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Abstract— Wireless sensor networks (WSNs) are receiving
an increasing interest because of their ease of deployment,
autonomous re-configuration capabilities, and small cost. They
can be employed in a large variety of applications, from military
and surveillance to environmental monitoring. Since on board
batteries only provide a limited energy resource to nodes and
often they cannot be replaced, when designing WSN-based
applications a fundamental issue is the reduction of power
consuming operations. In this paper we exploit a WSN for
detecting and tracking moving targets. Such a network would
waste energy if all nodes were kept constantly active, since at
every time instant the target is in the range of only a subset of
them. For this reason an autonomous target detection algorithm
and a cooperative selective-activation tracking algorithm are
proposed, and the use of Kalman filtering techniques for motion
estimation is discussed. In particular, the problem of fusing the
data obtained from different sensors is considered. Simulations
results in different scenarios are presented.

I. INTRODUCTION

A wireless sensor network (WSN) [1] is composed by

a possibly large set of small electronic devices equipped

with different sensors, communication capabilities and with

limited data processing system [2], [3]. The nodes take mea-

surements from different sensing devices, perform simple

processing operations and share the obtained information

through wireless links. WSNs can be employed in a large

variety of applications [1], since the nodes are cheap and

installation costs are very small, they are able to automati-

cally re-configure when nodes die or are added, and they can

be deployed even in human-unaccessible locations. Small

node size and long battery life are colliding objectives.

Typically, once exhausted the battery cannot be replaced,

either because it is physically impossible, or just because it is

not economically convenient. For this reason it is necessary

to adopt ad-hoc strategies to exploit energy resources in the

most efficient way, in order to increase the WSN life and

reduce costs.

Past studies [4] have shown that communication is the

most expensive operation for a WSNs in terms of power

consumption. Hence, the life-cycle of a WSN, is maximized

by minimizing the communications between sensor nodes,

for instance by adopting data fusion techniques [5].

Besides power consumption, there are other aspects to

consider when designing a WSN:

• Latency: after a node senses an interesting event, the

information may take a long time before it reaches the
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base station. A compromise between information delays

and power consumption is needed.

• Fault tolerance: sensor nodes can stop working because

they have exhausted their energy supply or they have

been damaged. The network functionality must not

change significantly when a small subset of nodes

stops working [6]. Fault tolerance is a measure of the

capability of the WSN to maintain its functionality when

a part of its nodes is damaged or not utilizable.

• Scalability: the number of nodes that composes a net-

work changes accordingly to the applications and to the

area over which it is deployed [7]. Algorithms designed

for WSNs must be suitable for networks composed by

any number of nodes.

In this paper we consider a WSN composed by sensor

nodes randomly deployed over a region to detect and track

objects moving across the area. A similar problem has

been treated in [8], where the power consumption and the

tracking performance of different node activation strategies

are compared. The tracking algorithm of this paper is an

implementation of the so called “selective activation” ap-

proaches described in [8].

Section II defines the WSN scenario and the target model.

In Section III a target detection scheme is presented, which

defines some of the network parameters, namely the num-

ber of nodes that form the WSN and the mean activation

frequency of the nodes. Section IV deals with the tracking

algorithm and the data fusion. Finally, in Section V simula-

tions for different scenarios are presented.

II. SCENARIO

The purpose of the WSN is to detect an object that is

moving inside the monitored area and, once detected, to keep

track of its position and velocity. This must be accomplished

with a reduced power consumption, thus keeping the number

of active nodes and the number of communications small.

A. Target model

In order to exploit model-based filtering techniques, a

dynamical model of the moving target is needed. We use a

general model because we do not make any assumption about

the target nature. In case more information on the target is

available, a more detailed model can be used. We consider

a discrete-time model of the object motion in the x-axis and

y-axis of the Cartesian plane. We assume the target moves

with an initial unknown velocity vector v(k), and it is subject

to random accelerations modelled by a Gaussian white noise

vector w(k), with zero mean and covariance matrix Q.
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Fig. 1. Detection and tracking scenario

Let x(k) = [px(k) vx(k) py(k) vy(k)]T , be the overall

state vector, where px(k), vx(k), py(k) and vy(k) are the

object position and velocity with respect to the x and to the

y axis, respectively, at time k. The target dynamics are

x(k + 1) = Ax(k) + Bw(k), (1)

where
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
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(2)

and where Ts is the sampling time. The acceleration com-

ponents are independent, w(k) , N (0, Q), where Q =
[

qx 0

0 qy

]

.

