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Abstract

For discrete-time linear time-invariant systems with input dis-
turbances and constraints on inputs and states, we develop an
algorithm to determine explicitly, as a function of the initial
state, the solution to robust optimal control problems based on
min-max optimization. We show that the optimal control se-
quence is a piecewise linear function of the initial state. Thus,
when the optimal control problem is solved at each time step
according to a moving horizon scheme, the on-line computa-
tion of the resulting MPC controller is reduced to a simple lin-
ear function evaluation. In this paper the uncertainty is mod-
eled as an additive norm-bounded input disturbance vector. The
technique can be also extended to robust control of constrained
systems affected by polyhedral parametric uncertainty.

1 Introduction

Model Predictive Control (MPC) has become the accepted
standard for complex constrained multivariable control prob-
lems in the process industries. Here at each sampling time,
starting at the current state, an open-loop optimal control prob-
lem is solved over a finite horizon. At the next time-step the
computation is repeated starting from the new state and over a
shifted horizon, leading to a moving horizon policy. The so-
lution relies on a linear dynamic model, respects all input and
output constraints, and optimizes a linear or quadratic perfor-
mance index. Over the last decade a solid theoretical foun-
dation for MPC has emerged so that for real-life large scale
MIMO applications controllers with non-conservative stability
guarantees can be designed routinely and with ease. The big
drawback of MPC is the relatively formidable on-line compu-
tational effort which limits its applicability to relatively slow
and/or small problems. Rather than solving the optimization
problem on line, recently, Bemporad et al. proposed an ap-
proach where all computation is moved off line, for linear sys-
tems with a quadratic performance index [8], linear systems
with a linear performance index [4], and hybrid systems with a
linear performance index [5]. The idea stems from observing
that the linear part of the objective and the right hand side of

the constraints in the optimization problem depend linearly on
the state vectorx(t), which is treated as a vector of parameters.
Then the optimization problem can be recast as a multipara-
metric program [14] and can be solved off-line by using the
appropriate solver [8, 10, 12]. The off-line solution is shown
to be a piecewise linear function of the state and therefore the
on-line computation reduces to a simple function evaluation.

A fundamental question about MPC is itsrobustnesswith re-
spect to model uncertainty and noise. When we say that a con-
trol system is robust we mean that stability is achieved and
the performance specifications are met for a specified range
of model variations and a class of noise signals (uncertainty
range). To be meaningful, any statement about “robustness”
of a particular control algorithm must make reference to a spe-
cific uncertainty range as well as specific stability and perfor-
mance criteria. Although a rich theory has been developed
for the robust control oflinear systems, very little is known
about the robust control oflinear systems with constraints. Re-
cently, this type of problem has been addressed in the context
of MPC, see the survey [7]. Two strategies are possible: (i)
define a nominal model and a nominal disturbance (e.g., the
null disturbance), and optimize nominal performance subject
to robust constraints (i.e., the constraints must be satisfied for
any possible realization of the disturbance); or (ii) solve a min-
max problem to optimize robust performance (the minimum
over the control input of the maximum over the possible dis-
turbance). Min-max robust MPC was first proposed by Campo
and Morari [11], and further developed in [2] and [25] for SISO
FIR plants. Kothareet al. [20] optimize robust performance
for polytopic/multi-model and structured feedback uncertainty,
Scokaert and Mayne [24] for input disturbances only, and Lee
and Yu [22] for linear time-varying and time-invariant state-
space models depending on a vector of parameters� 2 �,
where� is either an ellipsoid or a polyhedron. However solv-
ing a min-max problem is computationally very demanding.

For systems affected by additive norm-bounded input distur-
bances, in this paper we show how the solution to robust opti-
mal control problems based on a min-max formulation, with a
performance index expressed as the sum over prediction time
of the1-norm of the input command and of the deviation of
the state from the desired value, can be determined explicitly,
as a function of the initial state, by using a multiparametric



mixed-integer linear program (mp-MILP) solver. We show that
the optimal control profile is a piecewise linear function of the
initial state and therefore the on-line computation reduces to
a simple function evaluation. The technique can be also ex-
tended to other robust MPC schemes and to systems affected
by polyhedral parametric uncertainty.

