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Keywords: Model predictive control, robustness, constraintshe constraints in the optimization problem depend linearly on
piecewise linear control, multi-parametric programming. the state vectat(t), which is treated as a vector of parameters.
Then the optimization problem can be recast as a multipara-
Abstract metric program [14] and can be solved off-line by using the
appropriate solver [8, 10,12]. The off-line solution is shown
For discrete-time linear time-invariant systems with input digo be a piecewise linear function of the state and therefore the
turbances and constraints on inputs and states, we develogarine computation reduces to a simple function evaluation.

algorithm to de_termine explicit!y, as a function of the initialy ¢ -4~ Hental question about MPC is itsoustnesswith re-

stgte, the SOI.Ut'.On t_o robust optimal control prqblems based QBect to model uncertainty and noise. When we say that a con-
min-max optimization. We show t.hat the OP“.”."'a' control Ses system is robust we mean that stability is achieved and
quence s a piecewise linear functpn of the initial stat_e. ThUtT’Te performance specifications are met for a specified range
when the optimal control problem is solved at each time St model variations and a class of noise signals (uncertainty

according to a moving horizon scheme, the on-line comput?énge). To be meaningful, any statement about “robustness”
tion of the resulting MPC controller is reduced to a simple lin-

. . . o f a particular control algorithm must make reference to a spe-
ear function evaluation. In this paper the uncertainty is mo%

led dditi bounded disturb 7 ific uncertainty range as well as specific stability and perfor-
eled as an additive norm-bounded inputdisturbance vector. nce criteria. Although a rich theory has been developed

technique can be also extended to robust control of constraiqg the robust control ofinear systemsvery little is known
systems affected by polyhedral parametric uncertainty. about the robust control dihear systems with constraintRe-

cently, this type of problem has been addressed in the context

1 Introduction of MPC, see the survey [7]. Two strategies are possible: (i)

o define a nominal model and a nominal disturbance (e.g., the
Model Predictive Control (MPC) has become the acceptegh) gisturbance), and optimize nominal performance subject
standard for complex constrained multivariable control prokg ropyst constraints (i.e., the constraints must be satisfied for
lems in the process industries. Here at each sampling timg,, hossible realization of the disturbance); o (i) solve a min-
starting at the current state, an open-loop optimal control prob; problem to optimize robust performance (the minimum
lem is solved over a finite horizon. At the next time-step thgyer the control input of the maximum over the possible dis-
computation is repeated starting from the new state and oveg,ghance). Min-max robust MPC was first proposed by Campo
shifted horizon, leading to a moving horizon policy. The s03d Morari [11], and further developed in [2] and [25] for SISO
lution relies on a linear dynamic model, respects all input an€gr plants. Kothareet al. [20] optimize robust performance
output constraints, and optimizes a linear or quadratic perfqg; polytopic/multi-model and structured feedback uncertainty,
mance index. Over the last decade a solid th_eoretlcal fouzokaert and Mayne [24] for input disturbances only, and Lee
dation for MPC has emerged so that for real-life large scalg,q vy [22] for linear time-varying and time-invariant state-
MIMO applications cont.rollers with non—conse_rvative stabilitySpace models depending on a vector of paramétees O,
guarantees can be designed routinely and with ease. The Rigere@ is either an ellipsoid or a polyhedron. However solv-

drawback of MPC is the relatively formidable on-line COMPUing a min-max problem is computationally very demanding.
tational effort which limits its applicability to relatively slow

and/or small problems. Rather than solving the optimizatidrP! systems affected by additive norm-bounded input distur-
pr0b|em on line, recenﬂy’ Bemporad et al. proposed an algances, in this paper we show how the solution to robust Opti'
proach where all computation is moved off line, for linear sygnal control problems based on a min-max formulation, with a
tems with a quadratic performance index [8], linear Systenpgrformance index expressed as the sum over prediction time
with a linear performance index [4], and hybrid systems with @f the co-norm of the input command and of the deviation of
linear performance index [5]. The idea stems from observirife state from the desired value, can be determined explicitly,
that the linear part of the objective and the right hand side 8p @ function of the initial state, by using a multiparametric
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mixed-integer linear program (mp-MILP) solver. We show thatonstraints in (2) allows to impose pure state constraints in (4)
the optimal control profile is a piecewise linear function of thenly for £ > 1, so that the controller may be feasible also for

initial state and therefore the on-line computation reduces #gt) outside the constraint set.

