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Abstract—We propose an approach to either certify that a
given control system is safe under possible cyber-attacks on the
measured data used for feedback and/or the commanded control
signals, or alternatively synthesise a particular spoofing attack
that corrupts the signals to make the closed-loop system unsafe.
We assume that a (possibly nonlinear) dynamical model of the
physical plant is available along with the control law, but that no
on-line diagnosis is in place to detect attacks. After converting the
model to a piecewise polynomial discrete-time form, we interpret
the synthesis of the spoofing attack as a software verification
query by means of an encoding into a Boolean satisfiability
problem. Using a prototype implementation of our verification
engine, we demonstrate its effectiveness on a case study of cyber-
attack to a chemical reactor.

I. INTRODUCTION

There is a clear technological trend in increasing the

interconnection between physical devices and digital units,

programmed to automatically change the physical behavior

of the device for new or improved functionalities. Examples

range from autonomous driving to smart grids, water networks,

passenger aircrafts, nuclear and chemical plants, and many

others. The new technologies come at the price of making

such cyber-physical systems (CPS) more fragile to malicious

attacks from adversaries that want to extract information, cause

malfunctioning, or otherwise interfere with the expected oper-

ating conditions of a system to intentionally cause damages,

and ultimately threaten human lives in many cases. For this

reason, security of CPS has attracted increasing attention in

recent years. Assessing that a given CPS is safe can be rather

challenging, because of the inherently intertwined nature of

the digital and physical components. For example, security

weaknesses may be found in the communication infrastructure

(e.g., in the underlying network that connects sensors, the

physical systems, and control units) or in the digital compo-

nents, e.g., from software vulnerabilities or by exploiting lack

of protection mechanisms (as in communication protocols in

cars, e.g., [1]) because of the computational overheads they

typically introduce.

In this paper we focus on CPS security from the point

of view of sensor/actuator spoofing in an automatic control

system. That is, we deal with compromising sensor measure-

ments that are fed back to the controller, and/or the input

signals commanded by the controller, in order to steer the

controlled physical system toward an unwanted or unexpected

condition that is arbitrarily defined by the attacker (e.g., when

tampering with an anti-lock braking system [2]). We take a

model-based white-box approach to this problem, assuming

that a model of the plant is available together with the control

law for security analysis. We devise an automatic framework

that takes the closed-loop model, the set of corruptible signals

of the controller, and a target condition as inputs. The output

is an attack sequence, i.e., the actual sequence of corrupted

signals that brings the system to the target, or an answer that no

sequence exists that can reach the target, for a given precision

chosen to describe the model of the system and the resolution

of the attack signal.

In practice, this can be a relevant scenario for a CPS

stakeholder to understand whether a certain condition (such as

a given dangerous critical temperature) can be reached by only

appropriately tampering with the measurements acquired by

the controller, and/or by altering the control signals transmitted

on the bus to the physical actuators. Of course, our algorithm

can be dually used in principle by an attacker, although this

would require to know (or estimate) a model of the system

and the control law.

Our approach leverages ideas and techniques from software

verification. The model of the controlled system is represented

as a program consisting of a bounded cycle where each

iteration computes the next state of the system. Each variable

that represents a corruptible input to the closed-loop system,

at each time step, is declared as nondeterministic; the target

condition, instead, is represented as a logical assertion. With

this set-up, the problem of finding an attack sequence is

translated into the satisfiability problem which looks for an

assignment of the nondeterministic variables such that the

given assertion holds true.

The specific encoding of the satisfiability problem depends

on the semantics used for the program, particularly for the

representation of numbers. Here we consider a fixed-point

representation of real numbers, also motivated by the fact

that nowadays embedded systems still run in fixed-point

rather than floating-point arithmetics, as it is computationally

less expensive and therefore requires cheaper hardware. By

analyzing the program with fixed-point semantics we are able

to capture the typically limited dynamic range of many real

(micro-)controllers in a natural way. Further, in our frame-

work we allow arithmetic operations between numbers with

different precision: this allows us to use larger precisions for

the variables that represent the dynamics of the system for
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maintaining modeling accuracy.

The synthesis problem can be solved by encoding the

program as a propositional logic formula, using established

approaches in software verification, which is then fed to a

Boolean satisfiability (SAT) solver. If the problem is satisfiable

we obtain a candidate attack sequence; otherwise, unsatisfiabil-

ity means that no such sequence exists, giving a model-based

certificate of robustness to spoofing attacks.

II. RELATED WORK

The topic dealt with in this paper is somewhat dual to

that on attack detection, whose goal it to infer which states

and outputs are being compromised. White-box approaches

assume existing knowledge of the system and model the attack

as a disturbance entering the model equations, mostly linear

dynamical models [3], [4]. In [5], a black-box approach is

presented which learns the model from observations of the

system in nominal conditions.