B. Sensor node and sensor network

We consider a physically static network composed by N

nodes with a dynamic communication configuration, ensur-

ing robustness against node damages.

It is assumed that each node i knows its position ps
i ∈ R

2

in Cartesian coordinates with respect to a common reference

system. This can be obtained through a GPS on board of each

node, or through the use of self-localization algorithms [9]

after the network deployment, or simply by deploying each

sensor in a prespecified position. Each node measures the

relative position of the tracking object along the x and y

axes, and the absolute position of the object is computed.

The sensing range of each node is limited and equal to rs.

Instead of keeping all the nodes constantly in a fully oper-

ating mode, we propose an approach in which the nodes are

awaken by events of interest. A sensor node can be in three

operating modes. Active, in which it can send and receive

messages and it can perform communication. Standby, in

which its computation, sensing and transmission capabilities

are disabled, so that no energy is wasted by the sensing

process or by outgoing communications, but it is still able to

receive to be possibly awaken. Alert, in which sensing and

reception are enabled, while transmission and computation

are disabled, and which is basically an intermediate state

between the previous two. The optimal situation would be

that the sensor is in active mode only when the target is in

its sensing range and it can take valid measurements. This

is practically impossible because no sensor would be able to

detect a new object on the field. Each node has a scheduled

“wake-up” instant at which it automatically switches to the

alert mode, searches for new targets in its range, and, if it

does not find anyone, returns to the standby mode.

III. SENSOR DEPLOYMENT AND TARGET DETECTION

With the aim of minimizing the communication between

nodes, we designed a target detection scheme in which each

sensor works autonomously until a target is acquired. The

detection scheme is the described in Algorithm III.1.

1. Scan the detection range

2. if new target detected

2.1. then go to 5.

3. schedule next wake-up instant and switch to standby mode

4. at the scheduled instant, switch to alert mode then go to 1.

5. stop detection and start the tracking algorithm

Algorithm III.1: Detection algorithm

The only choice we have to perform in Algorithm III.1

is the scheduling policy of “wake-up” instants. Since we

want to minimize communications, we do not allow any

information exchange between nodes before the target is

discovered. In addition, we do not have any information

about the target, neither about its presence nor about its

position, until we have detected it. Thus, we use a stochastic

scheduling approach: The next wake-up instant is defined

by summing an exponentially distributed random variable

with distribution parameter λW to the current time. Note

that λW is the mean frequency of wake-up events and λ−1

W

is the mean standby period. This approach, given a certain

monitored area, allows us to design the parameter λW and

the number of sensor deployed N so that an object which

moves in the monitored area for a period larger than T is

detected with a certain probability.

The following assumptions simplify computations.

Assumption 1: Until detected, the object can be at any

location in the monitored area with equal probability.

Assumption 2: The sensors are randomly deployed on the

monitored area with uniform probability distribution.

Assumption 3: The detection period is infinitesimal.

Assumption 1 states that no a-priori information is avail-

able on the object position until it has been detected. As-

sumption 2 states that the probability of the object to be in

the detection range of a node is uniform on the monitored

area, and thus independent from its position. Assumption 3

decouples the detecting action of different sensors, because

it states that the probability that two nodes are scanning at

the same instant is zero, and it holds if the detection period

is much smaller than the mean standby period.