2 Problem Formulation

Consider the following discrete-time linear time-invariant sys-
tem �

x(t + 1) = Ax(t) +Bu(t) +Ev(t)
y(t) = Cx(t)

(1)

along with the constraints1

F1x(t) � f1; F2x(t) +G2u(t) � f2 (2)

wherex(t) 2 R
n , u(t) 2 R

m , andy(t) 2 R
p are the state,

input, and output vector respectively, the pair(A;B) is stabi-
lizable, and the rows ofG2 are all nonzero. The vectorv(t)
is an unknown input disturbance entering the system, and we
only assume that the bounds onv(t) are known, namely that
v(t) 2 V , whereV � R

p is a given polyhedral set containing
the origin,V = fv :Mv � Lg,L � 0.

Assume that a full measurement of the statex(t) is available at
the current timet. Most formulations of robust MPC based on
min-max optimization [2,11,24,25] require that the problem

min
ut;:::;ut+N�1

(
max

vt;:::;vt+N�1

(
 P�(xt+Njt) +

N�1X
k=1

kQxt+kjtk1

)

+

N�1X
k=0

kRut+kk1

)
(3)

subj. to F1xt+kjt � f1; k = 1; : : : ; N (4a)

F2xt+kjt +G2ut+k � f2; k = 0; : : : ; N � 1 (4b)

Mvt+k � L; k = 0; 1; : : : ; N � 1 (4c)

xt+k+1jt = Axt+kjt +But+k + Fvt+k; k � 0
(4d)

xtjt = x(t) (4e)

xt+Njt 2 P� (4f)

is solved at each timet, wherext+kjt denotes the predicted
state vector at timet + k, obtained by applying the input se-
quenceut; : : : ; ut+N�1 to model (1) starting from the state
x(t) and subject to the disturbance sequencevt; : : : ; vt+N�1,
kV xk1 , maxj=1;:::;m

�
V
j
x
�
, and V i is the i-th row of

V 2 Rm�n .

In (3)–(4), we assume thatQ,R 2 Rn�n are non-singular ma-
trices. Note that the distinction between input and input/state

1Typically in MPC formulations constraints are expressed in the form
ymin � y(t) � ymax ( umin � u(t) � umax) whereymin, ymax (umin,
umax) are p(m)-dimensional vectors. Such constraints can be equivalently
expressed in the form (2).

constraints in (2) allows to impose pure state constraints in (4)
only for k � 1, so that the controller may be feasible also for
x(t) outside the constraint set.

The setP� is a positively invariant set for system (1) that
can be computed as in [9, 19] and the function P�(x) is its
Minkowski functional [9] . LetU �(t) = fu�

t
; : : : ; u

�
t+N�1g be

the optimal solution of (3)–(4). Then, at timet,

u(t) = u
�
t

(5)

is applied as input to system (1). The optimization (3)–(4) is
repeated at timet+1, based on the new statex(t+1), yielding
a movingor receding horizoncontrol strategy.

The two main issues regarding this policy are (i) ensure robust
constraint fulfillment, i.e., guarantee that the constraints (2) are
satisfied for allv(t) 2 V , and (ii ) stability of the resulting
closed-loop system, in the sense that the state reaches a ro-
bustly invariant set around the origin.

2.1 Closed-Loop Prediction

The min-max formulation (3), (4) is based on anopen-loop
prediction, in contrast to the formulation of [3, 20, 22] where
closed-loopprediction is adopted by lettingu t+k = Fxt+kjt+
�ut+k, where�ut+k are new degrees of freedom. The benefits of
closed-loop prediction can be understood by viewing the op-
timal control problem as a dynamic game between the distur-
bance and the input: in open-loop prediction the whole dis-
turbance sequence plays first, then the input sequence is left
with the duty of counteracting the worst disturbance realiza-
tion. By letting the whole disturbance sequence play first, the
effect of the uncertainty may grow over the prediction horizon
and may easily lead to infeasibility of the outer min problem.
On the contrary, in closed-loop prediction schemes the distur-
bance and the input play one move at a time, which makes the
effect of the disturbance more easily mitigable [3,7]

In order to achieve closed-loop robust MPC, we modify (3) as

min
ut

�
kRutk1 +max

vt

�
kQxt+1jtk1 +min

ut+1

�
: : :+ min

ut+N�1�
kRut+N�1k1 + max

vt+N�1

�
 P�(xt+Njt)

	�
: : :

���
(6)

We will refer to (3), (4) as OL-RMPC (open-loop robust MPC),
and to (6), (4) as CL-RMPC (closed-loop robust MPC), respec-
tively. Note that according to our terminology, the strategy pro-
posed in [24] is an OL-RMPC scheme.