Research on secure state estimation considers the problem

of detecting an attack on some sensors and reconstructing

the correct state by using the uncorrupted sensor measure-

ments [6], [7], [8], [9], [10], [11]. Among such techniques, [9],

[10], [11] are similar in that they use program-analysis ap-

proaches based on satisfiability modulo theories (SMTs) [12].

More closely related to our approach is [13], which is

also concerned with the synthesis of sensor spoofing attacks.

However, it focuses on a specific scenario, namely embedded

systems running on the MSP430 family of micro-controllers,

with attack sequences that are generated via the framework of

symbolic execution [14].

Another rigorous way to study sensor spoofing is to interpret

the attack sequence as a disturbance and model the closed-

loop system as an uncertain system, computing the reach

set (or an under-/over-approximation thereof) which can be

interpreted as a “safety envelope” (cf. [5]). The reach set can

be used to decide whether an attack sequence exists, however

it does not synthesise one. Finally, as in the approach in [15],

[16] based on piecewise linear hybrid dynamical models, we

mention that for models described by nonlinear dynamics the

synthesis of an attack sequence could be posed as a nonlinear

optimization problem subject to equality (dynamic) constraints

and inequality (reachability) constraints. While any feasible

(even suboptimal) solution would be a valid attack sequence,

proving safety could be a rather difficult task, as one should

prove that no feasible solution exists to a (possibly highly

nonconvex) mathematical programming problem.

SMT-based reasoning has been used to verify fixed-point

implementations and properties (such as stability) of digital

filters and controllers [17], [18]. These techniques, however,

only work on specific classes of fixed-point programs.

Theorem proving has been applied to automatically verify

the correctness of translations from floating-point to fixed-

point programs [19] and in particular digital filters [20].

The idea of reducing the analysis of closed-loop control

systems to software verification by translating them into pro-

grams is not new [21]. Our approach is different in that it

nondeterministic a[k], k = 1,...,K

for k = 1 : K
y[k] = g(x[k], a[k])
u[k] = h(y[k])
x[k+1] = f(x[k], u[k])

end

assert target_condition

Listing 1: Synthesis problem as program analysis.

can also handle polynomial systems. Both our approach and

the cited one evaluate the robustness of the system up to a

given time horizon. However, we concentrate on specifically

checking whether it is possible to synthesise an attack vector

to steer the system to an undesired condition, rather than by

analysing the propagation of uncertainty with time. We use

bounded model-checking rather than concolic execution for

the analysis of the translated program.

III. PROBLEM STATEMENT

We consider a closed-loop control system described by the

following discrete-time state-space model

x(k + 1) = f
(
x(k), u(k)

)
y(k) = g

(
x(k), a(k)

)
u(k) = h

(
x(k)

) (1)

where x(k) ∈ R
n includes the states of the process and the

controller, y(k) ∈ R
m is the measured output that is affected

by the attack vector a(k) ∈ R
d, and u(k) ∈ R

p is the

command input.

We assume that functions f , g, and h are piecewise multi-

variate polynomials over the variables x(k), u(k), and a(k).
Many physical systems can be well captured by (1) under such

an assumption, which is therefore not very restrictive, as we

will exemplify in Section VI.

We assume that the attack target is a condition expressed in

quantifier-free first-order logic over the variables x(k), u(k)
and a(k), over a fixed time horizon K. Then, the synthesis

problem consists in finding an assignment of a(0), a(1), . . . ,

a(K − 1), such that the attack-target condition is satisfied.

We cast this problem into a software verification one. The

corresponding program to be verified, in pseudocode, is given

in Listing 1. The attack sequence is declared as nondeter-

ministic, i.e., the values are not specified in the program.

Hence, the program is not executable, but it can be analysed

by a satisfiability solver, which looks for an assignment of

the nondeterministic variables such that the target condition

declared in the assertion holds true.

In the next sections we detail how such software verification

can be realised. In particular, we consider the case where

the program variables are represented as fixed-point numbers,

leading to an encoding into a Boolean satisfiability problem.

In particular, we first introduce fixed-point arithmetics (Sec-

tion IV). Then we describe a modular approach to encode
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the semantics of fixed-point arithmetics as an intermediate

program representation based on standard integer arithmetics

over arbitrary-sized vectors of bits—bitvectors for short (Sec-

tion V).

