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† Università di Siena, Dipartimento di Ingegneria dell’Informazione,
Via Roma 56, 53100 Siena, Italy

Fax: +39 02 700 543345 E-mail: bemporad@dii.unisi.it

Keywords: Hybrid systems, mixed logical dynamical systems,
piecewise affine systems, optimal constrained control, robust
control.

Abstract

This paper proposes an approach to extend the mixed logical
dynamical modelling framework for synthesizing robust opti-
mal control actions for constrained piecewise affine systems
subject to bounded additive input disturbances. Rather than
using closed-loop dynamic programming arguments, robust-
ness is achieved here with an open-loop optimization strategy,
such that the optimal control sequence optimizes nominal per-
formance while robustly guaranteeing that safety/performance
constraints are respected. The proposed approach is based on
the robust mode control concept, which enforces the control in-
put to generate trajectories such that the mode of the system, at
each time instant, is independent of the disturbances.

1 Introduction

Hybrid systems are defined as systems composed of continu-
ous and discrete variables [1]. Piecewise affine (PWA) sys-
tems [11], mixed logical dynamical (MLD) systems [2], linear
complementarity (LC) systems [4] and max-min-plus-scaling
(MMPS) systems [9] are different approaches, though equiva-
lent models of hybrid dynamical systems. Their equivalence,
shown in [5], allows one to interchange analysis and synthe-
sis tools among them. Specifically, MLD systems, which are
systems described by interdependent physical laws (with linear
dynamics), logic rules (if-then-else rules) and operating con-
straints are very pertinent in the real-world engineering envi-
ronment. In fact, this model is a compromise between applica-
bility and complexity.

As parametric uncertainties and input disturbances are always
present on real-life applications, analysis and synthesis proce-
dures when additive input disturbances and/or parametric un-
certainties are present on the continuous linear dynamics of the
hybrid model, are topics that are starting to deserve the atten-
tion of researchers. The research works of [6–8] are some ex-
amples of analysis/synthesis procedures of uncertain piecewise

linear hybrid dynamical systems. Backward reachability com-
putations [8] (seminally proposed in [3]), as well as polytopic
set algebra [6,12] are the tools proposed to deal with the nonlin-
earity and non-convexity properties of the hybrid/PWA system.
Specifically, in [7] it is considered the robust time-optimal, ro-
bust optimal and robust receding horizon control problems, and
tools from computational geometry, dynamic and parametric
programming are used to obtain explicit state-feedback con-
trol laws. However, as expected due to the complexity of the
tackled problems, the algorithms based directly on the results
presented in [7] might be to inefficient to be realizable for large
or complex systems, as the authors remark.

The approach pursued in this paper follows a different direction
from the cited references. Instead of computing state feedback
laws based on reachability computations, computational geom-
etry tools and dynamic programming, the goal of this paper is
to extend the MLD framework to uncertain PWA systems and
to present a computational procedure, based on mixed-integer
programming, to obtain open-loop control sequences that guar-
antee the fulfillment of dynamic and operating constraints and
optimize a nominal performance criterion. Although the com-
plexity of the problem proposed to tackle is not comparable to
the one solved e.g. in [7], its possible extension to a receding
horizon strategy based on closed-loop prediction is stimulating.

The paper has the following structure. In Section 2, the prob-
lem to solve is presented. The MLD prediction/synthesis model
is developed in Section 3. The control synthesis algorithm is
described in Section 4, and in Section 5 some conclusions are
drawn.

2 Problem statement

Consider a discrete-time PWA system, subject to bounded ad-
ditive input disturbances, used for synthesis purposes, such that
safety and/or performance constraints are respected. The ro-
bust constrained optimal control problem for the uncertain sys-
tem is defined as follows.

