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Abstract. A classical hybrid MIP-CSP approach for solving problems
having a logical part and a mixed integer programming part is presented.
A Branch and Bound procedure combines an MIP and a SAT solver to
determine the optimal solution of a general class of optimization prob-
lems. The procedure explores the search tree, by solving at each node
a linear relaxation and a satisfiability problem, until all integer variables
of the linear relaxation are set to an integer value in the optimal solu-
tion. When all integer variables are fixed the procedure switches to the
SAT solver which tries to extend the solution taking into account logical
constraints. If this is impossible, a “no-good” cut is generated and added
to the linear relaxation. We show that the class of problems we consider
turns out to be very useful for solving complex optimal control problems
for linear hybrid dynamical systems formulated in discrete-time. We de-
scribe how to model the “hybrid” dynamics so that the optimal control
problem can be solved by the hybrid MIP+SAT solver, and show that
the achieved performance is superior to the one achieved by commercial
MIP solvers.

1 Introduction

In this paper we consider the general class of mixed logical/convex problems:

min
z,ν,µ

f(z) (Convex function) (1a)

s.t. gc(z) ≤ 0, hc(z) = 0 (Continuous constraints) (1b)
gm(z, µ) ≤ 0, hm(z, µ) = 0 (Mixed constraints) (1c)
gL(ν, µ) = TRUE (Logic constraints) (1d)
z ∈ R

nz , ν ∈ {0, 1}nν , µ ∈ {0, 1}nµ,

where gc : R
nz → R

qgc , gm : R
nz+nµ → R

qgm are convex functions, hc :
R

nz → R
qhc , hm : R

nz+nµ → R
qhm are affine functions, and gL : {0, 1}nν×nµ →

{0, 1}nCP is a Boolean function.
An MIP solver provides the solution to (1) after solving a sequence of relaxed

convex problems, typically standard linear or quadratic programs (LP, QP).
A potential drawback of MIP is (a) the need for converting the logic constraints
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(1d) into mixed-integer inequalities, therefore losing most of the original discrete
structure, and (b) the fact that its efficiency mainly relies upon the tightness of
the continuous LP/QP relaxations.

Such a drawback is not suffered by techniques for solving constraint satis-
faction problems (CSP), i.e., the problem of determining whether a set of con-
straints over discrete variables can be satisfied. Under the class of CSP solvers
we mention constraint logic programming (CLP) [1] and SAT solvers [2], the
latter specialized for the satisfiability of Boolean formulas.

While CSP methods are superior to MIP approaches for determining if
a given problem has a feasible (integer) solution, the main drawback is their
inefficiency for solving optimization, as they do not have the ability of MIP ap-
proaches to solve continuous relaxations (e.g., linear programming relaxations)
of the problem in order to get upper and lower bounds to the optimum value.

For this reason, it seems extremely interesting to integrate the two approaches
into one single solver. Some efforts have been done in this direction [3, 4, 5, 6, 7],
showing that such mixed methods have a tremendous performance in solv-
ing mathematical programs with continuous (quantitative) and discrete (log-
ical/symbolic) components, compared to MIP or CSP individually. Such suc-
cessful results have stimulated also industrial interest: ILOG Inc. is currently
distributing OPL (Optimization Programming Language), a modeling and pro-
gramming language which allows the formulation and solution of optimization
problems, using both MIP and CSP techniques, combining to some extent the
advantages of both approaches; European projects with industrial participants,
such as LISCOS [8], developed and are developing both theoretical insights and
software tools for applying the combined approach of MIP and CSP to industrial
case studies.

In this paper, we focus on combinations of convex programming (e.g., lin-
ear, quadratic, etc.) for optimization over real variables, and of SAT-solvers
for determining the satisfiability of Boolean formulas. The main motivation for
our study stems from the need for solving complex optimal control problems of
theoretical and industrial interest based on “hybrid” dynamical models of pro-
cesses that exhibit a mixed continuous and discrete nature. Hybrid models are
characterized by the interaction of continuous models governed by differential or
difference equations, and of logic rules, automata, and other discrete components
(switches, selectors, etc.). Hybrid systems can switch between many operating
modes where each mode is governed by its own characteristic continuous dy-
namical laws. Mode transitions may be triggered internally (variables crossing
specific thresholds), or externally (discrete commands directly given to the sys-
tem). The interest in hybrid systems is mainly motivated by the large variety of
practical situations where physical processes interact with digital controllers, as
for instance in embedded control systems.