IV. FIXED-POINT ARITHMETICS

Fixed-point arithmetics approximates computations over the

rational numbers via standard integer arithmetics. In fixed-

point notation, numbers are expressed as constant-length se-

quences of binary digits where a radix point at a specific

position separates the integer part of the representation from

the fractional one. We say that the precision or format of

a given fixed-point variable is p.q when its integer and

fractional parts are represented using p and q binary dig-

its, respectively. We denote such variable with x(p.q) =
〈ap−1, . . . , a0.a−1, . . . , a−q〉, omitting the subscript when ir-

relevant or clear from the context. Since the format, or the

location of the radix point, is not part of the representation,

the storage size for a fixed-point variable is p + q, plus one

extra bit to hold the sign in case of signed arithmetics. In this

case, usually two’s complement format with sign extension for

signed values is used. The resolution of a fixed-point format

is the magnitude of the smallest representable non-zero value,

while the range is the representation interval. For example

a format p.q has resolution is 2−q , and ranges [0, 2p − 2−q]
and [−(2p), 2p − 2−q], respectively for unsigned and signed

representations, assuming that the sign bit is not counted.

Unlike floating-point arithmetics, fixed-point arithmetics

does not currently follow any specific standard and thus its

support is limited to vendor-specific solutions. A specific issue

regarding fixed-point arithmetics is the separate bookkeeping

required to keep track of the radix point, as this is not explicitly

represented. The ISO/IEC TR 18037 [22] proposes language

extensions for the C programming language to support the

fixed-point data type, which vendors are expected to follow,

and that have already been implemented in the GNU compiler.

In practice, fixed-point numbers are manipulated much like

regular integers. The exact format is chosen depending on the

application, and it is generally worked out by considering

the required range and resolution. A sum operation under

fixed-point arithmetics is performed as in regular integer

arithmetics and takes one extra bit to hold the result, e.g.,

z(p+1,q) = x(p.q) + y(p.q) as long as the two operands are

in the same format. If the formats are different from each

other, then shift operations, truncation, or format extension

of one or both operands need to be carried out upfront to

obtain the same format. Further details are discussed in the

next paragraph. The multiplication of two fixed-point variables

is also performed as in integer arithmetics. In this case the

two operands are not required to be in the same format. The

format to store the result uses the sum of the integer and

fractional precision of the two operands for the integer and

fractional part of the representation respectively. For instance

z(2p.2q) = x(p.q) · y(p.q), assuming the same precision for

the two operands. Conversely, a division operation between

operands of the same precision requires left shifting the first

1 fixedpoint x(3.2), y(3.2), z(3.2), z(4.2);
2

3 x(3.2) = 7.510; // +111.10, 011110
4 y(3.2) = 0.510; // +000.10, 000010
5 z(4.2) = x(3.2) + y(3.2); // +8.0, +1000.00, 0100000
6 z(3.2) = x(3.2) + y(3.2);

Listing 2: Overflow in fixed-point arithmetics.

1 fixedpoint x(3.2), y(3.2), z(3.2), z(3.3);
2

3 x(3.2) = 0.2510; // +000.01, 000001
4 y(3.2) = 0.510; // +000.10, 000010
5 z(3.3) = x(3.2) · y(3.2); // +0.25, +000.001, 0000001
6 z(3.2) = x(3.2) · y(3.2);

Listing 3: Numerical error in fixed-point arithmetics. We use

decimal constants for initialising the variables; the equivalent

fixed-point binary, and two’s complement bitvector represen-

tations are shown in the comments.

operand to extend its representation before the actual integer

division can take place, z(p.q) = x(2p.2q)/y(p.q).
The operations above introduce format restrictions on the

variable that holds the result or on the involved operands.

Therefore, it may be necessary to convert variables to smaller

or greater formats. We refer to any of these operations as a

precision conversion. Converting a variable to a smaller integer

format is done by either saturating or simply trimming down

the representation starting from the most significant digit. In

this case overflow may occur. An example of such a situation is

the code snippet from Listing 2, where variable z(3,2) uses an

insufficient number of bits to store the integer part of the result

of the sum between x(3,2) and y(3,2). Reducing the fractional

precision is done by either rounding or truncating, and may

cause numerical error. An example is shown in Listing 3,

where variable z(3,2) uses an insufficient number of bits to

store the fractional part of the result of the multiplication

between x(3,2) and y(3,2), and thus the least significant digit

of the result (correctly stored in z(3,3)) is dropped. A similar

problem may occur in the presence of right shift operations.

Extending the integer part of the representation requires sign

extension in case of signed arithmetics. Extending the frac-

tional part simply requires left shifting to zero-pad the required

amount of least significant positions. Other operations such

as square root can be rewritten by combining the operations

described above. In the rest of the paper we focus on non-

saturated signed fixed-point arithmetics over mixed-precision

variables.