Consider a single sensor node. The “wake-up” (W) event

instants are exponentially distributed with (mean) frequency
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λW . However, the instants at which the sensor wakes up and

finds a new target are only a subset of those. In particular, the

probability that an active sensor detects an object crossing

the monitored area is equal to the probability of the object

being in the detection range. Thus, by Assumption 1, the

probability is pd|a = as

Am
, where Am is the total monitored

area and as is the detection area of a node. Since there

is no relation between the wake-up events and the object

position, the “wake-up and detected” (WD) event instants of

a single node are exponentially distributed events with mean

frequency λWD = λW pd|a.

Because of Assumption 3, the “network’s wake-up and

detected” (WDN) event instants are exponentially distributed

with parameter

λWDN = λW pd|a N = λW

as

Am

N, (3)

and thus the probability density function that a WDN event

occurs at time ξ after the previous one (or after the algorithm

initialization) is

pdfWDN (ξ) = λWDNe−λW DN ξ = λW

as

Am

Ne−λW
as

Am
Nξ.

(4)

Proposition 1: Given a sensor network composed by N

sensors having sensing range as and mean activation fre-

quency λW , an object which moves in the monitored area

Am is detected within a period T with probability P̂ satis-

fying
Am

asT
ln

(

1

1 − P̂

)

= λW N. (5)

Proof: The probability that a target crossing the moni-

tored area is detected within a time period T is equal to the

probability that a WDN event occurs within T time units,

that is P[ξ ≤ T ]. Thus,

P[ξ ≤ T ] =

∫ T

0

λW

as

Am

Ne−λW
as

Am
Nξdξ =

(

1 − e−λW
as

Am
NT

)

.

(6)

By taking logarithms, (5) follows.

Equation (5) can be used to design the network charac-

teristics (λW , N ) for a given T and a given confidence

interval P̂ . The parameter T is related to the object motion

characteristics, for example it can be the minimum time

the object takes to cross the monitored area, and to the

tolerated delay of detection. The parameter P̂ is related to

the required confidence probability of the detection. Note

that P[ξ ≤ T ] ≥ P̂ is satisfied if Am

asT
ln

(

1

1−P̂

)

≤ λW N .

Equation (5) states a natural trade off between the number

of sensors and the frequency of node activation for a desired

detection performance. The first parameter will be related to

the mean-life of the sensors, the second to the network cost.

We performed tests to validate this approach. A squared

monitored area of 23.2 × 23.2 m2 is considered, nodes

having a circular detection area of 8 m2 (i.e., rd = 1.6 m),

and a desired maximum detection period T = 3.8 s. The

sensors are randomly distributed with uniform probability

on the monitored area in a way that the sensor detection

areas lie inside the monitored area. The network must detect

an object that starts moving from a position (x̄ + η, 0),
where x̄ = 8 m and η is a random variable uniformly

distributed in [0, 2] m. The object initial velocity is zero,

and the random acceleration components are independently

uniformly distributed in [0, 3] m/s2 each.

We suppose the node activation mean frequency λW =
0.5 s−1 fixed, and consider three different numbers of nodes

in order to satisfy three different confidence probabilities.

The confidence probability P̂ , the corresponding number of

nodes N computed from (5), and its discrete approximation

Ñ are reported in Table I. We set up 200 different detection

P̂ N Ñ D

0.95 106.07 106 94.72

0.90 81.53 82 90.61

0.70 42.63 43 71.81

TABLE I

DETECTION RESULTS FOR DIFFERENT NETWORK DESIGNS.

fields by changing the random sensor distribution on the

monitored area and we performed 100 detection tests for each

field. In Table I the experimental mean detection probabilities

D over the total 20000 tests for the three cases are reported.

The results are close to the confidence probability required,

despite the assumptions we made.

IV. TRACKING ALGORITHM

After a new target has been discovered by a node through

Algorithm III.1, the nodes must start cooperating to track the

target [10]. We assume here that at most one object may be

crossing the area, while noting that the proposed strategies

can be extended to multitarget tracking, for instance by

exploiting the results in [11], [12].