a simple function evaluation. The technique can be also

tended to other robust MPC schemes and to systems affe
by polyhedral parametric uncertainty.

g‘fgg setP, is a positively invariant set for system (1) that
can be computed as in [9, 19] and the functiop, () is its
Minkowski functional [9] . LetU *(t) = {u},...,uj, n_,} be
the optimal solution of (3)—(4). Then, at tinie

2 Problem Formulation

. o o L u(t) = ug ©)
Consider the following discrete-time linear time-invariant sys-
tem is applied as input to system (1). The optimization (3)—(4) is
{ (t+1) = Az(t) + Bu(t) + Eu(t) (1) repeated attime+ 1, based on the new stat¢t + 1), yielding
y(t) = Cux(t) amovingor receding horizortontrol strategy.
along with the constraints The two main issues regarding this policy aesfisure robust

constraint fulfillment, i.e., guarantee that the constraints (2) are
satisfied for allu(t) € V, and (i) stability of the resulting
closed-loop system, in the sense that the state reaches a ro-
bustly invariant set around the origin.

le(t) < f1, ng(t) + Ggu(t) < f2 (2)

wherez(t) € R", u(t) € R™, andy(t) € RP are the state,
input, and output vector respectively, the palr, B) is stabi-
lizable, and the rows off, are all nonzero. The vectex(t)
is an unknown input disturbance entering the system, and wd Closed-L oop Prediction
only assume that the bounds oft) are known, namely that
v(t) € V, whereV C RP is a given polyhedral set containing
the origin,V = {v: Mv < L}, L > 0.

The min-max formulation (3), (4) is based on apen-loop
prediction, in contrast to the formulation of [3, 20, 22] where
closed-loopprediction is adopted by letting;  x, = F'zy ¢ +
Assume that a full measurement of the stats is available at ,_, ,, wherei, ., are new degrees of freedom. The benefits of
the current time. Most formulations of robust MPC based orclosed-loop prediction can be understood by viewing the op-
min-max optimization [2, 11, 24, 25] require that the problem timal control problem as a dynamic game between the distur-
Nt bance and the input: in open-loop predi_ction the whole _dis-
min { max {¢ (@ )+ Z 10z I } turbance sequence plays first, then the input sequence is left
PalPtEN|t t+kltlloo (- \with the duty of counteracting the worst disturbance realiza-
k=1 . . . )
N1 tion. By letting the vyhole disturbance sequence p!ay fII’S’F, the
n Z [ Ry } 3) effect of the L!ncertalnty_may grow over the pred|ct.|on horizon
> and may easily lead to infeasibility of the outer min problem.
On the contrary, in closed-loop prediction schemes the distur-
bance and the input play one move at a time, which makes the

Uty Ut+N—1 | Utyeey Ut N —1

k=0

subj. to Fizy g < f1, k=1,...,N (4a) effect of the disturbance more easily mitigable [3,7]
Bopyp) + Gouerr < fo, k=0,...,N =1 (4b) order to achieve closed-loop robust MPC, we modify (3) as
Muvpy <L, k=0,1,... N—1 (4c)
Typpqilt = ATypp + Bugyr + Fogpr, k>0 min {||Rut||OO + max {||th+1t||oo + min { ..+ min
(4d) Ut Ut Ut 41 Ut4+N—1
Tyt = .Z’(t) (4e) {||Rut+N1||oo + vgl]%}fl {1/J7>A (-Tt+N|t)}} .. } }} (6)
Ty Npe € Pa (4f)

We will refer to (3), (4) as OL-RMPC (open-loop robust MPC),
is solved at each timeé, wherez,,;, denotes the predictedand to (6), (4) as CL-RMPC (closed-loop robust MPC), respec-
state vector at time + k, obtained by applying the input se-tively. Note that according to our terminology, the strategy pro-
guenceuy, ..., u+nN—1 to model (1) starting from the stateposed in [24] is an OL-RMPC scheme.

z(t) and subject to the disturbance sequenge. ., vt n_1,

a _ i i . .. .
@Vé’;'}'ﬁ%ﬁ maxj=1,...m (V/7), and Vs thei-th row of 3 gy jicit Solution to the Robust MPC Problem

In (3)—(4), we assume thé}, R € R**" are non-singular ma- 't is clear that in most applications the min-max formulations
trices. Note that the distinction between input and input/staf@°Ve aré computationally prohibitive to be solved on-line.
In [22] the authors propose to solve CL-RMPC via dynamic

