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Abstract— This paper proposes a novel decentralized model
predictive control (MPC) design approach for open-loop as-
ymptotically stable processes whose dynamics are not neces-
sarily decoupled. A set of partially decoupled approximate
prediction models are defined and used by different MPC
controllers. Rather than looking for a-priori conditions for
asymptotic stability of the overall closed-loop system, we present
a sufficient criterion for analyzing a posteriori the asymptotic
stability of the process model in closed loop with the set
of decentralized MPC controllers. The degree of decoupling
among submodels represents a tuning knob of the approach: the
less coupled are the submodels, the lighter the computational
burden and the load for transmission of information among
the decentralized MPC controllers, but the less performing is
the control system and the less likely the proposed stability
test succeeds. The designer can therefore trade off between
simplicity of computations/limited transmitted information and
performance/stability.

I. INTRODUCTION

In decentralized control of multivariable systems the

achievement of a global control task is obtained by the

cooperation of many controllers, each one computing a

subset of control commands individually under a possibly

limited exchange of information with the other controllers.

Compared to centralized schemes, while decentralized

control has the disadvantage of inevitably leading to a loss

of performance, it has a twofold technological advantage:

(i) no need for a high-performance central processing unit

performing complex global control algorithms that take into

account the overall system dynamics, replaced by several

simpler (and therefore cheaper) units; (ii) all process mea-

surements [command variables] do not need to be conveyed

to [issued from] a single unit, therefore limiting the exchange

of information between spatially distributed components of

the process.

The interest in decentralized control schemes dates back

to several decades ago [1], [2], [3], [4]. More recently the

attention was revived [5], [6], [7], [8], [9], [10], [11], [12] by

the interest in increasingly complex distributed sensing and

actuation systems interacting with the environment that arise

in several application domains, including civil engineering

(control of large structures), and military (unmanned air

The authors are with the Department of Information Engineer-
ing, University of Siena, Via Roma 56, 53100 Siena, Italy, E-mail:
alessio@dii.unisi.it, bemporad@dii.unisi.it.

Research supported by the European Union through the Network of
Excellence HYCON (contract number FP6-IST-511368), by the Italian
Ministry for Education, University and Research (MIUR) under project “Ad-
vanced control methodologies for hybrid dynamical systems” (PRIN’05),
and by the University of Siena under project “Optimization-based decision-
making algorithms for heterogeneous networked cooperative systems”
(PAR’05).

vehicles). The control of a multitude of sensing and actu-

ation devices is naturally tackled by decentralized control

designs, conceived to ensure both local self-properties and

global coordination. From a control theoretical viewpoint, a

centralized approach with complete knowledge of the overall

system has the potential of providing significant properties

like stability and optimality [5]; a similar advantage arises

in optimization while comparing a global solution to a

collection of locally optimal solutions.

Several approaches to decentralized control design have

been proposed in the literature. They differ from each other

in the assumptions made on the kind of interactions between

different components of the overall system, the model of

information exchange between subsystems, and the control

design technique used for each subsystem. A very promising

design approach to decentralized control was proposed in

the context of model predictive control (MPC) [13], [14],

[15], [16], [17]. Motivated by describing problems of for-

mation control of unmanned air vehicles, of networks of

independently actuated systems, and on optimal strategies for

multi-agents in a game theoretical setting, most contributions

focused the attention on dynamically decoupled systems,

i.e. dynamical systems decomposed into distinct subsystems

that can be independently actuated. For each subsystem a

distinct MPC controller computes the local control action

based on the measurements (and predictions) of the states of

its corresponding subsystem and of its neighbors. Prediction

is based on a linear-discrete time model of each subsystem.

Typically the interaction among neighbors is represented by

an “interaction graph”, where each node represents a single

subsystem and an arc between two nodes denotes a coupling

term in the goal and/or in the constraints associated to the

nodes [17], [13], [16]. The set of neighbors associated to a

single subsystem (node) is represented by the set of nodes

directly connected to that node.