With the aim of minimizing the power consumption, we

do not want to activate all the nodes for tracking, but only

the ones that give significant contribution to the position

estimation, that is, the ones whose sensing range contains the

target. Such nodes form a sensor cell. Let S = {s1, . . . , sN}
be the sensor nodes, ps

i be the position of the ith node. Given

a cell center c and a cell radius rc, a sensor cell is the set

of nodes SC(c, rc) = {si ∈ S : ‖c − ps
i‖2 ≤ rc}. Thus,

a sensor cell is composed by those sensors which are at a

distance smaller than rc from the cell center c.

We propose a tracking algorithm in which sensor cells

are activated for taking measurements and for estimating

target position and velocity. Sensor cells are dynamically

managed: a cell remains active for a certain period, then

it is released and a new cell, possibly containing different

nodes, is formed. The cell life, that is the number of sampling

periods K the cell remains active, is fixed in the algorithm

considered here, even though the same strategies can be

applied to the case of a dynamically varying K. Once the

cell life expires, the actual estimate of the target state is used

for choosing the nodes that will possibly form the next cell.

During the cell life all the sensors in the cell measure the

target position. As a consequence, it is required that the target
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remains within the detection range rs of the each sensor in

the cell. Hence, the choice of the algorithm parameters rc and

K, depends on rs and on the target motion characteristics.

For instance, the larger K, the larger is the distance that

the target can cover before a cell switch. Thus, the larger

must be rs and the small rc, in order to ensure that all the

node can take measurements. On the other hand, the larger

rc, the larger is the number of measurements available for

estimation, while the smaller K, the more frequent are cell

switches, which require additional communications.

The simpler position at which the cell center can be placed

is the position of the node that detects the object. However,

in this way it is impossible to ensure that the target remains

in the sensing range (rs) of each node if rd = rs. Suppose

the target is detected at a distance rd, then at next step it can

be out from the sensing range, at least of the master. Thus,

it is required that rd < rs. If the maximum distance X(K)
the target can cover in K steps (X(K) ≤ rs) is available

with a confidence probability P̃ , then the range rc of a cell

centered on the node that detected the target must satisfy

rc + rd + X(K) ≤ rs. (7)

Since the distance d0 of the target when detected is smaller

than rd and the distance between a node and the center

is smaller than rc, the initial distance of each node from

the target is smaller than rd + rc. Thus, there is at least

a confidence probability P̃ that all the sensors can take

measurements during K steps. A better position to place the

cell center is close to the detected target position. However,

this requires additional communication and hence will not

be considered here.

Because of Assumption 3 there is no conflict on the master

choice, since only one node detects the target. However,

in case it is needed, a simple master selection policy that

resolves conflicts can be based on a fixed-priority rule, e.g.

by using the node ID.

Once a node has detected a new target, the selective

activation tracking Algorithm IV.1 is executed.

1. node sends a “wake-up” signal to the nodes within a range rc

2. active nodes form a sensor cell, the one that has awaken the others

become the master.

3. for i = 1 : K

3.1. active nodes collect measurements and send them to the master.

3.2. master updates the estimation by using the collected measurements.

3.3. if target exited from the monitored area or it has been lost

3.3.1. master release the target, then go to 7.

end

4. active nodes switch to standby mode.

5. master alerts all the nodes within a fixed distance from the final

estimation of target position, then switches to standby mode.

6. one of the alerted nodes detects the target, continue from 1.

7. master broadcasts the order to stop tracking and to activate detection.

Algorithm IV.1: Tracking Algorithm

In the current implementation of Algorithm IV.1 K and

rc are fixed, and chosen to satisfy (7). Thus, in order to

wake up the nodes, the cell master only needs to broadcast

the wake up signal together with the center position of the

new cell. In case of conflicts, the master is selected by a

static priority rule based on the node ID. In case the target

is lost the Algorithm III.1 is activated to possibly detect it

once again. The estimation is performed by Kalman filters,

as described next.

A. Estimation

The estimation of the target motion is performed through a

Kalman filter located at the master. The filter remains active

during the cell life, until the cell changes and a filter in the

new master is started.