Problem 1. Given an initial state x0 and a final time N , find (if
it exists) the control sequence u � {u(0), . . . , u(N−1)} which
(i) transfers the state from x0 to a given final set C(N) that



contains a target state xf , and (ii) minimizes the performance
index

JN (x0,u) �
N−1∑
k=0

‖x̄(k) − xf‖2
Q,2 +

+‖u(k) − uf‖2
R,2 + ‖x̄(N) − xf‖2

P,2 (1)

subject to:

x(0) = x̄(0) = x0 (2a)

x̄(k + 1) = Aix̄(k) + Biu(k) + ei , if
[

x̄(k)
u(k)

]
∈ Ωi (2b)

x(k + 1) = Aix(k) + Biu(k) + ei + Wiv(k) , if[
x(k)
u(k)

]
∈ Ωi � {

[
x(k)
u(k)

]
: Fix(k) + Giu(k) ≤ hi} (2c)

[
x(k)
u(k)

]
∈ C(k) � {

[
x(k)
u(k)

]
: K(k)x(k)+

+L(k)u(k) ≤ m(k)}, ∀v(k) ∈ V, for k = 0, . . . , N (2d)

where u(k) ∈ U ⊂ R
m, x(k) ∈ X ⊂ R

n and v(k) ∈ V ⊂ R
q

denote the input, state and disturbance vectors, respectively,
at time k. The index i represents the current system mode
(i ∈ {1, . . . , s}). The partitions Ωi are convex polytopes
(i.e. closed and bounded polyhedra) in the input+state space.

Moreover, Ω =
s⋃
i=1 Ωi,

◦
Ωi

⋂ ◦
Ωj= ∅, ∀ i �= j, where

◦
Ωi denotes the interior of the polytope Ωi. U, X are convex
polytopes, as well as V, according to the typical unknown-but-
bounded characterization of disturbances, with 0 ∈ V. C(k)
denotes sets of (possibly time-varying) constraints on the in-
put+state space. Ai, Bi, Wi, Fi, Gi, K(k) and L(k) are real
matrices of appropriate dimensions, hi and m(k) are real vec-
tors, and ei is the affine real vector, for all i = 1, . . . , s. Fur-
thermore, ‖x‖2

Q,2 � x′Qx, x̄(k) represents the nominal trajec-
tory, Q, R and P are symmetric positive definite matrices, and
xf , uf are given desired target vectors.

The main goal of this paper is to solve Problem 1 using the
MLD framework, which was developed to model hybrid sys-
tems and synthesize optimal and receding horizon control laws
[2]. As X, U are bounded, the PWA system can be expressed as
an MLD system, which has the structure given in Figure 1 [13].
As the PWA system (2c) does not include discrete inputs or
states, no discrete inputs or states are needed to model it within
the MLD framework (only binary auxiliary variables).

Consider the discrete-time PWA dynamics described by
(2c). An equivalent MLD model of the dynamics is pre-
sented next, where the first inequality concerns the continu-
ous/discrete interface and the second inequality concerns the
discrete/continuous interface

x(k + 1) = Bzx
zx(k) + Bzu

zu(k) + Bδδ(k) + Bzv
zv(k)

(3a)

E
c/d
δ δ(k) ≤ E c/d

x x(k) + E c/d
u u(k) + e c/d (3b)

E d/c
zx

zx(k) + E d/c
zu

zu(k) + E
d/c
δ δ(k) + E d/c

zv
zv(k) ≤

≤ E d/c
x x(k) + E d/c

u u(k) + E d/c
v v(k) + e d/c (3c)

Figure 1: A generic MLD system: The c/d subscripts means
continuous/discrete signals, vc represents a continuous distur-
bance signal, δ and z are auxiliary discrete and continuous vari-
ables, respectively.

where δ(k) is an auxiliary vector with binary (zero/one) en-
tries that defines the mode i (or equivalently partition i) of
the system (dim[δ] = (s × 1)), moreover if mode i is ac-
tive then δi(k) = 1 and δj(k) = 0, ∀j �= i, i, j ∈
{1, . . . , s} (these constraints are incorporated in inequality
(3b)); zxi(k) = δi(k)x(k) are auxiliary continuous variable
(dim[zxi] = dim[x] = (n × 1)); using the Kronecker prod-
uct to abbreviate notation, zx(k) = δ(k) ⊗ x(k), (dim[zx] =
(s · n × 1)); zu(k) = δ(t) ⊗ u(k) (dim[zu] = (s · m × 1)) and
zv(k) = δ(k) ⊗ v(k) (dim[zv] = (s · p × 1)). Notice also, that
Bzx