Several authors focused on the problem of solving optimal control problems
for hybrid systems. For continuous-time hybrid systems, most of the literature
either studied necessary conditions for a trajectory to be optimal, or focused
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on the computation of optimal/suboptimal solutions by means of dynamic pro-
gramming or the maximum principle [9, 10, 11].

The hybrid optimal control problem becomes less complex when the dynamics
is expressed in discrete-time, as the main source of complexity becomes the
combinatorial (yet finite) number of possible switching sequences. In particular,
in [12, 13, 14] the authors have solved optimal control problems for discrete-time
hybrid systems by transforming the hybrid model into a set of linear equalities
and inequalities involving both real and (0-1) variables, so that the optimal
control problem can be solved by a mixed-integer programming (MIP) solver.

At the light of the benefits and drawbacks of the previous work in [12, 13, 14]
for solving control and stability/safety analysis problems for hybrid systems
using MIP techniques, we follow a different route that uses the aforementioned
approach combining MIP and CSP techniques.

We build up a new modeling approach for hybrid dynamical systems di-
rectly tailored to the use of the hybrid MIP+SAT solver for solving optimal con-
trol problems, and show its computational advantages over pure MIP methods.
A preliminary work in this direction appeared in [15], where generic constraint
logic programming (CLP) was used for handling the discrete part of the optimal
control problem.

The paper is organized as follows. In Section 2.1 optimal control problems of
discrete-time hybrid models are introduced and in Section 2.2 are reformulated
to the general class (1). Section 3 introduces the new solution algorithm for
the general class (1). An example of optimal control problem of a hybrid model
showing the benefits of the solution algorithm, compared to pure MIP approaches
[12, 14] is shown in section 4.

2 Motivating Application

2.1 Optimal Control of Discrete-Time Hybrid Systems

Following the ideas in [14], a hybrid system can be modeled as the intercon-
nection of an automaton (AUT) and a switched affine system (SAS) through
an event generator (EG) and a mode selector (MS). The discrete-time hybrid
dynamics is described as follows [14]:

(AUT) xl(k + 1) = fl(xl(k), ul(k), e(k)),
yl(k) = gl(xl(k), ul(k), e(k)), (2a)

(SAS) xc(k + 1) = Ai(k)xc(k) + Bi(k)uc(k) + fi(k),

yc(k) = Ci(k)xc(k) + Di(k)uc(k) + gi(k), (2b)

(EG) [ej(k) = 1]←→ [aT
j xc(k) + bT

j u(k) ≤ cj ] (2c)

(MS) i(k) =

⎡
⎢⎣

δ1

...
δs

⎤
⎥⎦ = fMS(xl(k), ul(k), i(k − 1)) (2d)
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The automaton (or finite state machine) describes the logic dynamics of the
hybrid system. We will only refer to “synchronous automata”, where transitions
are clocked and synchronous with the sampling time of the continuous dynamical
equations. The dynamics of the automaton evolves according to the logic update
functions (2a) where k ∈ Z

+ is the time index, xl ∈ Xl ⊆ {0, 1}nl is the logic
state, ul ∈ Ul ⊆ {0, 1}ml is the exogenous logic input, yl ∈ Yl ⊆ {0, 1}pl is the
logic output, e ∈ E ⊆ {0, 1}ne is the endogenous input coming from the EG,
and fl : Xl × Ul × E −→ Xl, gl : Xl × Ul × E −→ Yl are deterministic boolean
functions.
The SAS describes the continuous dynamics and it is a collection of affine systems
(2b) where xc ∈ Xc ⊆ R

nc is the continuous state vector, uc ∈ Uc ⊆ R
mc

is the exogenous continuous input vector, yc ∈ Yc ⊆ R
pc is the continuous

output vector, i(k) ∈ I �
{[

1 0 · · · 0
]T

, · · · ,
[
0 · · · 0 1

]T
}
⊆ {0, 1}s is the “mode”

in which the SAS is operating, �I = s is the number of elements of I, and
{Ai, Bi, fi, Ci, Di, gi}i∈I is a collection of matrices of opportune dimensions.
The mode i(k) is generated by the mode selector, as described below. A SAS of
the form (2b) preserves the value of the state when a switch occurs. Resets can
be modeled in the present discrete-time setting as detailed in [14].
The event generator (EG) is a mathematical object that generates a Boolean
vector according to the satisfaction of a set of threshold events (2c) where j

