . As a result, problem (21) is
significantly less complex than (15) when N is large. On the
other hand because of Theorem 2, whenever (21) is feasible,
a solution of (17) exists with zero cost, while the opposite
is not guaranteed.

MPC cost based on (21) ensures that when the constraints
are not active the MPC is equivalent to an LQR, and hence
yields (locally) asymptotically stable closed-loop dynamics.
Global stability in the set of feasible initial conditions in the
presence of constraints can be achieved by choosing N large
enough [7], [14], [15], since Corollary 1 is independent on
the value of N . Also, Theorem 1 can be applied using the
Riccati matrix P as terminal weight and KLQR as auxiliary
controller, since P computed from (21) satisfies (19).

VI. EXAMPLES

We present some examples of inverse matching tech-
niques.

Example 1 (Matching based on QP matrices): Consider
the unstable linear system x(k + 1) = Ax(k) + Bu(k),
where

A =
[

0.675 0.923 0.014−0.315 0.215 −0.750
1.05 0.00 1.50

]
, B =

[
0.5
0
1

]
,

x ∈ R
3

u ∈ R,

and favorite controller (6), where K = [−0.918 0.347 −0.806 ]
is designed through pole-placement so that the closed-loop
matrix A + BK has eigenvalues 0.35, 0.375, 0.40. Assume
that the input constraints −1.5 ≤ u ≤ 1.5 must be enforced.
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Fig. 1. Example 1, matching based on QP matrices. MPC command
uMPC compared to favorite controller command, ufv = Kx, K =
[−0.918 0.347 − 0.806]
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Fig. 2. Example 2, matching based on inverse LQR. MPC command uMPC

compared ufv = [−5.38 − 2.84 − 0.25 − 2.37]x(k).

We solve problem (17), where we have set N = 3, σ = 10−3,
K̄ as in (18), and we have imposed Qi = Q ≥ 0, ∀i ∈
Z[1,N−1], Ri = R > σI, ∀i ∈ Z[0,N−1]. Problem (17) is
solved with an optimal cost of 0, resulting in matrices Q∗,
R∗, P ∗. Thus, when Q = Q∗, R = R∗, P = P ∗ in (1), the
MPC command uMPC equals ufv whenever the constraints
are not active. The simulation of the closed-loop system from
initial state x(0)′ = [ 0 5 5 ] is shown in Figure 1, where the
solid line is the MPC command applied to the system and the
dashed line with circle markers is the hypothetical command
that would be issued by the favorite controller for the same
state and that does not account for constraints. Note that in
order to have uMPC = ufv the constraints need not to be
active along the whole MPC horizon N = 3.

Example 2 (Matching based on inverse LQR): Consider
the linear system x(k + 1) = Ax(k) + Bu(k), where

A =
[

1.8 1.2 0 1
1 0 0 0

3.6 2.4 1 2
0 0 0 0

]
, B =

[
0
0
0
1

]
,

x ∈ R
4

u ∈ R,

and constrained input −24 ≤ u ≤ 24, and the favorite
controller (6), K = [ −5.38 −2.84 −0.25 −2.37 ]. The inverse
LQR-based matching problem (21) where σ = 10−3, and
with objective function (14), where Q̄ = 6.5I , R̄ = 1,
wR = 1, wP = 0 was solved obtaining Q∗, R∗, P ∗. We
have implemented the MPC strategy (1) with N = 3 and
Q = Q∗, R = R∗, P = P ∗ so that uMPC = ufv whenever
the constraints are not active. The simulation of the closed-
loop system from initial state x(0)′ = [ 5 5 0 0 ] is shown in

Figure 2, where the solid line is the MPC command and the
dashed line with circle markers is the input that would be
applied by the favorite controller.

VII. CONCLUSIONS

To exploit both the frequency-domain properties of a given
linear controller for signals small enough not to activate con-
straints, and the ability of model predictive control to handle
constraints, in this paper we provided criteria to convert
the existing linear control law into an MPC controller. The
approach can be seen as a way of automatically generating
an anti-windup scheme, which is a piecewise-affine function
in case the resulting MPC controller is considered into its
explicit form [7]. Finally, we have shown how to obtain
global stability of the MPC scheme in the set of feasible
initial conditions, by adequately adapting the MPC stabiliza-
tion results to preserve the controller matching objective.
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