≡ [ A1 A2 ... As ], Bzu
≡ [ B1 B2 ... Bs ], Bδ ≡ [ e1 e2 ... es ],

and Bzv
≡ [ W1 W2 ... Ws ]. The system defined by equations

(3) can be simulated if the system is well-posed [2] (i.e. all aux-
iliary variables are uniquely defined for all (x(k),u(k),v(k)))
and disturbances and control inputs are exactly known. How-
ever, the purpose of the paper is to develop a computational
procedure, using the MLD framework, to determine an open-
loop finite horizon optimal control sequence based on the pre-
diction of future states, assuming that the disturbances are un-
known and the only information about them are their bounds.
Yet, the MLD framework was developed to deal with deter-
ministic systems [2] and its extension to uncertain systems
rises some problems. Clearly, when bounded disturbances are
present, the predicted state x(k) is set-valued. The computation
of these sets is not an easy task since the system is nonlinear.
The effect of the bounded disturbance on the state is dependent
on the trajectory of the system, which, of course, also depends
on the initial state and input. As the dynamic mode (i.e. the
active partition) changes, the effect of the perturbation is dif-
ferent. Therefore, the influence of the disturbance can not be
predicted independently of the trajectory of the system, as for
linear systems. Furthermore, the set that defines the state, at
each time step k, is in general a non-convex set, specifically, it
is a union of convex sets when V is convex. Therefore, the typ-
ical approach for linear systems (e.g. as used in [10]), of using
the extreme disturbance realizations can not be directly applied
in this case.



2.1 The concept of robust mode control

To overcome the aforementioned problem, we propose to re-
strict the admissible control sequences to only those that guar-
antee that, for every value of the disturbance, the mode of the
system is unique at each time step k. In fact, the uncertainty
associated with the uncertain PWA system dynamics can be
divided into two types of uncertainties: state-uncertainty and
mode-uncertainty. By state uncertainty we mean that the ex-
act value of the state at a given time step k is not known, but
the mode is known. By mode uncertainty we mean that neither
the mode nor the state are exactly known at a given time step k.
State uncertainty is a disadvantageous, but intrinsic, property of
the uncertain system which generates convex uncertainty sets.
Mode uncertainty generates, as time evolves, unions of convex
sets (which, in general, are non-convex). However, mode un-
certainty is not an intrinsic property of the uncertain system,
since a cautious control action may avoid it. Hence, the main
property of the robust mode control is to generate control se-
quences such that the mode of the system is “certain” and, for
each admissible control sequence, the uncertainty associated
with the state is defined by a convex set. Although this extra
structure on the problem has some computational advantages in
terms of set descriptions, clearly, the main disadvantage of this
restriction is the smaller domain of feasible control sequences
(this disadvantage could be mitigated by extending the robust
mode control concept to a closed-loop prediction policy).

The robust mode control concept, however, allow us to extend
the MLD framework for designing robust control inputs for un-
certain PWA systems. Next, the restrictions and properties of
the robust mode control sequence are explicitly determined on
a MLD-based modelling context. Consider the nominal MLD
system, obtained from (3) for null disturbances (i.e. v(k) = 0
and zv(k) = 0, ∀k). Consider also that system (3) is com-
pletely well-posed [2], i.e. there exist uniquely defined map-
pings D : Rn × Rm → {0, 1}s, Zx : Rn × Rm → Rn.s

and Zu : Rn × Rm → Rm.s, such that the δ(k), zx(k)
and zu(k) variables are uniquely defined for given x(k) and

u(k) (when
[

x(k)
u(k)

]
∈ Ω), such that δ(k) = D (x(k), u(k)),

zx(k) = Zx (x(k), u(k)) and zu(k) = Zu (x(k), u(k)). Fi-
nally, consider that when v(i) = 0, ∀i ∈ {0, . . . , k − 1} and
an input sequence uk−1

0 is applied to the MLD system, then the
state trajectory is denoted by x̄u. This input sequence and the
null disturbance sequence define the nominal trajectory of the
system, i.e. x̄(k) = F (k;xt, u

k−1
0 , 0k−1

0 ), where F (.) denotes
the system dynamics defined by equations (3). Therefore, by
well-posedness of δ, zx and zu a unique mode trajectory is ob-
tained: δk−1

0 � {δ(0), . . . , δ(k − 1)}.