V. VERIFICATION APPROACH

We consider programs with arithmetic expressions over

fixed-point variables, or fixed-point programs for short. These

are C-like programs with scalars, arrays and loops, plus an

extra data type for fixed-point variables, and with verification-

oriented primitives for symbolic (i.e., nondeterministic) ini-

tialisation and assertion checking to express the requirements
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1 fixedpoint x(3.2), y(1.2), z(3.2), z(3.3);
2

3 main() {
4 x(3.2) = 0.510;
5 y(1.2) = nondet();
6

7 z(3.3) = x(3.2) · y(1.2); // first
8 z(3.2) = x(3.2) · y(1.2); // second
9

10 assert(z(3.3) == z(3.2));
11 }

Listing 4: A fixed-point program.

of interest (i.e., the attack condition). Fixed-point variables

can have arbitrary formats, encoded as part of the correspond-

ing variable identifier. Arithmetic operations of fixed-point

operands of mixed size are allowed.

A fixed-point program is shown in Listing 4. The program

multiplies constant x(3.2) by variable y(1.2) and stores the

result to variables of different formats, z(3.3) and z(3.2). The

nondeterministic initialisation of variable y(1.2) models all

possible executions of the program for any possible value

of the variable allowed by its format. The assertion at the

end checks whether the result is consistent across the two

considered precisions.

Analysing the program shown in Listing 4 is equivalent to

checking whether there exists an assignment for y(1.2) that

leads to a violation of the assertion, that is z(3.3) �= z(3.2). An

error trace is y(1.2) = 1.2510, which causes the result of the

multiplication to be represented accurately in z(3.3) = 0.62510,

but not in z(3.2) = 0.510, where due to insufficient fractional

precision the least significant digit is lost. The program is said

to contain a reachable assertion failure.

Our program analysis approach consists of two main phases.

In the first phase, the original fixed-point program (Listing 4)

is transformed into a bitvector program, that is essentially

a loop-free C-like program that uses standard integer arith-

metics over arbitrary-sized vectors of bits (Listing 6). Our

transformation guarantees that the bitvector program contains

a reachable assertion failure if and only if the fixed-point

program contains either a reachable assertion failure or an

overflow. For example, Listing 6 contains a reachable assertion

failure at line 18 if and only if the multiplication at line 7 of

Listing 4 can overflow. In the second phase, we convert the

bitvector program into the appropriate format accepted by the

verification tool of preference. We then feed the as-converted

bitvector program to the backend, and map back any error

trace from the backend to refer to the bitvector program, and

from there to the initial fixed-point program.

We now describe more in detail how to translate a fixed-

point program (Figure 4) into a bitvector program (Figure 6).

We assume the following format:

(A1) the fixed-point program is unfolded;

(A2) each line of code contains at most one statement;

(A3) the number of involved operands for these is always

exactly two;

(A4) the only arithmetic operations in the program are addi-

tions and multiplications.

Assumption (A1) ensures termination and finiteness of the

SAT encoding; (A2) and (A3) are without loss of generality

since a fixedpoint program can always be transformed in a

format that satisfy these assumptions by means of source-to-

source transformations. Assumption (A4) is the main reason

for restricting to (piece-wise) polynomial dynamics in the

closed-loop control system. Other nonlinearities (e.g., square

root) can be covered by exploiting the fact that they can be ex-

pressed as sums and multiplications in fixed-point arithmetic,

or by appropriate variable transformation at the level of the

dynamical model of the control system, as done in Section VI.

For each operation on fixed-point variables we introduce, if

needed, a fresh variable in a sufficient precision to store the full

actual result of the operation without overflow or numerical

error (see Section IV). We then introduce a new assignment

statement from this variable to the one initially intended for

storing the result of the original operation, thereby forcing

an implicit format cast (see Section IV). This mechanism is

formalised by the following rewrite rules:

�z(p.q) = x(p.q) + y(p.q)� → z′(p+1,q) = x(p.q) + y(p.q)
z(p.q) = z′(p+1.q)

�z(p.q) = x(p.q) · y(p.q)� → z′(2p.2q) = x(p.q) · y(p.q)
z(p.q) = z′(2p.2q)

where the notation �·� denotes the mapping from the argument

(an original line of code) into the transformed code. We note

that the second formula uses the same precision for the two

operands in a multiplication. This is not required, but only

assumed for simplicity.

The manipulation described above guarantees that in the

output program no overflow or loss of accuracy can happen

in any arithmetic operation, and any occurrence of these

problems is limited to format casting operations. An example

is discussed later in this section, at the end of the description

of our encoding.

The next step in the preparation of our bitvector program

consists in splitting all format casting operations in two state-

ments for the integer part and fractional part, when needed.