Typically in MPC formulations constraints are expressed in the forﬁ}ogramming by discretizing the state-space, and it is there-
Ymin S y(t) S Ymax (Umin S U(t) S Umax) Whefeymin, Ymax (uminy I . d . | d . d | ! B .
wmax) are p(m)-dimensional vectors. Such constraints can be equivalenf@® limited to very simple prediction models. By removing

expressed in the form (2). the number of degrees of freedom in the choice of the optimal
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input moves, other CL-RMPC strategies have been propos@&tie explicit solutior*(x) : R™ — R™ to problem (9) can be
e.g.,in [3,20,21]. determined by an mp-MILP solver.

In this paper we aim at finding a solution to the min-max MP

C . . .
problem by tackling the problem from the different perspective'0°f BY following the approach of [6] to transform piecewise
proposed earlier in [4, 5, 8] for the deterministic linear and hyN€ar functions into a set of mixed-integer linear inequalities,
brid case, where the solution to the MPC optimization probleffitroduce the auxiliary binary variablés € {0, 1}, defined as

is found off-line as an explicit function of the current state, by i =1] « [[Z] e Ri], (10)
using multiparametric programming tools [8, 10, 12].
and satisfying the exclusive-or conditign;_, 6; = 1, and set

3.1 Multiparametric Programming s

_ . J(zm) = Y w (12)
The operations research community has addressed parameter =
variations in mathematical programs at two levedsnsitivity wi L [Liz + Hix + Ko (12)

analysis which characterizes the change of the solution with
respect to small perturbations of the parameters pandmet- By transforming (10)—(12) into mixed-integer linear inequali-
ric programming where the characterization of the solution foties [6], it is easy to rewrite (9) as a multi-parametric MILP.
a full range of parameter values is sought. More precisely,

programs which depend only on one scalar parameter are re-

ferred to agparametric programswhile problems depending In the special case wheéz, x) is a convex function (i.eR 2

on a vector of parameters are referred tavadti-parametric  Us_, R, is a convex set and is convex ovefR), the following

programs lemma can be easily proved.
In this paper we deal with multi-parametric programs of the ] .
form Lemma2 LetJ(z,z) : R™ x R” — R be a convex piecewise
J(z) = minzé[z o] cz linear function of(z, z). Then the multi-parametric optimiza-
“st. Gz <W + Sz () tion problem (9) is an mp-LP.

wherez. € R are continuous optimization variables; €
{0,1}"« are integer optimization variables ande R? is a
vector of parameters. We refer to (7) as a (right-hand-sid
multi-parametric mixed integer linear prografmp-MILP) [1,
12]. Solving (7) amounts to determining the form of the value min,. e

Proof. As J(z, z) is a convex piecewise linear function, it fol-
lows thatJ(z, ) = max;=1... s{Liz+ H;x+ K;} [23]. Then,
it1s easy to show that (9) and the mp-LP

functionJ and the optimizer* as a function ofz, for all z in s.t. Gz<W+ Sz (13)
a given polyhedral seX’ C R"™ of parameters. The following e>Liz+Hae+K;,i=1,...,s.

theorem recalls some known properties of the optimal value ] B

function.J(x) and of the optimizer *(z). are equivalent. 0

Theorem 1 Consider the multi-parametric mixed integer lin-Theorem 2 CL-RMPC can be solved in explicit piecewise lin-
ear program (7). LetX; C X be the set of parametersear form

for which (7) is feasible. The optimizeri(z) : X; — - o

R, z%(x) : Xy — {0,1}" and the optimal solutiow/(z) : u(t) = Fzg(g ;gg I{f T < S} i=1

X/ + R are piecewise linear functions of v T LTS O, 0= 8

(14)

where X £ UZ_, A; is the set of states for which (3)-(4) is
3.2 Off-Line Algorithms for the Explicit Solution of Ro- feasible, by solving 2N mp-MILPs.
bust MPC

In this section we show how multiparametric algorithms can bF()arOOf' According fo a dynamic programming ap-