To guarantee that the value of the δ variables are independent
of the presence of the bounded disturbances v, the δ variables
must verify the following condition

δ(k) = D (x̄(k), u(k))
= D (x(k), u(k)) , ∀v(k) ∈ V, ∀k. (4)

If the input sequence uk
0 is such that (4) is respected, then it

defines a robust mode input sequence, and so the mode of the
system, i.e. δ(j), is independent of the disturbance realization,
for all instants j ∈ {0, . . . , k}, and the state at time step k + 1,
which is set-valued, can be decomposed as follows

xu(k + 1) = F
(
k + 1;x0,uk

0 , Vk
0

)

= F
(
k + 1;x0,uk

0 ,0k
0

)
+ F̃ δ

(
k + 1; 0,0k

0 , Vk
0

)

= x̄u(k + 1) + x̃u(k + 1) (5)

where the first term represents the nominal trajectory and the
second term denotes the convex uncertainty set associated with
the state, which depends on δk

0 and on V
k
0 � V × V . . . V.

3 The MLD prediction/synthesis model

To obtain the MLD-based prediction/synthesis model in the
presence of disturbances, we include the constraint given by
equation (4), into the continuous/discrete interface equations
(3b) of the MLD model. In effect, this means that the in-
equality must hold, component-wise, for all possible values
of the uncertainty. Hence, let vl �

{
vl(0), . . . , vl(N − 1)

}
denote a disturbance sequence that take values at the vertices
of the polytope V

N−1
0 , let l ∈ Lv index these realizations,

and let xl denote the state associated with the respective dis-
turbance realization (and the same notation for the other vari-
ables). For the sake of completeness, consider also that the
safety/performance constraints defined by inequality (2d) are
already included in the formulation. Hence, the MLD predic-
tion/synthesis model, which encompasses the robust mode con-
trol concept, has the following form (the inequalities should be
understood component-wise)

xl(k + 1) = Bzx
zl
x(k) + Bzu

zu(k) + Bδδ(k) + Bzv
zl
v(k)

(6a)

E
c/d
δ δ(k) ≤ Ec/d

x xl(k) + Ec/d
u u(k) + ec/d ,∀l ∈ Lv ,∀k

(6b)

Ed/c
zx

zl
x(k) + Ed/c

zu
zu(k) + E

d/c
δ δ(k) + Ed/c

zv
zl
v(k) ≤

≤ Ed/c
x xl(k) + Ed/c

u u(k) + Ed/c
v vl(k) + ed/c (6c)

Ectr
x xl(k) + Ectr

u u(t) ≤ ectr ,∀l ∈ Lv ,∀k. (6d)

Now, Problem 1, with the restriction that the input is a ro-
bust mode control sequence, can be formulated with the MLD
framework using the above equations. However, this formula-
tion substantially increases the number of constraints and vari-
ables of the associated optimal control problem, so we adopt
here a different approach. By equation (5), we conclude that the
state at a given time k can be separated into a nominal value and
a convex uncertainty set. As the optimization problem will be
solved by a branch-and-bound strategy, the approach adopted
here is to compute externally the uncertain terms. Therefore,
by equation (5), the MLD prediction/synthesis model, which
encompasses the robust mode control concept, can also be for-



mulated as follows

x̄(k + 1) = Bzx
z̄x(k) + Bzu

zu(k) + Bδδ(k), x̄(0) = x0

(7a)

E
c/d
δ δ(k) ≤ Ec/d

x x̄(k) + min[Ec/d
x x̃(k)] + Ec/d

u u(k) + ec/d

(7b)

Ed/c
zx

z̄x(k) + Ed/c
zu

zu(k) + E
d/c
δ δ(k) ≤ Ed/c

x x̄(k)+

+ Ed/c
u u(k) + ed/c (7c)

Ectr
x x̄(k) + max[Ectr

x x̃(k)] + Ectr
u u(k) ≤ ectr (7d)