denotes the j-th component of the vector, and aj ∈ R
nc , bj ∈ R

mc , cj ∈ R define
the hyperplane in the space of continuous states and inputs.
The mode selector (MS) selects the dynamic mode i(k) ∈ I ⊆ {0, 1}s, also
called the active mode, of the SAS and it is described by the logic function (2d)
where fMS : Xl × Ul × I −→ I is a Boolean function of the logic state xl(k), of
the logic input ul(k), and of the active mode i(k − 1) at the previous sampling
instant. We say that a mode switch occurs at step k if i(k) �= i(k − 1). Note
that contrarily to continuous time hybrid models, where switches can occur at
any time, in our discrete-time setting a mode switch can only occur at sampling
instants.

A finite-time optimal control problem for the class of hybrid systems is for-
mulated as follows:

min
{x(k+1),u(k)}T−1

k=0

T−1∑
k=0

�k(x(k + 1)− rx(k + 1), u(k)− ru(k)) (3a)

s.t. dynamics (2a), (2b), (2c), (2d) (3b)

hD(x(0), {x(k + 1), u(k), e(k), i(k)}T−1
0 ) ≤ 0 (3c)

hA(x(0), {x(k + 1), u(k), e(k), i(k)}T−1
0 ) ≤ 0 (3d)

where T is the control horizon, �k : R
n×m → R is a nonnegative convex function,

n = nc + nl, m = mc + ml, rx ∈ R
n, ru ∈ R

m are given reference trajectories to
be tracked by the state and input vectors, respectively.
The constraints of the optimal control problem can be classified as dynamical
constraints (3b), representing the discrete-time hybrid system, design constraints
(3c), artificial constraints imposed by the designer to fulfill the required spec-
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ifications, and ancillary constraints (3d), an a priori additional and auxiliary
information for determining the optimal solution which does not change the
solution itself, rather help the solver to find it more easily.

2.2 Problem Reformulation

Problem (3) can be solved via MILP when the costs �k are convex piecewise linear
functions, for instance �k(x, u) = ‖Qxx‖∞ + ‖Quu‖∞, where Qx, Qu are full-
rank matrices and ‖ ·‖∞ denotes the infinity-norm (‖Qx‖∞ = maxj=1,...,n |Qjx|,
where Qj is the j-th row of Q) [13], or via MIQP (mixed integer quadratic
programming) when �k(x, u) = x′Qxx + u′Quu, where Qx, Qu are positive
(semi)definite matrices [12]. In this paper we wish to solve problem (3) by using
MIP and SAT techniques in a combined approach, taking advantage of SAT for
dealing with the purely logic part of the problem. In order to do this, we need
to reformulate the problem in a suitable way.
The automaton and mode selector parts of the hybrid system are described as
a set of Boolean constraints so they do not require transformations. The event
generator and SAS parts can be equivalently expressed, by adopting the so-called
“big-M” technique [16], as a set of continuous and mixed constraints. Problem
(3) can be cast as the mixed logical/convex program

min
{x(k + 1), u(k),

w(k), δ(k)}
k = 0, . . . , T − 1

T−1∑
k=0

�k(x(k + 1) − rx(k + 1), u(k) − ru(k)) (4a)

s.t. Axc(k) ≤ b, xc(k + 1) =
s∑

i=1

wi(k) (4b)

M1xc(k) + M2uc(k) + M3w(k) ≤ M4e(k) + M5δ(k) + M6 (4c)

g(xl(k + 1), xl(k), ul(k), e(k), δ(k)) = TRUE (4d)

w(k) = [w1(k) . . . ws(k)]′, wi(k) ∈ R
nc , δ(k) ∈ {0, 1}s,

where {xc(k + 1), uc(k), w(k)}T−1
k=0 are the continuous optimization variables,

{xl(k + 1), ul(k), δ(k), e(k)}T−1
k=0 are the binary optimization variables, xc(0),

xl(0) is a given initial state, constraints (4b), (4c) represent the EG and SAS
parts (2c), (2b), and the purely continuous or mixed constraints from (3c), (3d),
while (4d) represents the automaton (2a), the mode selector (2d), possible purely
Boolean constraints from (3c), (3d). Matrices Mi, i = 1 . . . 6, are obtained by
the big-M translation.