More precisely we introduce the following transformation rule:

�x(p.q) = x′(p′.q′)�
[p �= p′, q �= q′]

→ x′′(p.q′) = x′(p′.q′)
x(p.q) = x′′(p.q′)

so that only separate cases of format casting (Section IV) may

occur. These cases are handled by the following rewrite rules:

�x(p.q) = x′(p′.q)�
[p < p′]

→ x(p.q) = x′(p′.q)
assert(x′(p′.q) == x(p.q))

�x(p.q) = x′(p′.q)�
[p > p′]

→ x(p.q) = x′(p′.q)

�x(p.q) = x′(p.q′)�
[q > q′]

→ x(p.q) = x′(p.q′) << (q − q′)
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�x(p.q) = x′(p.q′)�
[q < q′]

→ x(p.q) = x′(p′.q) >> (q′ − q)

Note that the format casting operations considered above

can overflow in the first case only, because of the loss of

integer precision. We therefore insert an explicit assertion to

make sure that no overflow occur. On the other hand, no

manipulation is required when converting to a greater integer

precision. Converting to greater or smaller fractional precision

will instead need shifting left or right an appropriate number

of positions, as shown in the last two rewrite rules.

The effect of applying the rewrite rules presented above

may be observed by comparing Listing 4 to the transformed

program shown in Listing 5. For example, the multiplication

at line 7 of Listing 4 corresponds to lines 7-12 in Listing 5.

Note that in the transformed program no overflow can happen

during the actual multiplication at line 8 because the result

is now guaranteed to be stored using sufficient precision. The

overflow can instead occur during the format casting at line

11, where the most significant digit of w2(4.3) is lost during

the assignment to w2(3.3). The assertion at line 12 fails when

this happens.

We finalise our encoding by simply transforming all fixed-

point variables into bitvectors of appropriate length, as in List-

ing 6. The bitvector program so obtained is further processed

in order for the actual analysis to take place. In particular, we

convert it into the format accepted by the verification tool or

reasoning engine chosen as a backend. This step may be more

or less straightforward, depending on the backend. A possible

option would consist in simply replacing bitvectors with

standard integer variables of appropriate size. For example,

a fixed-point variable x(7,8) would require a 16-bit bitvector,

which can be stored as a short. Such an instrumentation

adapts any verification tool capable of symbolic analysis of C

programs to the case of fixed-point programs.

Implementation: We implemented our verification ap-

proach in a prototype. Our tool performs a sequence of source

transformations that implement the rewrite rules described in

Section V. As verification backend we chose CBMC [23],

due to its native support for arbitrary-sized bitvectors and

its bit-precise encoding based on propositional satisfiability.

CBMC converts the input program (i.e., our encoding from

Listing 6) into a propositional formula that is satisfiable

if and only if the program contains a reachable assertion

failure. It uses the MiniSat [24] SAT solver to check the

satisfiability of the formula, automatically generating an error

trace from any satisfiable assignment of the propositional

variables. Our prototype then converts any error trace from

CBMC by automatically mapping the line numbers back to the

initial fixed-point program. Indeed, due to loop unfolding and

to the program transformations performed in the first phase,

a statement in the original program will correspond to one

or more statements in the bitvector program. Therefore in the

error trace, if any, the line numbers need to be mapped from

the bitvector program back to the initial fixed-point program.

1 fixedpoint x(3.2), y(1.2), z(3.2), z(3.3);
2

3 main() {
4 x(3.2) = 0.510;
5 y(1.2) = nondet();
6

7 fixedpoint w1(4.4); // first
8 w1(4.4) = x(3.2) · y(1.2);
9 fixedpoint w2(4.3);
10 w2(4.3) = w1(4.4) >> 1;
11 z(3.3) = w2(4.3);
12 assert(z(3.3) == w2(4.3));
13 fixedpoint w3(4.4); // second
14 w3(4.4) = x(3.2) · y(1.2);
15 fixedpoint w4(4.2);
16 w4(4.2) = w3(4.4) >> 2;
17 z(3.2) = w4(4.2);
18 assert(z(3.2) == w4(4.2));
19

20 fixedpoint w5(3.3);
21 w5(3.3) = z(3.2) << 1;
22 assert(z(3.3) == w5(3.3));
23 }

Listing 5: Transformed fixed-point program.

1 bitvector x(6), y(4), z(6), z(7);
2

3 main() {
4 x(6) = 0.510;
5 y(4) = nondet();
6

7 bitvector w1(9); // first
8 w1(9) = x(6) · y(4);
9 bitvector w2(8);
10 w2(8) = w1(9) >> 1;
11 z(7) = w2(8);
12 assert(z(7) == w2(8));
13 bitvector w3(9); // second
14 w3(9) = x(6) · y(4);
15 bitvector w4(7);
16 w4(7) = w3(9) >> 2;
17 z(6) = w4(7);
18 assert(z(6) == w4(7));
19

20 bitvector w5(7);
21 w5(7) = z(6) << 1;
22 assert(z(7) == w5(7));
23 }

Listing 6: Bitvector encoding.