Notice that the inequalities should be valid, component-wise,
for all possible values of x̃(k), and so a worst-case computa-
tion of E

c/d
x x̃(k) and of Ectr

x x̃(k) must be done, which is de-
noted, respectively, by min[Ec/d

x x̃(k)] and max[Ectr
x x̃(k)]. As

a matter of fact, the uncertainty set, x̃(k), associated with the
MLD-based prediction/synthesis model, is a function of V

k−1
0

and also of δk−1
0 (see (5)), where the former can be viewed

as external parameters, the latter is composed of optimization
variables. A method to compute the terms associated with the
uncertainty is presented next.

3.1 Computation of the worst-case uncertainty terms

The restriction of the input sequence to a robust mode input
sequence allows that the computation of x̃(k) can be based on
x̃(k) = Bzx

z̃x(k − 1) + Bzv
zv(k − 1) , x̃(0) = 0 (expression

(6a) minus expression(7a), at time k). This equality can be
expressed as explicitly dependent on δ(k − 1), v(k − 1) and
x̃(k − 1) as follows

x̃(k) = Bzx
(δ(k − 1) ⊗ x̃(k − 1)) +

+Bzv
(δ(k − 1) ⊗ v(k − 1)) , x̃(0) = 0 (8)

For compactness of notation consider the following represen-
tation

Bδ(k)
zx

x̃(k) � Bzx
(δ(k) ⊗ x̃(k)) (9)

Bδ(k)
zv

v(k) � Bzv
(δ(k) ⊗ v(k)) , (10)

and consider also the following notation for the product of ma-
trices

Bδ(j→i)
zx

� Bδ(j)
zx

Bδ(j−1)
zx

. . . Bδ(i+1)
zx

Bδ(i)
zx

, if i ≤ j

� In , otherwise, (11)

where In represents a square identity matrix with dimension n.
Using the above notation, equation (8) can be expressed as a
function of sequences δk−1

0 and vk−1
0

x̃(k) =
k−1∑
i=0

Bδ(k−1→i+1)
zx

Bδ(i)
zv

v(i) , if k ≥ 1

= 0 , if k = 0. (12)

Observing (7), the min and max componentwise values of
[Ei

xx̃(k)] (where i ∈ {c/d, ctr}), have to be computed.

Clearly, the computation of the min and max componentwise
values of the set [·] implies that the resultant set is a worst-
case approximation of the original set. Considering that the
sequence δk−1

0 is known, the computation of min[Ec/d
x x̃(k)]

(max[Ectr
x x̃(k)]) can be done by solving nc/d (nctr) linear pro-

grams, where nc/d (nctr) is the number of rows of E
c/d
x (Ectr

x ).

Pre-multiplying equality (12) by E
c/d
x (Ectr

x ) the jth minimiza-
tion (maximization) linear program is defined as follows

min[Ec/d
x x̃(k)]j :

min
vk−1
0 ∈V

k−1
0

(
Ec/d

x

)
j

k−1∑
i=0

Bδ(k−1→i+1)
zx

Bδ(i)
zv

v(i) (13)

max[Ectr
x x̃(k)]j :

max
vk−1
0 ∈V

k−1
0

(
Ectr

x

)
j

k−1∑
i=0

Bδ(k−1→i+1)
zx

Bδ(i)
zv

v(i) (14)

where (Ec/d
x )j and (Ectr

x )j denotes the jth row vector of E
c/d
x

and of Ectr
x , respectively. Therefore, at each time step k, with

k ≥ 1, we have to solve nc/d + nctr linear programs.

4 The control synthesis algorithm

At this stage, we have presented the main tools to solve the ro-
bust mode optimal control problem (RMOCP). However, as the
RMOCP defines a mixed-integer quadratic optimization prob-
lem, we will adopt a branch-and-bound (B-B) strategy to solve
it. A B-B technique solves a subproblem of the original prob-
lem at each node of the generated tree, so next we present the
general formulation of one of these subproblems.

Problem 2. Definition of subproblem P2(∆j
0).