We assume that each sensor measures the absolute position

of the target in Cartesian coordinates. The estimation is based

on model (1) coupled with the output equation

y(k) = Cx(k) + ν(k), (8)

for each sensor, where y ∈ R
p, C = [ 1 0 0 0

0 0 1 0
], ν(k) ,

N (0, R), and the measurement error covariance R is as-

sumed to be equal for each sensor. In the estimation phase

the measurements coming from all the active sensors are

exploited at the same time by the filter. Thus, the output

matrix and the covariance matrix considered by the filter

are, respectively,

Cf =







C
...

C






, Rf =







R . . . 0
...

. . .
...

0 . . . R






, (9)

where Cf ∈ R
nap×n and Rf ∈ C ∈ R

nap×nap, and na is

the number of active sensors in the cell. A standard Kalman

filter is considered, where the prediction step is

x̂(k|k − 1) = Ax̂(k − 1|k − 1) + Bu(k),
P (k|k − 1) = AP (k − 1|k − 1)AT + Q,

(10)

the estimation step is

x̂(k|k) = x(k|k − 1) + M(k)[y(k) − Cf x̂(k|k − 1)],
P (k|k) = [I − M(k)CT

f ]P (k|k − 1),
(11)

and the time-varying Kalman gain is

M(k) = P (k|k − 1)CT
f [CfP (k|k − 1)CT

f + Rf ]−1. (12)

The filter is initialized by x̂(0| − 1) = [sx 0 sy 0]T , where

[sx sy] is the position of the master node. Note that this

strategy can be extended to the case of nonlinear target

dynamics by using the Extended Kalman Filter.

B. Data fusion

The proposed approach represents the simplest data fusion,

in which the filter fuses all the available data simply by

augmenting the model used in the estimation and by consid-

ering a larger set of data [13]. However, such an approach

is computationally expensive, because the dimension of the

matrix to be inverted increases with the number of active

sensors, hence the algorithm scalability is limited. In [14]
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it has been shown that there is a functional equivalence

between this filter and the one which operates on data

that have been fused in advance [15]. In our case all the

sensors are equal (they measure the same quantity and have

the equal covariance R), hence a data-fusion Kalman filter

which exploits two sensors has the same behavior than the

fused-data Kalman filter which uses the averages of the

measurements and a measurement covariance equal to 1

2
R.

The extension to many nodes has been derived in [14]

through the information form of the Kalman filter. However,

here we consider the case in which the nodes are homoge-

nous, thus the results simplify largely.

Corollary 1: In a homogenous sensor network, the filter

obtained by fusing n measurements with covariance R

behaves as the one obtained by using the average of the

n measurements and measurement error covariance 1

n
R.

Proof: Instead of applying the result in [14], we can

prove the proposition by mathematical induction. The nodes

are homogenous, thus they all have the same measurement

error covariance R. Suppose that the filter that fuses h data

is equivalent to the one that uses the average of h data and

measurement covariance 1

h
R. Consider the case of the filter

with h+1 data and assume that the first h data are pre-fused,

and the last one is included by augmenting the model. Let

Ẽ1 be the average of prediction errors obtained from the first

h sensors, Ẽ1 = ρ(E1 + . . . Eh), ρ−1 = h, and E2 = Eh+1

be the prediction error of sensor h + 1. Accordingly, the

covariance matrixes are R1 = ρR and R2 = R. Then

M(k)

[

Ẽ1

Ẽ2

]

=

= PCT [(1 + ρ)CPCT R + ρR2]−1[RẼ1 + ρRẼ2] =

PCT
[

CPCT + ρ
1+ρ

R
]−1 [

1

1+ρ
Ẽ1 + ρ

1+ρ
Ẽ2

]

=

PCT
[

CPCT + 1

1+h
R

]−1 [

1

1+h

∑h
i=1

Ei + 1

1+h
Eh+1

]

,

(13)

which is the estimation update of a filter that uses the

average of h + 1 prediction errors and a measurement error

covariance which is 1

h+1
the original one. The estimation

covariance update follows directly from (13). By induction,

the proposition follows.