VI. CASE STUDY

A. Model

We consider a sensor spoofing attack in process control.

The process is represented by a continuous stirred-tank reactor

(CSTR) model [25] that considers a first-order irreversible

reaction A → B that takes place in a vessel. The states of

the process are the concentration CA of reactant A and the

reactor temperature T , whose dynamics are described by the
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nonlinear ordinary differential equations (ODEs)

ĊA =
F

V
(CAf − CA)− CAk0e

−ΔE
RT (2a)

Ṫ =
F

V
(Tf − T ) +

UA

ρCpV
(Tj − T )− ΔH

ρCp
CAk0e

−ΔE
RT (2b)

where ẋ denotes the derivative of a quantity x with respect to

time. The following are given fixed parameters: F is the flow

rate, V is the reactor volume, k0 is a nonthermal factor, ΔE is

the activation energy, R is Boltzmann’s gas constant, ΔH is

the heat of the reaction, U is the heat transfer coefficient, A is

the tank area, Cp is the heat capacity, and ρ is the density. The

inputs CAf and Tf give the concentration and the temperature

of reactant A in the feed stream, respectively, while the control

acts on input Tj , which gives the temperature of coolant flow

that surrounds the reactor jacket.
Although (2) is a simple two-state model, it is nontrivial

to deal with, as it is formulated in continuous time and

contains exponential and fractional expressions. This requires

converting the model in polynomial form, discretising time,

and choosing a proper precision to represent the variables of

the model.
We design a state feedback linear quadratic regulator (LQR)

with saturation and integral action for ensuring zero tracking

errors in steady state. The LQR control law is designed based

on (2) augmented by the integral of the tracking error Q

Q̇ = CA − C ref
A (3)

between CA and a given reference concentration C ref
A :

Tj = max(Tj0 − l1(CA − C0
A)

− l2(T + TS − T 0)− l3Q, 273.15) (4)

where Tj0, C0
A, T 0 are reference values for the jacket tem-

perature, the concentration of A, and the reactor temperature,

respectively, and li are given constants. Saturation at 0◦ C

is imposed for the physical realisability of the actuation

command.
The problem is to understand whether the reactor can be

steered to the overheat condition

T ≥ 420 K (5)

by altering the temperature measurements that are consumed

by the controller (4).
In order to synthesize the attack sequence, we first need

to replace the exponential and rational expressions in (2)

by polynomial expressions. This is done by introducing the

following two auxiliary state variables X and Y

X = e
−ΔE
RT , Y = 1/T

where X replaces the exponential expression in (2) to make

the ODEs polynomial. By applying the chain rule, the time-

derivatives of X , Y are also polynomial

Ẋ =
ΔE

R
XY 2

[
F

V
(Tf − T ) +

UA

ρCpV
(Tj − T )− ΔH

ρCp
CAk0X

]

Ẏ = Y 2

[
F

V
(Tf − T ) +

UA

ρCpV
(Tj − T )− ΔH

ρCp
CAk0X

]

TABLE I: Attack sequences for the CSTR model

p s Time Attack Sequence

8.0 0 27.8 〈 -145, -187, 13, -232, -208, -221, -212, -240, -217 〉
8.0 1 18.8 〈 -131, -232, -237, -240, -105, -151, -212, -157, 0 〉
8.0 2 99.5 〈 -254, -192, -256, 69, -91, -72, -256, 0, 0 〉
8.0 3 45.4 〈 -27, -147, -212, -132, -230, -120, 0, 0, 0 〉
8.0 4 3.6 〈 -159, -243, -238, 159, 63, 0, 0, 0, 0 〉
8.0 5 23.1 〈 -7, -223, -152, -256, 0, 0, 0, 0, 0 〉
8.0 6 8.6 〈 -181, -232, -240, 0, 0, 0, 0, 0, 0 〉
8.0 7 129.5 unsat
8.0 8 1.7 unsat
8.0 9 0.9 unsat

7.1 0 32.1 〈 -25.0, -111.5, -101.5, -109.0, -88.5, -117.5,
-84.5, -128.0, -127.0 〉

7.0 0 22.9 〈 -109, -99, -72, -81, -93, -89, -127, -116, -125 〉
7.0 1 19.0 〈 -102, -88, -34, -111, -125, -126, 0, -123, -128 〉
7.0 2 38.2 〈 -124, -122, -106, -128, -128, -117, -103, 0, 0 〉
7.0 3 75.0 〈 0, -124, -125, -128, -128, -128, -126, 0, 0 〉
7.0 4 44.3 unsat
7.0 5 55.4 unsat
7.0 6 78.4 unsat
7.0 7 131.6 unsat

6.0 0 72.6 unsat

After the entire closed-loop system has been equivalently

described by a polynomial ODE model, it is converted to

discrete-time by using the first-order forward Euler method

with sampling time 0.05 (in hours). Having converted the

closed-loop system to a system of polynomial finite differ-

ences with saturation, it can be analysed using the encoding

presented in Section V.