Given an initial state x0, a final time N , and a partial mode
sequence ∆j

0 between time instants 0 and j, find (if it exists)
the control sequence u ≡ {u(0), u(1), . . . , u(N − 1)}, and the
auxiliary sequences δN−1

j+1 (with the binary components relaxed
to the 0-1 real interval), zu and z̄x, which (i) transfer the state
from x0 to a given final set C(N) that contains a target state
xf and (ii) minimize the performance index

JN (x0,u, δN−1
j+1 , zu, z̄x) �

∑N−1
k=0 ‖x̄(k) − xf‖2

Q,2 + ‖u(k) − uf‖2
R,2+

+‖x̄(N) − xf‖2
P,2 (15)

subject to:

x̄(k + 1) = Bzx
z̄x(k) + Bzu

zu(k) + Bδδ(k), x̄(0) = x0

(16a)

E
c/d
δ δ(k) ≤ Ec/d

x x̄(k) + min[Ec/d
x x̃(k)] + Ec/d

u u(k) + ec/d

(16b)

Ed/c
zx

z̄x(k) + Ed/c
zu

zu(k) + E
d/c
δ δ(k) ≤ Ed/c

x x̄(k)+

+ Ed/c
u u(k) + ed/c (16c)

Ectr
x x̄(k) + max[Ectr

x x̃(k)] + Ectr
u u(k) ≤ ectr, (16d)



where the terms min[Ec/d
x x̃(k)] and max[Ectr

x x̃(k)] are previ-
ously computed by Equations (13) and (14), respectively (for
k > j + 1 these terms are set to zero).

In [2] the optimal control sequence is computed via a B-B
algorithm, a quite efficient strategy for solving optimization
problems with a combinatorial characteristic. It proceeds by
traversing a tree in which each node is a subproblem of the ini-
tial problem in order to find a feasible leaf node with minimal
value of the cost function. Before starting the description of the
algorithm, consider the following notation: the optimal cost of
each subproblem P2(∆j

0) is denoted by VN (P2(∆j
0)) and its

solution by arg∗(P2(∆j
0)); the problem at the root node is de-

noted by P2(root) (or by P2(∆−1
0 )) and is obtained by relax-

ing all binary variables which compose δN−1
0 and considering

that disturbances are null for all time steps k ∈ {0, . . . , N−1},
i.e. the min[.] and max[.] terms are set equal to zero. VN (P2)
and arg∗(P2) have the correspondent interpretation when the
robust mode optimal control problem is considered. Next, the
pseudo code that defines the main steps of the algorithm is pre-
sented. Figure 2 schematically represents the tree associated
with the proposed B-B based synthesis algorithm.

� �2P root

� �2
0 1� �

� �0 1
s

� �

� �
0

0
2P �

� �1
1 1� �

� �2
1 1� �

� �1 1
s

� �

� �
0

0
2P �

� �1
1 1� �

� �2
1 1� �

� �1 1
s

� �

� �
1

0
2

N
P

�

�

� �1
2 1� �

� �2
2 1� �

� �2 1
s
� �

� �
1

0
2P �

� �1
2 1� �

� �2
2 1� �

� �2 1
s

� �

� �
1

0
2P �

� �2
1 1N� � �

� �1
0 1� �

Figure 2: The synthesis algorithm based on a branch-and-
bound strategy.

Algorithm 1. B-B based synthesis algorithm.
Initialize all data structures: S = ∅ (empty stack),
j = −1, VN (P2) = ∞, arg∗(P2) = “infeasible”,
(note: P2(∆−1

0 ) ≡ P2(root));

Push P2(∆j
0) onto the top of stack S;

While S �= ∅ do
Pop P2(∆j

0) off the top of the stack S and solve P2(∆j
0);

If j = N − 1 and VN (P2(∆N−1
0 )) < VN (P2) then

assign VN (P2) = VN (P2(∆N−1
0 )),

arg∗ (P2) = arg∗(P2(∆N−1
0 ));

Else

If VN (P2(∆j
0)) < VN (P2) then Subdivide P (∆j

0) into s
subproblems, by generating the branches corresponding to all
possible s vectors (modes) of δ(j + 1) (fix the i component to
one and the others to zero); sort the problems by decreasing
value of VN (P2(δj+1

0 )) and index the sorted problems at each
node by the l variable, i.e. by P2l(∆j+1

0 );
For l = 1 to s

If VN (P2l(∆j+1
0 )) < VN (P2) then

Push P2l(∆j+1
0 ) onto the top of S;

Endif;
Endfor;

Endif;
Endifelse;

Endwhile;
Return “optimal cost and optimal argument:” VN (P2),
arg∗(P2).