The main issues in decentralized MPC are feasibility and

stability. These two properties are, in general, not guar-

anteed, unless additional (usually conservative) constraints

are included, for instance imposing the robust fulfillment

of constraints ensuring feasibility [14]. This is due to the

fact that predictions of trajectories of the neighbors are

often wrong, since a subsystem may have the knowledge

of its neighbors’ state but neither of the state of the neigh-

bors’ neighbors, nor of the neighbor’s moves. In [18] min-

max optimization is used to handle the uncertainties in

the disturbances from neighbor controllers. In [16], [14],

[15] stability analysis of decentralized MPC of decoupled

systems was investigated. In [16] a cooperative behavior

among the controllers is assumed, as the cost function of the
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optimization problem solved by each subsystem measures

the entire system performance. In [14] a sufficient condition

for the stability of each individual subsystem is given, while

in [15] closed-loop stability is achieved through the inclusion

of a contractive constraint in the optimization problem.

This work proposes an approach to decentralized MPC

design for a process model that is not necessarily dynam-

ically decoupled. The decoupling assumption only appears

in the prediction models used by different MPC controllers.

The degree of chosen decoupling represents a tuning knob of

the approach. Rather than looking for a-priori conditions for

asymptotic stability of the overall closed-loop, we present a

sufficient criterion for analyzing a posteriori the asymptotic

stability of the process model in closed loop with the set

of decentralized MPC controllers. If this condition is not

verified, then the degree of decentralization can be modified

by augmenting the level of coupling of the dynamics of

the prediction models, increasing consequently the number

of exchanged information about state measurements among

MPC controllers.

II. CENTRALIZED MPC

Consider the standard MPC problem based on the linear

discrete-time prediction model

x(t + 1) = Ax(t) + Bu(t), (1)

where x(t) ∈ R
n is the state vector and u(t) ∈ R

m is the

vector of command variables at time step t, and the following

finite-time optimal control problem

V (x(t)) = min
U

x⊤

NPxN +

N−1
∑

k=0

x⊤

k Qxk + u⊤

k Ruk (2a)

s.t. xk+1 = Axk + Buk, k = 0, . . . , N − 1
(2b)

x0 = x(t) (2c)

umin ≤ uk ≤ umax, k = 0, . . . , Nu − 1
(2d)

uk = 0, k = Nu, . . . , N − 1 (2e)

where N is the prediction horizon, Nu ≤ N is the input

horizon, and umin < 0 < umax ∈ R
m define saturation

constraints on input variables, and “≤” denotes component-

wise inequalities.

Problem (2) can be recast as a Quadratic Programming

(QP) problem (see e.g. [19], [20]), whose solution

U∗(x(t)) , [u∗⊤

0 (x(t)) . . . u∗⊤

N−1(x(t))]⊤ ∈ R
Nm

is a sequence of optimal control inputs. In (2) we assume

that Q = Q⊤ ≥ 0, R = R⊤ > 0 are square weight matrices

defining the performance index, and that the terminal weight

P = P⊤ ≥ 0 is a square matrix satisfies the Lyapunov

equation

A⊤PA − P = −Q (3)

so that the cost (2a) is equal to
∑∞

k=0 x⊤

k Qxk +u⊤

k Ruk. The

existence of matrix P is ensured by the following assumption

Assumption 1: Matrix A is strictly Hurwitz1.

Assumption 1 restricts the strategy and stability results of this

paper to processes that are open-loop asymptotically stable,

leaving to the controller the mere role of optimizing the

performance of the closed-loop system. Another restriction

taken in this paper is that problem (2) only tackles input

constraints (2d), which makes problem (2) feasible for any

value of the state vector x(t) ∈ R
n

At each sampling time t, problem (2) is solved for

the given measured (or estimated) current state x(t). Only

the first optimal move u∗
0(x(t)) of the optimal sequence

U∗(x(t)) is applied to the process,

u(t) = u∗

0(x(t)), (4)

the remaining optimal moves are discarded and the optimiza-

tion is repeated at time t + 1.