B. Results

Listing 7 shows the C-pseudocode of the program used

for the analysis and the system parameters. We used 64-

bit signed fixed-point representation for all the variables

excluding the attack vector. We initially reserved the first

2 bytes for the integer part of the representation plus the

sign. We then adjusted the integer precision by using our

tool in a counterexample-guided loop performing overflow

check within a small timeout, increasing the precision in steps

of 4 bits when needed. This resulted in a required integer

precision of 23 bits. We used the remaining 40 bits for the

fractional part. For the nondeterministic variables representing

the attack vector, we experimented with different precisions. In

particular, we initially fixed the precision to one byte including

the sign, and then considered one bit less and one extra bit for

the integer part, as well as one extra bit for the fractional part.

We also varied the sparsity, i.e. the number of zero elements,

of the attack sequence. Increasing sparsity reduces the number

of nondeterministic bits, but gives less freedom to the attacker.

We limited the unfolding to K = 9 iterations of the main

program’s loop. With this set-up, we intended to consider both

satisfiable and unsatisfiable problems for the synthesis of the

attack sequence.

Table I summarises our experimental results. Here, p and s
represent the precision for the attack sequence and its sparsity,

respectively; v is the attack sequence found by the solver, or
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const int K = 9, // number of steps
N = 5; // system size

/* Model parameters */
fixedpoint ts = 0.05, // time step

CT = 420, // target temperature
x0[N] = // initial condition

{6,3.3551E+2,1.908E-8,2.980E-3,0},
k0 = 3.493E+7,
FV = 1.0,
Ul = 0.3,
DeltaHl = -11.92,
DeltaEl = -5.964+03,
l1 = -1.6589,
l2 = 8.1989,
l3 = -39.2251,
CA0 = 6.0,
Tj0 = 301.135,
T0 = 335.5168,
CAf = 10,
Tf = 298.15,
CAref = 9;

/* Model variables, temperatures, a. vector */
fixedpoint x[N], t[K],

attack[K] = nondet();

/* Auxiliary variables */
fixedpoint spoofed, control, tj, dxT;

/* Main controller loop */
for (int k=0; k<K; k++) {

// spoofing attack sensor
spoofed = x[1] + attack[k];

// compute control law
control = Tj0;
control -= l1*(x[0] - CA0);
control -= l2*(spoofed - T0);
control -= l3*x[4];
tj = max(control,273.15);

// variable C_A
x[0] += ts*(FV*(CAf - x[0]) - x[0]*k0*x[2]);
dxT = FV*(Tf - x[1]) + Ul*(tj - x[1]);
dxT -= DeltaHl*x[0]*k0*x[2];
// variable T
x[1] += ts*dxT;
// variable X
x[2] += ts*(-x[2]*DeltaEl*x[3]*x[3]*dxT);
// variable Y
x[3] += ts*(-x[3]*x[3]*dxT);
// variable Q
x[4] += ts*(x[0] - CAref);

t[k] = x[1];
}

assert !(t[0] > CT || ... || t[K-1] > CT);

Listing 7: Program implementation of the CSTR control

system. The parameter expressions appearing the original

equations are lumped into a single variable (e.g., the variable

FV represents the product F ·V ). Temperature is expressed in

Kelvin degrees and time unit is 1 h.

unsat if no such sequence exists within the given precision and

sparsity. The analysis runtime is expressed in hours, measured

on a dual Xeon E5-2687W workstation clocked at 3.10GHz,

for a total of 16 physical cores, with 128GB memory and

running 64-bit Linux version 4.9.6.

The results show that using 8-bit integer precision it takes

only three non-zero elements to build up a successful attack, or

twice as much non-zero elements when lowering the integer

precision just one bit. Lowering the precision one more bit

yields no feasible attack of the considered kind within the

given number of iterations. Regarding the analysis runtimes,

we observe large performance fluctuations, typical of SAT-

based procedures. Depending on the configuration, it took a

minimum of less than four hours to a maximum of slightly

more than four days to find satisfiable attacks. Similarly, it

took less than one hour to over five days of computations and

about 70GB of system memory to terminate the analysis of

unsatisfiable instances.