The proposed B-B algorithm is based on depth-first branching
strategy, i.e. the nodes in the search tree are explored going
one step deeper into the B-B tree at each iteration by choos-
ing, on the nodes just created, the one with lower cost, and
so the minimum lower bound of P2, i.e. the robust mode opti-
mal control problem. Summarizing, the algorithm executes the
following steps. At the root node, all binary variables δN−1

0

are relaxed and disturbances are not considered. P2(root) is
solved, meaning to solve the nominal (without disturbances)
and relaxed problem and so a quadratic programming (QP) al-
gorithm is used. The cost VN (P2(root)) is a lower bound on
the optimal cost of the original problem P2, i.e. VN (P2), be-
cause P2(root) is less constrained (the binary variables are
relaxed and the effect of disturbances is not taken into ac-
count). The next level of the tree is composed with the nodes
generated by imposing to each branch one of the possible s
modes of ∆0

0 ≡ {δ(0)}. At each node, the problem P2(∆0
0)

is solved, i.e. the disturbances are considered null for k ≥ 1
and the sequence δN−1

1 is relaxed. These problems can be also
solved by a QP algorithm. The optimal cost of P2(∆0

0), i.e.
VN (P2(∆0

0)), is computed and compared with the cost of the
best existing feasible solution. If the computed cost is higher or
equal to the existing feasible one then the associated subtree is
discarded, since the obtained cost is a lower bound of VN (P2)
on that path (i.e., a feasible solution with the same initial dis-
crete trajectory will always have cost greater or equal to that
one). The subtree is also discarded if no solution is found, i.e.
VN (P2(∆j

0)) = ∞. If, on the contrary, the computed cost is
lower than the cost of the best existing feasible solution then
another set of s branches are generated from that node. The
algorithm proceeds choosing the node with lower cost, until all
nodes have been investigated (or discarded).

Note that the proposed algorithm finds the optimal solution of
the robust mode optimal control problem, which we denote by
P2. In fact, the set of possible solutions of the root node prob-
lem, P2(root), includes the optimal solution of the P2 prob-
lem. Therefore, if P2(root) is infeasible implies that P2 is
also infeasible. Moreover, the set of feasible solutions for any
parent node problem includes the set of feasible solutions for



any one of its s child node problems and the optimal value of
each P2(∆j

0) problem, i.e. VN (P2(∆j
0)), is a valid (optimistic)

bounding function, which allows to perform valid (conserva-
tive) cuts on the tree. Therefore, one of the leaf nodes generated
by the algorithm corresponds to the optimal mode trajectory
(∆N−1

0 )∗ and the optimal solution of P2(∆N−1
0 ) correspond-

ing to that mode sequence equals the optimal solution of P2,
i.e. VN (P2(∆N−1

0 )) = VN (P2). As a matter of fact, when
disturbances are not present, the algorithm reduces to the one
presented in [2]. Notice also that search heuristics, which were
not discussed, may improve significantly the performance of
the algorithm.

5 Conclusions

This paper presents a procedure to extend the MLD framework
for synthesizing robust optimal control inputs of constrained
PWA systems subject to bounded additive input disturbances.
The control sequence minimizes, on a finite time interval hori-
zon, a nominal quadratic performance index guaranteeing that
the mode of the dynamics, at each time instant, is independent
of the disturbances and that all safety/performance constraints
are verified. The approach is based on the robust mode con-
trol concept, which is a restriction on the admissible control
sequences. The open-loop prediction strategy, as well as the
restriction on the control moves has a negative impact on the
feasibility domain. Research is currently aimed at extending
this technique to closed-loop prediction strategies, which are
expected to greatly enlarge the domain of feasibility with re-
spect to the presented open-loop approach.
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