3 Explicit Solution to the Robust MPC Problem

It is clear that in most applications the min-max formulations
above are computationally prohibitive to be solved on-line.
In [22] the authors propose to solve CL-RMPC via dynamic
programming by discretizing the state-space, and it is there-
fore limited to very simple prediction models. By removing
the number of degrees of freedom in the choice of the optimal



input moves, other CL-RMPC strategies have been proposed,
e.g., in [3,20,21].

In this paper we aim at finding a solution to the min-max MPC
problem by tackling the problem from the different perspective
proposed earlier in [4, 5, 8] for the deterministic linear and hy-
brid case, where the solution to the MPC optimization problem
is found off-line as an explicit function of the current state, by
using multiparametric programming tools [8,10,12].

3.1 Multiparametric Programming

The operations research community has addressed parameter
variations in mathematical programs at two levels:sensitivity
analysis, which characterizes the change of the solution with
respect to small perturbations of the parameters, andparamet-
ric programming, where the characterization of the solution for
a full range of parameter values is sought. More precisely,
programs which depend only on one scalar parameter are re-
ferred to asparametric programs, while problems depending
on a vector of parameters are referred to asmulti-parametric
programs.

In this paper we deal with multi-parametric programs of the
form

J(x) = min
z,[zc;zd]

c
0
z

s.t. Gz �W + Sx
(7)

wherezc 2 R
nc are continuous optimization variables,zd 2

f0; 1gnd are integer optimization variables andx 2 R
s is a

vector of parameters. We refer to (7) as a (right-hand-side)
multi-parametric mixed integer linear program(mp-MILP) [1,
12]. Solving (7) amounts to determining the form of the value
functionJ and the optimizerz� as a function ofx, for all x in
a given polyhedral setX � R

n of parameters. The following
theorem recalls some known properties of the optimal value
functionJ(x) and of the optimizerz �(x).

Theorem 1 Consider the multi-parametric mixed integer lin-
ear program (7). LetXf � X be the set of parameters
for which (7) is feasible. The optimizerz�

c
(x) : Xf 7!

R
nc ; z

�
d
(x) : Xf 7! f0; 1gnc and the optimal solutionJ(x) :

Xf 7! R are piecewise linear functions ofx.

3.2 Off-Line Algorithms for the Explicit Solution of Ro-
bust MPC

In this section we show how multiparametric algorithms can be
employed to solve min-max problems in explicit form.

Lemma 1 LetJ(z; x) : Rm � R
n 7! R be a piecewise linear

(possibly nonconvex) function of(z; x),

J(z; x) = Liz +Hix+Ki for [ zx ] 2 Ri (8)

where fRig
s

i=1 are polyhedral sets with disjoint interiors.
Consider the multi-parametric optimization problem

minz J(z; x)
s.t. Gz �W + Sx:

(9)

The explicit solutionz�(x) : Rm 7! R
m to problem (9) can be

determined by an mp-MILP solver.

Proof. By following the approach of [6] to transform piecewise
linear functions into a set of mixed-integer linear inequalities,
introduce the auxiliary binary variablesÆ i 2 f0; 1g, defined as

[Æi = 1] $
�
[ zx ] 2 Ri

�
; (10)

and satisfying the exclusive-or condition
P

s

i=1 Æi = 1, and set

J(z; x) =
sX

i=1

wi (11)

wi , [Liz +Hix+Ki]Æi (12)

By transforming (10)–(12) into mixed-integer linear inequali-
ties [6], it is easy to rewrite (9) as a multi-parametric MILP.
�

In the special case whereJ(z; x) is a convex function (i.e.,R ,
[s
i=1Ri is a convex set andJ is convex overR), the following

lemma can be easily proved.

Lemma 2 LetJ(z; x) : Rm �Rn 7! R be a convex piecewise
linear function of(z; x). Then the multi-parametric optimiza-
tion problem (9) is an mp-LP.

Proof. As J(z; x) is a convex piecewise linear function, it fol-
lows thatJ(z; x) = maxi=1;:::;sfLiz+Hix+Kig [23]. Then,
it is easy to show that (9) and the mp-LP

minz;" "

s.t. Gz �W + Sx

" � Liz +Hix+Ki; i = 1; : : : ; s:
(13)

are equivalent. �

Theorem 2 CL-RMPC can be solved in explicit piecewise lin-
ear form

u(t) = Fix(t) + gi; if
x(t) 2 Xi , fx : Tix � Sig; i = 1; : : : ; s

(14)

whereX , [s
i=1Xi is the set of states for which (3)–(4) is

feasible, by solving 2N mp-MILPs.