In this strategy the data are fused before the filtering

process. The advantages are that the matrix to be inverted

is smaller, thus a lower computational burden is required,

saving energy and time, and that it is easier to reconfigure

the estimation. If the number of nodes that measure the

target changes, it only needs to change the measurement

error covariance by considering the new number of nodes. If

a stationary Kalman filter is used, the gains can be computed

in advance for certain numbers h of active sensors1 and

dynamically selected.

V. SIMULATION EXAMPLE

Consider a target crossing an area of 20×20 m2, in which

600 sensor nodes have been randomly deployed with uniform

1For uniformly deployed sensors, the average number of active sensors

is n =
πr

2

c
Am

N .

distribution. The target moves accordingly to model (1), with

initial velocities vx(0), vy(0) ∈ [0, 5] m/s. The sampling

period is 10−2 s and the acceleration is a random vector

w(k) , N (0, 3I).
The detection range used for master activation is rd = 1 m,

the cell radius is rc = 1.5 m which causes an average

sensor/cell number of 10.6. The cell life is 20 steps, thus

a new master is selected every 0.2 seconds. It is assumed

that the sensing range is such that (7) is satisfied (rs =
3.5 m would be required, considering only the velocity, for

such a conservative approach). The sensor measurements

are affected by Gaussian disturbances ν(k) ∈ N (0, 0.1 · I)
[m/s2].

In addition to the process noise, on each period of 20 steps

there is a probability of 0.2 that the target makes a turn.

The step at which the turn occurs is random, with uniform

distribution. When the target turns, its velocities on both axes

are randomly reset to vx, vy ∈ [0, 5] m/s.

4 5 6 7 8 9 10 11 12
0
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Fig. 2. Target positions (circles) and estimated positions (crosses) at the
cell switch instants

The results of 300 steps of simulation are reported in

Figure 2. The target position at the end of each cell

life period is reported as a solid line marked by cir-

cles and the estimated states at such instants are re-

ported as crosses. Figure 3(a) shows the distance er-

ror profile εd(k) along the simulation, where εd(k) =
√

(px(k) − p̂x(k))2 + (py(k) − p̂y(k))2, (px(k), py(k)) is

the target position at step k, and (p̂x(k), p̂y(k)) is the

estimated position at step k. The peaks in the error are at

the cell switch instants, since the estimation is reset and, in

particular, no information on the target velocity is available.

Additional peaks are due to target turns. The errors due

to cell switches could be removed if when cell switches

the previous master sends the current estimate and the

current covariance to the next master. However, this would

require additional communications, with the consequent use

of battery energy.

In Figure 3(b), the εd(k) profile is reported for a different

simulation with the same duration, and in which the cell life

is increased to 40 steps; the sensing range of the node is

increased accordingly. The error is lower in average, but the

estimation error after the cell switches and the turns is still

large. Finally, Figure 3(c) reports a simulation with the same
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(c) Cell life 40 steps, 1200 nodes

Fig. 3. Distance error between real and estimated position
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0 50 100 150 200 250 300
6

9

12

15

18

21

24

27

30

#
ac

ti
v
e

se
n
so

rs

k

(b) Cell life 40 steps, 600 nodes
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(c) Cell life 40 steps, 1200 nodes

Fig. 4. Number of active sensors during simulation

duration, in which the cell life is 40 steps and the number

of sensor is increased to 1200. Since the mean number of

active sensors in the cell is increased, as shown in Figure 4,

the effect of measurement noise is decreased, accordingly

to (13).

VI. CONCLUSIONS

We have considered the problem of detecting and tracking

a moving target by exploiting a wireless sensor network. The

proposed algorithms are fault tolerant, since node deaths only

affect tracking performance without halting the estimation

procedure, and scalable, because the algorithm does not

depends on the number of nodes, except for the performance.

A design technique based on detection confidence probability

for some network parameters and a selective-activation track-

ing algorithm have been proposed. Such techniques are de-

signed to minimize the communication between nodes, since

those are the most power consuming operations and battery

duration is critical in WSN applications. An experimental

validation of the proposed algorithm is currently planned at

the Automatic Control Laboratory of Siena, based on a WSN

of Telos T-mote Sky motes.
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