Theorem 1 ([21]): Under Assumption 1, system (1) in

closed-loop with the MPC algorithm (2), (4) is asymptot-

ically stable.

III. DECENTRALIZED MPC

The centralized MPC algorithm described in Section II

requires that all the n components of the state vector x(t)
are transmitted to a (possibly remote) central unit, that

needs to solve a QP with mNu decision variables and

2mNu inequality constraints, and transmit back m signals to

different actuators. To avoid the need for such a centralized

computing power and a star-like network topology, in this

section we proposed a decentralized scheme where simpler

QP problems can be solved in a spatially distributed way.

A. Decentralized Prediction Models

Let the system to be controlled be described again by the

process model (1). Matrices A, B will have a certain number

of zero components corresponding to partially dynamically

decoupled subsystems, or even be block diagonal in case

of total dynamical decoupling (this is the case for instance

of independent moving agents each one having its own

dynamics).

Let M be the number of decentralized control actions

that we want to design, for example M = m in case each

individual actuator is governed by its own controller. For all

i = 1, . . . ,M , we define xi ∈ R
ni as the vector collecting a

subset Ixi ⊆ {1, . . . , n} of the state components,

xi = W⊤

i x =





xi1

...

xini



 ∈ R
ni

where Wi ∈ R
n×ni collects the ni columns of the identity

matrix of order n corresponding to the indices in Ixi, and,

similarly,

ui = Z⊤

i u =





ui1

...

uimi



 ∈ R
mi

1While usually a matrix A is called Hurwitz if all its eigenvalues have
strictly negative real part, in this paper we adapt the notion to discrete-time
systems, saying that a matrix A is called Hurwitz if all the eigenvalues λi

of A are such that |λi| < 1.
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as the vector of input signals tackled by the i-th controller,

where Zi ∈ R
m×mi collects mi columns of the identity

matrix of order m corresponding to the set of indices Iui ⊆
{1, . . . ,m}. Note that

W⊤

i Wi = Ini
, Z⊤

i Zi = Imi
, ∀i = 1, . . . ,M. (5)

By left-multiplying (1) by W⊤

i , we obtain

xi(t + 1) = W⊤

i x(t + 1) = W⊤

i Ax(t) + W⊤

i Bu(t). (6)

An approximation of (1) is obtained by changing W⊤

i A into

W⊤

i AWiW
⊤

i and W⊤

i B into W⊤

i BZiZ
⊤

i , therefore getting

the new prediction model of reduced order

xi(t + 1) = Aix
i(t) + Biu

i(t) (7)

where matrices Ai = W⊤

i AWi ∈ R
ni×ni and Bi =

W⊤

i BZi ∈ R
mi×mi are submatrices of the original A and B

matrices, respectively, describing in a possibly approximate

way the evolution of the states of subsystem #i.

Assumption 2: Matrix Ai is strictly Hurwitz, for all i =
1, . . . ,M .

Model (7) has a smaller size than the original process

model (1). The choice of the dimensions ni,mi and of ma-

trices Wi,Zi are a tuning knob of the proposed decentralized

procedure and should be inspired by the inspection of zero

or negligible entries in A,B (or in other words by physical

insight on the process dynamics) and by taking into account

the requirement stated in Assumption 2.

We want to design a controller for each set of moves

ui according to the prediction model (7) and based on

feedback on xi, for all i = 1, . . . ,M . Note that in general

different states xi, xj and different ui, uj may share common

components. In particular, to avoid ambiguities on the control

action to be provided to the process, we impose that only a

subset I
#
ui ⊆ Iui of input signals computed by controller #i is

actually applied to the process, with the following conditions

M
⋃

i=1

I
#
ui = {1, . . . ,m} (8)

I
#
ui ∩ I

#
uj = ∅, ∀i, j = 1, . . . ,M, i 6= j. (9)

Condition (8) ensures that all actuators are commanded,

Condition (9) that each actuator is commanded by only

one controller. For the sake on simplicity of notation, since

now on we will assume that M = m and that I
#
ui = i,

i = 1, . . . ,m, i.e., that each controller #i only controls the

ith input signal. As observed earlier, in general Ixi∩Ixj 6= ∅,

meaning that controller #i may partially share the same

feedback information with controller #j, and Iui ∩ Iuj 6= ∅,

meaning that controller #i may take into account the effect of

control actions that are actually decided by another controller

#j, i 6= j, i, j = 1, . . . ,M .