Problem (4) belongs to the general class (1) in which all constraints depend
on the state initial condition [xc(0)′ xl(0)′]′ of the hybrid system. In the hybrid
optimal control problem at hand, z collects all the continuous variables (xc(k +
1), uc(k), k = 0, . . . , T − 1), the auxiliary variables needed for expressing the
SAS dynamics, possibly slack variables for upper bounding the cost function
in (4a) [13], µ collects the integer variables that appear in mixed constraints
(e(k), δi(k), k = 0, . . . , T − 1, i = 1, . . . , s), and ν collects the integer variables
such as xl(k), ul(k) that only appear in logic constraints. Note that in general if
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the objective function in the the form f(z, µ) we could consider the new objective
function ε, ε ∈ R, and an additional constraint f(z, µ) ≤ ε which is a mixed
convex constraint that could be included in (1c).

3 SAT-Based Branch&Bound

3.1 Constraint Satisfaction and Optimization

While optimization is primarily associated with mathematics and engineering,
CSP was developed (more recently) in the computer science and artificial in-
telligence communities. The two fields evolved more or less independently until
a few years ago. Yet they have much in common and are applied to solve similar
problems. Most importantly for the purposes of this paper, they have comple-
mentary strengths, and the last few years have seen growing efforts to combine
them [4, 3, 17, 5, 18].

The recent interaction between CSP and optimization promises to affect both
fields. In the following subsections we illustrate an approach for merging them
into a single problem-solving technology, in particular by combining convex op-
timization and satisfiability of Boolean formulas (SAT).

Convex Optimization. Convex optimization is very popular in engineering,
economics, and other application domains for solving nontrivial decision prob-
lems. Convex optimization includes linear, quadratic, and semidefinite program-
ming, for which several extremely efficient commercial and public domain solvers
are nowadays available. An excellent reference to convex optimization is the book
by Boyd and Vandenberghe [19].

SAT Problems. An instance of a satisfiability (SAT) problem is a Boolean
formula that has three components:

– A set of n variables: x1, x2, . . . , xn.
– A set of literals. A literal is a variable (Q = x) or a negation of a variable

(Q = ¬x).
– A set of m distinct clauses: C1, C2, . . . , Cm. Each clause consists of only

literals combined by just logical or (∨) connectives.

The goal of the satisfiability problem is to determine whether there exists an
assignment of truth values to variables that makes the following Conjunctive
Normal Form (CNF ) formula satisfiable:

C1 ∧ C2 ∧ . . . ∧ Cm,

where ∧ is a logical “and” connective. For a survey on SAT problems and related
solvers the reader is referred to [2].
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3.2 A SAT-Based Hybrid Algorithm

The basic ingredients for an integrated approach are (1) a solver for convex
problems obtained from relaxations over continuous variables of mixed integer
convex programming problems of the form (4a)-(4b)-(4c), and (2) a SAT solver
for testing the satisfiability of Boolean formulas of the form (4d). The relaxed
model is used to obtain a solution that satisfies the constraint sets (1b) and (1c)
and optimizes the objective function (1a). The optimal solution of the relaxation
may fix some of the (0-1) variables to either 0 or 1. If all the (0-1) variables in the
relaxed problem have been assigned (0-1) values, the solution of the relaxation is
also a feasible solution of the mixed integer problem. More often, however, some
of the (0-1) variables have fractional parts, so that further “branching” and
solution of further relaxations is necessary. To accelerate the search of feasible
solutions one may use the fixed (0-1) variables to “infer” new information on
the other (0-1) variables by solving a SAT problem obtained by constraint (1d).
In particular, when an integer solution of µ is found from convex programming,
a SAT problem then verifies whether this solution can be completed with an
assignment of ν that satisfies (1d).

The basic branch&bound (B&B) strategy for solving mixed integer problems
can be extended to the present “hybrid” setting where both convex optimization
and SAT solvers are used. In a B&B algorithm, the current best integer solution
is updated whenever an integer solution with an even better value of the objective
function is found. In the hybrid algorithm at hand an additional SAT problem
is solved to ensure that the integer solution obtained for the relaxed problem
is feasible for the constraints (1d) and to find an assignment for the other logic
variables ν that appear in (1d). It is only in this case that the current best
integer solution is updated.