Note that, due to unfolding the main loop, splitting complex

operations into multiple simple operations, and introducing

intermediate computations to model the semantics of fixed-

point arithmetics, the bitvector program ends up having about

20 times the number of lines of code in Listing 7. This in

turn leads to propositional formulae of about 2M variables and

10.5M clauses, with negligible variations over the considered

precision and sparsity ranges. The roughly constant size of

the instances and the large performance gaps discussed above

confirm that the expected performance of the solver on a given

instance is hardly predictable by relying on simple metrics

such as the number of variables and clauses. Nevertheless,

the considerable size of the SAT encodings confirms once

again the excellent scalability of modern SAT-based reasoning

engines.

C. Validation

We validated the attack sequences on the original ODE

model. We interpolated a continuous piece-wise constant at-

tack signal from each candidate sequence found using the SAT

procedure, considering the cases with precision 8.0. The ODE

model with the as-constructed signals was then solved using

MATLAB’s ode15s solver. The results, presented in Fig. 1,

confirm that the overheat condition is reached in all cases.

VII. CONCLUSIONS

We have studied the problem of synthesising an attack to

corrupt the signals in a controlled cyber-physical system that

steer it toward a malicious target condition, or proving that

such attacks do not exist within the considered precision and

time horizon. In this paper we have considered an approach

based on Boolean satisfiability by means of an interpreta-

tion as a software-verification query. In particular we have

investigated a semantics based on fixed-point arithmetics with

possibly different precisions, giving freedom to the modeller

in tuning the dynamic range of the variables. The experimental

results on a nontrivial (nonlinear) model have shown the

feasibility of our approach, both in the case of satisfiability
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0 0.1 0.2 0.3 0.4
Time

350

400

450

T
em

pe
ra

tu
re

0 0.1 0.2 0.3 0.4
Time

-250

-200

-150

-100

-50

0

A
tta

ck
 s

eq
ue

nc
e 

(T
S

)

(b) p = 8.0, s = 1
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(c) p = 8.0, s = 2
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(d) p = 8.0, s = 3
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(e) p = 8.0, s = 4
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(f) p = 8.0, s = 5
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(g) p = 8.0, s = 6

Fig. 1: Validation of attacks from Table I on the ODE model

of the CSTR system. The overheat condition is the red straight

line in the left plots. Time is given in hours.

(returning a candidate attack sequence) and unsatisfiability

(guaranteeing safety under the given modelling assumption).

It is worth mentioning that with our technique the com-

plexity of the state space is not directly related to that of the

underlying system of equations, and thus to its dimensionality,

but rather to the quantity of nondeterminism in the program,

which for our case study is the size of the attack vector, which

grows with the considered time horizon.

Our approach is quite general in that it can analyse piece-

wise polynomial dynamics. However, it can require significant

computational effort, especially on unsatisfiable instances.

Future work will aim at improving our approach in different

directions.

First, it would be interesting to experiment with different

solvers, such as optimised ones [26] or other families of

solvers that have been reported to scale particularly well

on large instances [27]. It would also be useful to simplify

the encoding, for example by adapting techniques used in

hardware circuits that allow overflow checking using less

bits [28]. On large programs, adopting a block-based in-

termediate representation that avoids full program flattening

and produces encodings whose size do not depend on the

loop bound [29], or techniques for incremental analysis [30]

might be beneficial. Evaluating the effectiveness of possible

techniques for unbounded program analysis, such as those

based on inductive reasoning [31], would be a very interesting

step towards lifting the limitations on the time horizon.

Second, it might be possible to prune the search space

with different strategies: including further logic constraints in

the SAT problem from reach-set computations based on the

physical model; using abstraction-based decision procedures

that combine under- and over-approximations, as proposed for

bitvector arithmetics [32] and floating-point programs [33];

performing abstract interpretation to automatically minimise

the integer precision of fixed-point variables [34]; adapting

lightweight static analyses based on intervals with probabilistic

bounds [35] and affine arithmetics [36], developed for numer-

ical error estimations in DSP designs.

Third, one could evaluate if further techniques for different

semantics, for example using floating-point arithmetics or in-

finite precision (i.e., the theory of the reals) with Satisfiability

Modulo Theories (SMT) can improve performance. Word-level

reasoning is naturally supported in SMT-based encodings [37].

It would be interesting to evaluate any benefits of tailoring

these intuitions to the specific context of programs for control

systems. Structural information could also be used to speed

up the analysis by altering the heuristic choices of a SAT

solver [38].

Fourth, it will be worthwhile investigating the combination

of numerical optimisation with SAT solvers (as in the case of

piecewise linear hybrid models, see e.g. [39]), that would also

allow synthesising “optimal” attacks, such as maximising the

sparsity or minimising the intensity of the spoofing signal.
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