Proof. According to a dynamic programming ap-
proach, consider the last maximization problem
V (N � 1; ut+N�1; xt+N�1jt) = maxvt+N�1

�
 P�(xt+Njt)

	
which is nonconvex and piecewise linear with respect to the
optimization vectorvt+N�1 and the parametersut+N�1,
xt+N�1jt. By Lemma 1, it can be solved multipametrically
by an mp-MILP solver. By Theorem 1, the value functionV
is a piecewise linear function ofut+N�1, xt+N�1. Then, by
Lemma 1 the minimization problem

J(N � 1; xt+N�1jt) = min
ut+N�1

fkRut+N�1k1+

V (N � 1; ut+Njt; xt+Njt)
	



is again solvable multipametrically by an mp-MILP solver, and
the value functionJ is a piecewise linear function ofx t+N�1.
By iterating the above maximization and minimization proce-
dures, by Theorem 1 the last optimizeru

�
t
= u(t) is a piecewise

linear function ofxtjt = x(t). �

Theorem 3 OL-RMPC can be solved in explicit piecewise lin-
ear form (14), whereX , [s

i=1Xi is the set of states for
which (6)–(4) is feasible, by solving 2 mp-MILPs.

Proof. The inner maximization problem in (3)–(4) is noncon-
vex and piecewise linear with respect to the optimization vector
vt; : : : ; vt+N�1 and the parametersut; : : : ; ut+N�1, xt+N�1jt.
By Lemma 1, it can be solved multipametrically by an mp-
MILP solver. By Theorem 1, the value functionV is a piece-
wise linear function ofut; : : : ; ut+N�1, xt+N�1. Then, by
Lemma 1 the outer minimization problem is again solvable
multipametrically by an mp-MILP solver, and the optimizer
u
�
t
,. . . ,u�

t+N�1 is a piecewise linear function ofxtjt = x(t),
in particularu�

t
= u(t). �

Remark 1 Numerical experience indicates that explicit solu-
tions to CL-RMPC schemes are easier to solve than to OL-
RMPC schemes. Such a result has an analogy in the determin-
istic finite-horizon unconstrained optimal LQ control. This can
be either solved via dynamic programming and Riccati itera-
tions, or by formulating and solving an unconstrained quadratic
program, whose Hessian matrix has a size which depends on
the prediction horizonN . The former approach is numerically
more efficient. �

3.3 Multiparametric Solvers

The first method for solving multi-parametric linear programs
was formulated by Gal and Nedoma [17], and later a few au-
thors have dealt with multi-parametric linear [15, 16, 23], non-
linear [13], quadratic [8], and mixed-integer [1, 12] program-
ming solvers. Parametric programming systematically subdi-
vides the space of parameters into characteristic regions, which
depict the feasibility and corresponding performance as a func-
tion of the parameters.

Two main approaches have been proposed for solving mp-
MILP problems. In [1], the authors develop an algorithm based
on branch and bound (B&B) methods. At each node of the
B&B tree an mp-LP is solved where a certain number of in-
teger variables is relaxed to continuous values in[0; 1]. The
solution at the root node, where all the integer variables are
relaxed, represents a valid lower bound, while the solution at
a leaf node where all the integer variables have been fixed to
0 or 1 represents a valid upper bound. As in standard B&B
methods, the complete enumeration of combinations of 0-1 in-
teger variables is avoided by comparing the multiparametric
solutions, and by fathoming the nodes where there is no im-
provement of the value function. In [12] an alternative algo-
rithm was proposed, which only solves mp-LPs where the in-
teger variables are fixed to the optimal value determined by an

MILP, instead of solving mp-LP problems with relaxed integer
variables. More in detail, problem (7) is alternatively decom-
posed into an mp-LP and an MILP subproblem. First an MILP
problem is solved by considering also parameters as variables.
Then an mp-LP is solved where the binary variables are fixed
to the optimal values determined by the previous MILP. The
solution of the mp-LP provides a parametric upper bound. A
new integer vector is determined by solving an MILP that in-
cludes an additional constraint imposing a decrease of the value
function with respect to the previous mp-LP (see [12] for more
details). The algorithmic implementation of the mp-MILP [12]
algorithm which is adopted in this paper relies on [10] for solv-
ing mp-LP problems, and on [18] for solving MILPs.