B. Decentralized Optimal Control Problems

For all i = 1, . . . ,M consider the following infinite-time

constrained optimal control problem

Vi(x(t)) = min
ui

0

∞
∑

k=0

xi⊤
k W⊤

i QWix
i
k + ui⊤

k Z⊤

i RZiu
i
k =

(10a)

= min
ui

0

xi⊤
1 Pix

i
1 + xi⊤(t)W⊤

i QWix
i(t)+

ui⊤
0 Z⊤

i RZiu
i
0 (10b)

s.t. xi
1 = Aix

i(t) + Biu
i
0, (10c)

xi
0 = W⊤

i x(t) = xi(t) (10d)

umin ≤ ui
0 ≤ umax, (10e)

ui
k = 0, ∀k ≥ 1 (10f)

where Pi = P⊤

i ≥ 0 is the solution of the Lyapunov equation

A⊤

i PiAi − Pi = −W⊤

i QWi, (11)

that exists by virtue of Assumption 2. Problem (10) cor-

responds to a finite horizon problem with control horizon

Nu = 1.

At time t, each controller MPC #i measures (or estimates)

the state xi(t) (usually corresponding to local and neighbor-

ing states), solves problem (10), and obtains the optimizer

u∗i
0 = [u∗i1

0 , . . . , u∗ii
0 , . . . , u∗imi

0 ]⊤ ∈ R
mi . In the simplified

case M = m and I
#
ui = i, only the i-th sample of u∗i

0

ui(t) = u∗ii
0 (12)

will determine the i-th component ui(t) of the input vector

actually implemented to the process at time t. The inputs

u
∗ij
0 , j 6= i, j ∈ Iui to the neighbors are discarded, their only

role is to provide a better prediction of the state trajectories

xi
k, and therefore a possibly better performance of the overall

system.

The collection of the optimal inputs of all the M MPC

controllers,

u(t) = [u∗11
0 . . . u∗ii

0 . . . u∗mm
0 ]⊤ (13)

is the actual input commanded to process (1). The optimiza-

tions (10) are repeated at time t+1, based on the new states

xi(t + 1) = W⊤

i x(t + 1), according to the usual receding

horizon control paradigm.

C. Stability of Decentralized MPC

As mentioned in the introduction, one of the major issues

in decentralized RHC is to ensure stability of the overall

closed-loop system. The non-triviality of this issue is due to

the fact that the prediction of the state trajectory made by

MPC #i about state xi(t) is often wrong, because of partial

state information and of the mismatch between u∗ij (desired

by controller MPC #i) and u∗jj (computed and applied to

the process by controller MPC #j).

In order to ensure stability of the decentralized control

scheme, an approach was proposed in [14] based on the

computation of decoupled terminal regions which ensure

closed-loop stability of the entire system and constraint
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fulfillment. The approach computes a hyper-rectangular inner

approximation between the feasible space defined by the

interconnection constraints and a controlled invariant set of

the i-th subsystem. The authors give a sufficient condition

for the asymptotically stability of the closed-loop system.

The authors in [16] propose a “feasible cooperation-based

MPC” where they modify the objective functions of the

subsystems’ MPCs by replacing the single i-th objective

function with an objective that measures the entire system

performance. Nominal closed-loop stability and optimality

are established by using an algorithm that at every time step

solves M QP problems iteratively until it does reach a certain

level of agreement between subsystems, and then applies the

computed inputs. A similar approach was taken in [9] where,

contrarily to our approach, the authors consider situations

where it is possible for the agents to exchange information

several times while they are solving their local optimization

problems at each control instant.