. . LY proach, consider the Ilast maximization problem
employed to solve min-max problems in explicit form.
V(N = LuiN—1, Ty N—1)¢) = MaXy, {UJPA (l"t+N\t)}
which is nonconvex and piecewise linear with respect to the
optimization vectorv,yx—_1 and the parameters;,n_1,
Ty n—1)¢- By Lemma 1, it can be solved multipametrically
J(z,7) = Liz + Hiz + K, for [2] € R; (8) _by an_mp—l\/_IILP_soIver. By_ Theorem 1, the value functign
is a piecewise linear function aef;yy_1, £y n—1. Then, by
where {R;};_, are polyhedral sets with disjoint interiors. Lemma 1 the minimization problem
Consider the multi-parametric optimization problem

Lemmal LetJ(z,z) : R™ x R* — R be a piecewise linear
(possibly nonconvex) function of, z),

JIN=1Lzpino1p) = min {||Ruspn—1lot
min, J(z,) ) kN
s.t. Gz <W + Sz. V(N - 1aut+N\taxt+N|t)}
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is again solvable multipametrically by an mp-MILP solver, anMILP, instead of solving mp-LP problems with relaxed integer
the value function/ is a piecewise linear function of,, x_;. variables. More in detail, problem (7) is alternatively decom-
By iterating the above maximization and minimization procgaosed into an mp-LP and an MILP subproblem. First an MILP
dures, by Theorem 1 the last optimizer = u(t) is a piecewise problem is solved by considering also parameters as variables.
linear function ofz,; = x(t). O Then an mp-LP is solved where the binary variables are fixed
to the optimal values determined by the previous MILP. The

Theorem 3 OL-RMPC can be solved in explicit piecewise linsolution of the mp-LP provides a parametric upper bound. A

ear form (14), whereY £ Uj_, &; is the set of states for NeW integer vector is determined by solving an MILP that in-

which (6)—(4) is feasible, by solving 2 mp-MILPs. cludes an additional constraintimposing a decrease of the value
function with respect to the previous mp-LP (see [12] for more

Proof. The inner maximization problem in (3)(4) is noncon_detalls). The algorithmic implementation of the mp-MILP [12]

vex and piecewise linear with respect to the optimization vectﬁllgOrrr]'ﬂ]TPWhrgglsn?S%?g%r[t1h§ f% arlpsirl\tﬁfllei/lcl)CP[iO] for solv-
Uty -, vrp N1 and the parameters, . . ., up n—1, Ty g O P P ’ g :

By Lemma 1, it can be solved multipametrically by an mp-

MILP solver. By Theorem 1, the value functiénis a piece- 4 Illustrative Example

wise linear function ofu, ..., ut1n—1, Tt-n—1. Then, by . . .

Lemma 1 the outer minimization problem is again solvapl¥/e compare the eXP"C't solution of (1) nominal MPC [4]’ )

multipametrically by an mp-MILP solver, and the optimizefoPust MPC according to the OL-RMPC formulation in [24]

uj,... 0t n_y iS @ piecewise linear function af,, = x(t), and (3) robust feedback MPC according to the CL-RMPC for-

in particularu? = wu(t). rsnt;::Eis;aE;e;eoztgld in Section 3.2, on the simple discrete-time

Remark 1 Numerical experience indicates that explicit solu- z(t + 1) = 2(t) + u(t) + v(t)

tions to CL-RMPC schemes are easier to solve than to OL-

RMPC schemes. Such a result has an analogy in the detern§i@nsidered in [24]. The goal is to robustly regulate the system
istic finite-horizon unconstrained optimal LQ control. This caf the origin while minimizing the performance measure

be either solved via dynamic programming and Riccati itera- 1

tions, or by formulatlng'and sol\{lng an unqonstra_lned gquadratic Lz, up, upy1) = Z T4k + [ 10ug| (15)
program, whose Hessian matrix has a size which depends on

k=0
the prediction horizoV. The former approach is numerically _
more efficient. o subject to the state constraints

-12< Tt|t+k <2,k=0,1,2, (16)

3.3 Multiparametric Solvers

] ) ) o to the end region constraint
The first method for solving multi-parametric linear programs

was formulated by Gal and Nedoma [17], and later a few au- 1<y <1, a7
thors have dealt with multi-parametric linear [15, 16, 23], non- ) .