The B&B method requires the solution of a series of convex subproblems
obtained by branching on integer variables. Here, the non-integer variable to
branch on is chosen by selecting the variable with the largest fractional part
(i.e., the one closest to 0.5), and two new convex subproblems are formed with
that variable fixed at 0 and at 1, respectively. When an integer feasible solution
of the relaxed problem is obtained, a satisfiability problem is solved to complete
the solution. The value of the objective function for an integer feasible solution
of the whole problem is an upper bound (UB) of the objective function, which
may be used to rule out branches where the optimum value attained by the
relaxation is larger than the current upper bound.

Let P denote the set of convex and SAT subproblems to be solved. The
proposed SAT-based B&B method can be summarized as follows:

1. Initialization. UB = ∞, P = {(p0, SAT 0)}. The convex subproblem p0 is
generated by using (1a),(1b), (1c) along with the relaxation µ ∈ [0, 1]nµ, and
the SAT subproblem SAT 0 is generated by using (1d).

2. Node selection. If P = ∅ then go to 7.; otherwise select and remove a
(p, SAT ) problem from the set P ; The criterion for selecting a problem is
called node selection rule.
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3. Logic inference. Solve problem SAT . If it is infeasible go to step 2.
4. Convex reasoning. Solve the convex problem p, and:

4.1. If the problem is infeasible or the optimal value of the objective function
is greater than UB then go to step 2.

4.2. If the solution is not integer feasible then go to step 6.
5. Bounding. Let µ∗ ∈ {0, 1}nµ be the integer part of the optimal solution

found at step 4.; to extend this partial solution, solve the SAT problem
finding ν such that g(ν, µ∗) =TRUE. If the SAT problem is feasible then
update UB; otherwise add to the LP problems of the set P the “no-good”
cut [3] ∑

i∈T∗
µi −

∑
j∈F∗

µj ≤ B∗ − 1,

where T ∗ = {i|µ∗
i = 1}, F ∗ = {j|µ∗

j = 0}, and B∗ = |T ∗|. Go to step 2.
6. Branching. Among all variables that have fractional values, select the one

closest to 0.5. Let µi be the selected non-integer variable, and generate two
subproblems (p ∪ {µi = 0}, SAT&{¬µ}), (p ∪ {µi = 1}, SAT&{µ}) and
add them to set P ; go to step 2.

7. Termination. If UB = ∞, then the problem is infeasible. Otherwise, the
optimal solution is the current value UB.

Remark 1. At each node of the search tree the algorithm executes a three-step
procedure: logic inference, solution of the convex relaxation, and branching. The
first step and the attempted completion of the solution do not occur in MIP ap-
proaches but they are introduced here by the distinction of mixed (0-1) variables
µ and pure (0-1) variables ν. The logic inference and the attempted completion
steps do not change the correctness and the termination of the algorithm but
they improve the performance of the algorithm because of the efficiency of the
SAT solver in finding a feasible integer solution.

Remark 2. The class of problems (1) is similar to the MLLP framework intro-
duced by Hooker in [20],

min c′x (5a)

s.t. pj(y, h)→ [Aj(x) ≥ aj ], j ∈ J (5b)
qi(y, h), i ∈ I, (5c)

where x ∈ R
nx , y ∈ {0, 1}ny , h ∈ D ⊂ Z

nh , (5b) is the continuous part, and (5c)
is the logic part. If we consider the only y variables as discrete variables and
a liner cost function, constraints (1b), (1c) represent the linearization of (5b),
and constraints (1d) are equivalent to (5c).
There are however a few differences between frameworks (1) and (5). First, the
relaxation problem of (1) is the same for each node in the search tree, while in
(5) the relaxation depends on which left-hand side of (5b) is true. Second, in the
class of problems (1) constraints of type

[µ = 1]←→ [z1 + z2 ≥ α],
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can not be introduced and they have to be converted into inequalities, becoming
part of constraints (1c). Inference is done only in the logic part, by the SAT
solver, and no information is derived by the continuous part. In the MLLP
framework, instead, inferences are made in both ways.