In this paper we provide “a posteriori” verifiable stabil-

ity conditions for decentralized MPC. Coupling constraints

are not additional constraints in the optimization problem.

Dynamical coupling between different parts of the model

are captured by matrices (Ai, Bi). Once the structure of the

controllers for the subsystems to be actuated is chosen, the

stability test presented in the next section ensures stability of

the entire system (1) in closed-loop with the M decentralized

MPC controllers. If the test fails, it is always possible to

find larger matrices Ai, Bi, i.e., a larger degree of coupling

between subsystems, and consequently a different set of

MPC controllers that stabilizes the entire system (in the worst

case, Ai = A, Bi = B, i.e., all MPC controllers solve

the global MPC problem (2), therefore obtaining consistent

solutions u∗ii
0 = u

∗ji
0 , ∀i, j = 1, . . . ,M ).

Let ∆ui(t) , u(t)−Ziu
∗i
0 (t), ∆xi(t) , (I−WiW

⊤

i )x(t),
∆Ai , (I − WiW

⊤

i )A, ∆Bi , B − WiW
⊤

i BZiZ
⊤

i . Since

xi(t) = W⊤

i x(t) and by exploiting (11), at time t the optimal

cost Vi(x(t)) can be rewritten as

Vi(x(t)) = (W⊤

i x(t))⊤(W⊤

i QWi)W
⊤

i x(t)+

(AiW
⊤

i x(t) + Biu
∗i
0 (t))⊤Pi(AiW

⊤

i x(t) + Biu
∗i
0 (t))+

u∗i⊤
0 (t)ZiRZiu

∗i
0 (t). (14)

As the input ui
0 = 0 satisfies the constraints umin ≤ ui

0 ≤
umax, by (11) the optimal cost at time t + 1 satisfies the

following inequality

Vi(x(t + 1)) ≤ (W⊤

i x(t + 1))⊤(W⊤

i QWi)W
⊤

i x(t + 1)+

(AiW
⊤

i x(t + 1))⊤PiAiW
⊤

i x(t + 1) =

= (W⊤

i x(t + 1))⊤(A⊤

i PiAi + W⊤

i QWi)W
⊤

i x(t + 1) =

= x(t + 1)⊤WiPiW
⊤

i x(t + 1). (15)

By rewriting x(t + 1) = Ax(t) + Bu(t) = (A ±
WiW

⊤

i A)(x(t)±WiW
⊤

i x(t))+(B±WiW
⊤

i BZiZ
⊤

i )(u(t)±
Ziu

∗i
0 (t)) = Wi(AiW

⊤

i x(t) + Biu
∗i
0 (t)) + ∆Y i(x(t)),

where ∆Y i(x(t)) , WiW
⊤

i (A∆xi(t) + BZiZ
⊤

i ∆ui(t)) +

∆Aix(t) + ∆Biu(t), from (15) and recalling (5) we obtain

Vi(x(t + 1)) ≤ (Wi(AiW
⊤

i x(t) + Biu
∗i
0 (t)) + ∆Y i(x(t)))⊤·

· WiPiW
⊤

i (Wi(AiW
⊤

i x(t) + Biu
∗i
0 (t)) + ∆Y i(x(t))) =

= (AiW
⊤

i x(t) + Biu
∗i
0 (t))⊤Pi(AiW

⊤

i x(t) + Biu
∗i
0 (t))+

+ ∆Si(x(t)),

where ∆Si(x(t)) , 2(AiW
⊤

i x(t) + Biu
∗i
0 (t))⊤PiW

⊤

i

∆Y i(x(t))+∆Y i⊤(x(t))WiPiW
⊤

i ∆Y i(x(t)). By (14), we

obtain

Vi(x(t + 1)) ≤ Vi(x(t)) − x⊤(t)WiW
⊤

i QWiW
⊤

i x(t)+

− u∗i⊤
0 (t)Z⊤

i RZiu
∗i
0 (t) + ∆Si(x(t)). (16)