4 Illustrative Example

We compare the explicit solution of (1) nominal MPC [4], (2)
robust MPC according to the OL-RMPC formulation in [24]
and (3) robust feedback MPC according to the CL-RMPC for-
mulation presented in Section 3.2, on the simple discrete-time
state-space model

x(t+ 1) = x(t) + u(t) + v(t)

considered in [24]. The goal is to robustly regulate the system
to the origin while minimizing the performance measure

L(xt; ut; ut+1) =

1X
k=0

jxt+kjtj+ j10ukj (15)

subject to the state constraints

�1:2 � xtjt+k � 2; k = 0; 1; 2; (16)

to the end region constraint

�1 � xt+2jt � 1; (17)

and under the hypothesis that the disturbances are norm-
bounded

�1 � vt+k � 1; k = 0; 1: (18)

(1) Nominal MPC. We ignore the disturbance and solve explic-
itly the problem

min
ut;ut+1

L(xt; ut; ut+1): (19)

Using the approach of [4], the explicit MPC law is

u(t) =

8>>>>>><
>>>>>>:

0 if �1 � x(t) � 1 (Region #1)

�x(t) + 1 if 1 � x(t) � 2 (Region #2)

�x(t)� 1 if �1:2 � x(t) � �1 (Region #3)

(20)

In Figure 1 the closed-loop system is simulated from the initial
statex0 = �1:2 andvk = �1=k; k � 1 (as in [24]). Note that
constraints violations are experienced during the transient.
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Figure 1:Closed loop trajectories of the nominal MPC (20)

(2) OL-RMPC [24]. The min-max problem

min
ut;ut+1

max
vt;vt+1

L(xt; ut; ut+1) (21)

is solved explicitly as described in the section 3.2. The in-
ner maximization problem returns the disturbance as an explicit
function of the input profile and initial state:

� vt+1jt
vt+2jt

�
=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

[ 11 ] if

2
664
�1 �1 0
�2 �2 �1
�1 �1 �1
0 1 0
0 0 �1
0 0 1
1 0 0
�1 0 0

3
775
h

xtjt

ut
ut+1

i
�

2
664
�2
�1
�1
0
0
0
1
�1

3
775

� [ 11 ] if

2
664

2 2 1
1 1 �0
1 1 1
0 0 1
0 �1 0
0 0 �1
1 0 0
�1 0 0

3
775
h

xtjt

ut
ut+1

i
�

2
664

2
1
1
0
0
0
1
�1

3
775

� [ 11 ] if

2
4 1 1 1

1 0 0
0 1 0
�1 0 0
0 0 �1
�1 �1 0

3
5h xtjt

ut
ut+1

i
�

2
4 1

1
0
�1
0
�1

3
5

�
�1
1

�
if

2
4�1 �1 �1

1 1 �0
1 0 0
0 0 1
�1 0 0
0 �1 0

3
5h xtjt

ut
ut+1

i
�

2
4�1

1
1
0
�1
0

3
5

that, by solving the outer minimization problem, leads to the
explicit OL-RMPC law

u(t) = �x(t) + 1 for � 1:2 � x(t) � 2 (22)

In Figure 2 the closed-loop system is simulated from the initial
statex0 = �1:2 and andvk = �1=k; k � 1. As expected, in
spite of the disturbances the control law drives the state to the
end-region without violating the constraints.

However because the the min-max optimization is of open-loop
nature, the problem becomes infeasible if the upper-bound on
the state is reduced from 2 to 1.8.

(3) CL-RMPC. The min-max problem is formulated as in (6)–
(4):

min
ut

max
vt

min
ut+1

max
vt+1

L(xt; ut; ut + 1) (23)
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Figure 2:Closed loop trajectories of OL-RMPC (22)
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Figure 3:Closed loop trajectories of CL-RMPC (24)

and explicitly solved as described in 3.2 to obtain the explicit
feedback robust MPC law

u(t) = �x(t) for � 1:2 � x(t) � 2 (24)

In Figure 3 the closed-loop system is simulated from the initial
statex0 = �1:2 and andvk = �1=k; k � 1. In spite of the
disturbances, the control law drives the state to the end region
without any constraint violation. Moreover, contrarily to OL-
RMPC, problem (23) remains feasible even if the upper-bound
on the state is reduced from 2 to 1.8.

The controllers (20), (22), and (24) were computed off-line in
Matlab 5.3 on a Pentium III 650 in about 55 s.

5 Conclusions

For discrete-time linear time-invariant systems with input dis-
turbances and constraints on inputs and states, we have pre-
sented a procedure to determine explicitly, as a function of the
current state, the solution to robust receding horizon optimal
control problems based on a min-max formulation with a per-
formance index expressed in1-norm. We showed that the op-
timal control profile is a piecewise linear function of the initial
state. The technique can be easily extended to system affected
by parametric polyhedral uncertainty and to performance in-
dices based on1-norms.
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