Remark 3. The modeling framework (1) can also be solved by using a combined
approach of MIP and CLP [15]. The role of constraint propagation is obviously to
reduce as much as possible the domain sets of the µ variables that appear in the
constraints managed by the CLP solver. In this way, the constraint propagation
can reduce the search space removing some branches in the search tree that can
not have feasible solutions. Moreover the constraint propagation together with
choice points can help to find a completion of the solution trying to fix the ν
variables.
The SAT solver behaves in a similar way to CP solver. The SAT inference is a
feasibility check. If a partial assignment of the µ variables is infeasible for the set
of constraints (1d) SAT is able to find the infeasibility easier and more quickly
than a CLP solver. SAT solvers are also more efficient for finding a feasible
assignment for the ν variables with respect to CLP solvers.
However the efficiency of SAT solvers relies upon the representation of the logic
part of the problem. While CLP can be used both with logic formulas and linear
constraints, as well as global constraints, SAT turns out to be useful only with
Boolean formulas.

4 Numerical Results

In this section we show on an example of hybrid optimal control problem that
the hybrid solution technique described in the previous sections has a better
performance compared to commercial MIP solvers.

4.1 “Hybrid” Model

Consider a room with two bodies with temperatures T1, T2 and let Tamb be
the room temperature (this example is an extension of the example reported
in [21]). The room is equipped with a heater, close to body 1, delivering thermal
power uhot and an air conditioning system, close to body 2, draining thermal
power ucold. These are turned on/off according to some rules dictated by the
closeness of the two bodies to each device. We want guarantee that the bodies
are not cold or hot.

The discrete-time continuous dynamics of each body is described by the
difference equation

Ti(k + 1)− Ti(k)
Ts

= −αi(Ti(k)− Tamb) + ki(uhot(k)− ucold(k)) + cue(k), (6)

where i = 1, 2, αi, ki, c are suitable constants, Ts is the sampling time, and ue(k)
is an exogenous input that can be used to deliver or drain thermal power manu-
ally (e.g. by opening a window or by changing the water flow from a centralized
heating system).
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h1

h2

h3

δc2 ∧ ¬δc1

¬δc2

¬δc1 ∧ ¬δc2

δc2 ∧ ¬δc1

δvc2 ∨ δc1

δc2 ∧ ¬δvc2 ∧ ¬δc1 δc1 ∨ δvc1 ∨ δvc2

δc1 ∨ δvc1

¬δc1 ∧ ¬δc2

OFF

READY TO HEAT

HEAT

Fig. 1. Automaton regulating the heater

ac1

ac2

ac3

ac4

γh1 ∧ ¬γh2

¬γh1

¬γh1 ∧ ¬γh2

γh1 ∧ ¬γh2

γvh1 ∨ γh2

γvh1 ∧ ¬γvh1 ∧ ¬γh2 (γh2 ∨ γvh1) ∧ ¬γvh2

γh2 ∧ ¬γvh2

¬γh1 ∧ ¬γh2
γvh2

¬γvh2

γvh2

OFF

READY TO COOL

COOL DOWN

REFRIGERATE

Fig. 2. Air conditioning system automaton

The automaton part of the system is described by the two automata rep-
resented in Figures 1 and 2, where δci,δvci,γhi and γvhi, for i = 1, 2, are logic
variables defined as follows

[δvci(k) = 1]←→ [Ti(k) ≤ Tvci], (7a)
[δci(k) = 1]←→ [Ti(k) ≤ Tci], (7b)
[γhi(k) = 1]←→ [Ti(k) ≥ Thi], (7c)

[γvhi(k) = 1]←→ [Ti(k) ≥ Tvhi], (7d)

and where Tvci ≤ Tci ≤ Thi ≤ Tvhi are constant thresholds. The automaton for
the heater (Figure 1) sets the heater in the “ready to heat” state if body 2 is
cold, and will go in “heat” state if body 2 is very cold. If body 1 is cold or very
cold the heater is turned on immediately. The automaton of the air conditioning
(A/C) system (Figure 2) sets the air conditioning system in the “ready to cool”
state if body 1 is hot, unless body 2 is cold, in other words, the A/C system is
turned on only when body 1 is very hot. However, the draining thermal power
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is half of the full power. The A/C system is set to the maximum power if the
body 2 is very hot but it is immediately switched to half power as soon as body
2 is only hot (due to energy consumptions of the A/C system).