We are now ready to state the following theorem:

Theorem 2: If the condition

(i) x⊤

(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i

)

x −
M
∑

i=1

∆Si(x) ≥ 0, ∀x ∈ R
n,

(17)

is satisfied, or the condition

(ii) x⊤

(

M
∑

i=1

WiW
⊤

i QWiW
⊤

i

)

x − αx⊤x −
M
∑

i=1

∆Si(x)+

M
∑

i=1

u∗i⊤
0 (x)Z⊤

i RZiu
∗i
0 (x) ≥ 0, ∀x ∈ R

n (18)

is satisfied for some scalar α > 0, then the decentralized

MPC scheme defined in (10)–(13) in closed loop with (1) is

globally asymptotically stable.

Proof: Either because of (16), (17), and positive defi-

niteness of R and hence of his principal minor Z⊤

i RZi (case

i) or (16) and (18) (case ii), the function

V (x(t)) ,

M
∑

i=1

Vi(W
⊤

i x(t)) (19)

is non-increasing. Since V (x(t)) ≥ 0, ∀t ≥ 0,

it follows that there exists limt→∞ V (x(t)) =
limt→∞ V (x(t + 1)). Hence, by (16) it also follows

that limt→∞ x⊤(t)
(

∑M

i=1 WiW
⊤

i QWiW
⊤

i

)

x(t) −
∑M

i=1 ∆Si(x(t)) +
∑M

i=1 u∗i⊤
0 (x(t))Z⊤

i RZiu
∗i
0 (x(t)) =

0. (i) Because of (17), it follows that

limt→∞

∑M

i=1 u∗i⊤
0 (x(t))Z⊤

i RZiu
∗i
0 (x(t)) = 0, and by

positive definiteness of Z⊤

i RZi, that limt→∞ u∗i
0 (x(t)) = 0,

and hence that limt→∞ u∗ii
0 (x(t)) = 0, ∀i = 1, . . . ,M ,

which in turn implies limt→∞ u(t) = 0. As by Assumption 1

the open-loop process (1) is linear and asymptotically

stable, and therefore input-to-state stable, it also follows

that limt→∞ x(t) = 0. (ii) Because of (18), it follows

that limt→∞ αx⊤(t)x(t) = 0, which in turn implies that

limt→∞ x(t) = 0. ¤
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D. Stability Tests

By using the explicit MPC results of [20], each optimizer

function u∗i
0 : R

n 7→ R
mi , i = 1, . . . ,M , can be expressed

as a piecewise affine function of x

u∗i
0 (x) = Fijx + Gij if Hijx ≤ Kij , j = 1, . . . , nri (20)

Hence, both condition (17) and condition (18) are a com-

position of quadratic and piecewise affine functions, so that

global stability can be tested through linear matrix inequality

relaxations [22] (cf. the approach of [23]).

As umin < 0 < umax, there exists a ball around the origin

x = 0 contained in one of the regions, say {x ∈ R
n :

Hi1x ≤ Ki1}, such that Gi1 = 0. Therefore, around the

origin both (17) and (18) become a quadratic form of x, and

hence local stability of (10)–(13) in closed loop with (1) can

be simply tested by checking positive semidefiniteness of a

square n × n matrix.

IV. EXPERIMENTAL RESULTS

Consider the following asymptotically stable linear time-

invariant discrete-time system















x(t + 1) =

[

0.9429 -0.02798 -0.2611
0.02224 0.9798 -0.02135
0.2616 0.01452 0.943

]

x(t)+

+

[

.009384 .005471 -.00072
-.001563 .00931 -.00055
-.002088 -.00147 .005401

]

u(t)

(21)

We choose here to design three decentralized controllers,

one for each input, i.e., the i-th MPC controller decides the

value of the i-th input to be commanded. The decoupled

prediction models are chosen according to the following set

of state/input indices:

Ix1 = Iu1 = {1, 3}; Ix2 = Iu2 = {1, 2}; Ix3 = Iu3 = {1, 3}.