linear [13], quadratic [8], and mixed-integer [1, 12] program‘:’md under the hypothesis that the disturbances are norm-
ming solvers. Parametric programming systematically subdounded
vides the space of parameters into characteristic regions, which

depict the feasibility and corresponding performance as a fung- . . . .
tiorF: of the paramet)(/ers P ap (1) Nominal MPC We ignore the disturbance and solve explic-

itly the problem
Two main approaches have been proposed for solving mp-
MILP problems. In [1], the authors develop an algorithm based uf{}}}}rl L(we, ug, ues1). (19)
on branch and bound (B&B) methods. At each node of the
B&B tree an mp-LP is solved where a certain number of idJsing the approach of [4], the explicit MPC law is
teger variables is relaxed to continuous value§Oirl]. The
solution at the root node, where all the integer variables are
relaxed, represents a valid lower bound, while the solution at
a leaf node where all the integer variables have been fixedu@) =
0 or 1 represents a valid upper bound. As in standard B&B
methods, the complete enumeration of combinations of 0-1 in-
teger variables is avoided by comparing the multiparametric (20)
solutions, and by fathoming the nodes where there is no im-
provement of the value function. In [12] an alternative algon Figure 1 the closed-loop system is simulated from the initial
rithm was proposed, which only solves mp-LPs where the istatezy = —1.2 andv, = —1/k, k > 1 (as in [24]). Note that
teger variables are fixed to the optimal value determined by aanstraints violations are experienced during the transient.

-1< Vt+k < ]-7 k= 07 L (18)

0 if -1 <z(t)<1 (Region #1)
—z(t)+1 if 1 <z(t)<2 (Region #2)

—z(t)—1 if —-12 <z(t) <-1 (Region#3)
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Nominal MPC Robust MPC

Figure 1:Closed loop trajectories of the nominal MPC (20) Figure 2:Closed loop trajectories of OL-RMPC (22)
(2) OL-RMPC [24] The min-max problem 2 Robust foedback UPC
min  max L(x¢, us, Ust1) (21)
Ut Ut 41 Ve,Vi41 bt
is solved explicitly as described in the section 3.2. The in- gos
ner maximization problem returns the disturbance as an explicit 0
function of the input profile and initial state: o8
=1 -1 0 - -2 "
-2 -2 -1 ~1 15
L —1 -1 —1 T4 -1 0 5 10 1‘5 20 25 30
I O S
j)l § é 1 Figure 3:Closed loop trajectories of CL-RMPC (24)
r2 2 17 T2
1 1 -0 1
1 1 1 1 .. . . . ..
711 0 0 1 Tl o and explicitly solved as described in 3.2 to obtain the explicit
(1] if 0 -1 0 0
Vea)e e I feedback robust MPC law
[vt+2u] = L5 9 0 L-1 J
(10 0] ., (1] u(t) = —z(t) for —1.2<=2(t) <2 (24)
SR A [Jlt]< 0
! 0 0 —1 R )
L-1 -1 0 d L—-1 1
- - In Figure 3 the closed-loop system is simulated from the initial
_ 1L =0 gy, 1 statexy = —1.2 and andy;, = —1/k, k > 1. In spite of the
[31] if 6 0 1 [uﬁl] <% disturbances, the control law drives the state to the end region
{ e i without any constraint violation. Moreover, contrarily to OL-

RMPC, problem (23) remains feasible even if the upper-bound
that, by solving the outer minimization problem, leads to thgn the state is reduced from 2 to 1.8.

explicit OL-RMPC law o
The controllers (20), (22), and (24) were computed off-line in

u(t) = —z(t) +1 for —1.2 < z(t) <2 (22) Matlab 5.3 on a Pentium Il 650 in about 55 s.

In Figure 2 the closed-loop system is simulated from the initi@ ~ €onclusions
stater; = —1.2 and andv, = —1/k, k > 1. As expected, in
spite of the disturbances the control law drives the state to

tFor discrete-time linear time-invariant systems with input dis-
end-region without violating the constraints.

lffbances and constraints on inputs and states, we have pre-
sented a procedure to determine explicitly, as a function of the
However because the the min-max optimization is of open-logpirrent state, the solution to robust receding horizon optimal
nature, the problem becomes infeasible if the upper-bound control problems based on a min-max formulation with a per-
the state is reduced from 2 to 1.8. formance index expressedda-norm. We showed that the op-
. . . timal control profile is a piecewise linear function of the initial
Eig_CL'RMPC The min-max problem is formulated as in (6)_state. The technique can be easily extended to system affected
) by parametric polyhedral uncertainty and to performance in-

min max min max L(z¢, ug, ug + 1) (23)  dices based ob-norms.

Ut UVt Ut41 Vi41
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