Accordingly, the pairs of matrices (Ai, Bi) are defined as

A1 =
[

0.9429 -0.2611
0.2616 0.943

]

B1

[

.009384 -.00072
-.002088 .005401

]

A2 =
[

0.9429 -0.02798
0.02224 0.9798

]

B2 =
[

.009384 .005471
-.001563 .00931

]

A3 =
[

0.9429 -0.2611
0.2616 0.943

]

B3 =
[

.009384 -.00072
-.002088 .005401

]

corresponding to the choice of matrices (Wi, Zi)

W1 =

[

1 0
0 0
0 1

]

; Z1 =

[

1 0
0 0
0 1

]

W2 =

[

1 0
0 1
0 0

]

; Z2 =

[

1 0
0 1
0 0

]

W3 =

[

1 0
0 0
0 1

]

; Z3 =

[

1 0
0 0
0 1

]

.

(22)

The controllers are designed using the decentralized MPC

scheme (10)–(13) based on the following weights

Q =

[

4 -0.2 -0.3
-0.1 5 -0.4
-0.6 -0.1 5

]

R = 10−6 · I3.

(23)

By computing the unconstrained solution to the MPC prob-

lems (corresponding to the critical region of the explicit

version of the MPC controller related to no constraint active

at optimality), we obtain the matrix gains Fi, i = 1, 2, 3

F1 =
[

-107.7638 14.7213
-89.7068 -168.7838

]

F2 =
[

-96.9938 58.1031
-19.2757 -95.4731

]

F3 =
[

-107.7638 14.7213
-89.7068 -168.7838

]

.

(24)

Note that different gains computed for the same command

input by different MPC controllers look similar (or are even

equal), meaning that the guess u∗ij made by MPC #i on the

move u∗jj planned by MPC #j will not be very inaccurate.

In a region around the origin where no constraint is active,

the decentralized MPC control law is

u(t) =

[

-107.7638 0 14.7213
-19.2757 -95.4731 0
-89.7068 0 -168.7838

]

x(t) (25)

while the centralized MPC control gain is given by

u(t) =

[

-93.7776 58.3261 17.5837
-23.5555 -95.7687 -4.8290
-91.0992 -6.3035 -169.0643

]

x(t).

System (21) in closed-loop with the decentralized MPC

controller (25) is asymptotically stable since condition (17)

is verified. In fact, condition (17) under the feedback gains

(24) leads to the following condition

x⊤

[

12.0169 -0.1988 -0.6000
-0.0987 5.0001 0
-1.1997 0 9.3572

]

x ≥ 0 (26)

that is verified since the eigenvalues of the matrix associated

with the quadratic form (26) are 12.3287, 9.6911, 4.9972.

Figures 1–3 show the state and input trajectories, starting

from the initial state x0 = [−0.01 0.1 0.09]⊤. It also shows

that a completely decoupled approach Ixi = Iui = i to the

design of decentralized controller would lead to instability.

V. CONCLUSIONS

In this paper we have proposed a decentralized MPC

scheme and two different associated sufficient stability crite-

ria for testing asymptotic stability of the overall closed-loop

system. The degree of decoupling among submodels is a tun-

ing knob of the approach: more coupling leads to generally

better performance and to stability guarantees, at the price

of a heavier computational burden of the decentralized MPC

controllers and of the need for transmitting a larger amount

of information about state values. In this paper we have

assumed that the open-loop process is asymptotically stable.

Extensions of the approach to open-loop unstable systems by

using Riccati terminal weights instead of Lyapunov weights
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Fig. 1. Centralized MPC controller, decentralized MPC controller, and fully
decentralized MPC controller in closed loop with the process model (21)
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Fig. 2. Centralized MPC controller, decentralized MPC controller, and fully
decentralized MPC controller in closed loop with the process model (21)

are currently under investigation. Also, the use of state-

observers for estimating the effects of neglected states that

are detectable from local state information is a current

research item.
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