The heater delivers thermal power and the A/C system drains thermal power
according to the following rules:

uhot =
{

uH if h3 = 1
0 otherwise ucold =

⎧⎨
⎩

uC if ac4 = 1
uC

2 if ac3 = 1
0 otherwise

. (8)

By following the notation of (2a), we have xl = [h1 h2 h3 ac1 ac2 ac3 ac4]′ ∈
{0, 1}7, ul = ∅ and e(k) = [δvc1 δvc2 δc1 δc2 γh1 γh2 γvh1 γvh2]′ ∈ {0, 1}8.

The system has six modes: (uhot, ucold) ∈ {(0, 0), (uH , 0), (0, uC), (0, uC/2),
(uH , uC), (uH , uC/2)}. The mode selector function is defined as follows

i(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

¬h3(k) ∧ ¬ac4(k) ∧ ¬ac3(k)
h3(k) ∧ ¬ac4(k) ∧ ¬ac3(k)
¬h3(k) ∧ ac4(k) ∧ ¬ac3(k)
¬h3(k) ∧ ¬ac4(k) ∧ ac3(k)
h3(k) ∧ ac4(k) ∧ ¬ac3(k)
h3(k) ∧ ¬ac4(k) ∧ ac3(k)

⎤
⎥⎥⎥⎥⎥⎥⎦
∈ {0, 1}6,

which only depends on logic states.
The SAS dynamics (6), i.e., the continuous part of the hybrid system, is

translated into a set of inequalities using the Big-M technique, which provides
the set of constraints

Axc(k) + Buc(k) + Cw(k) ≤ Dδ(k) + E, (9)

where xc = [T1 T2]′, uc = ue, w(k) ∈ R
3 contains the auxiliary continuous vari-

ables needed to represent the conditions uhot = uH , ucold = uC , ucold = uC/2,
and δ(k) = [h3(k) ac3(k) ac4(k)] ∈ {0, 1}3. Constraints (9) are obtained by
employing the HYSDEL compiler [14], a dedicated “hybrid” system descrip-
tion language and compiler which translates a description of the problem into
the mathematical mixed+logical dynamical (MLD) representation introduced
in [12], a mathematical framework useful for defining optimal control problems
as pure MIP problems.

Finally, the event generator is represented by (7a) and (7b). These are trans-
lated by HYSDEL into a set of linear inequalities:

G′
xxc(k) + G′

uuc(k) + D′e(k) ≤ E′, (10)

where e(k) = [δvc1 δvc2 δc1 δc2 γh1 γh2 γvh1 γvh2]′ ∈ {0, 1}8.

4.2 Optimal Control Problem

The goal is to design an optimal control profile for the continuous input ue that
minimizes

∑T
k=0 |Ti(k)−Tamb| subject to the hybrid dynamics and the following

additional constraints:
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– Continuous constraints on temperatures to avoid that they assume unac-
ceptable values

−10 ≤ T1(k) ≤ 50 −10 ≤ T2(k) ≤ 50. (11a)

These constraints may be interpreted as dynamical constraints due to phys-
ical limitations of the bodies.

– A continuous constraint on exogenous input to avoid excessive variations:

−10 ≤ ue(k) ≤ 10. (12)

This constraint may be interpreted as a design constraint of the form (3c).

4.3 Results

The above dynamics and constraints are also modeled in HYSDEL [14] to ob-
tain an MLD model of the hybrid system in order to compare the performance
achieved by the hybrid solver with the one obtained by employing a pure MILP
approach.

The optimal control problem is defined over horizon of T steps as:

min
{x,u,z,δ,εT}

T−1∑
k=0

εT (k) (13a)

s.t. εT (k)

[
1
...
1

]
≥ ±(Ti(k)− Tamb), (13b)

automata Figures 1, 2, (13c)
(9), (10) (13d)
(11), (12) (13e)

where {x, u, z,δ, εT}={x(k), u(k),z(k), δ(k), εT (k)}T−1
k=0 , εT =[εT 1(0), εT 2(0),. . . ,

εT 1(T − 1), εT 2(T − 1)]′ ∈ R
2T .

Each part of the optimal control problem is managed by either the SAT solver
or the LP solver: the cost function (13a), the inequalities (13b), (13d), and the
additional constraints (13e) are managed by the LP solver, the logic part (13c)
is managed by the SAT solver. Our simulations have been done describing and
solving the problem within the Matlab environment and calling, through MEX
interfaces, respectively, zCHAFF [22] for SAT and CPLEX [23] for LP.

In all our simulations we have adopted depth first search as the node selection
rule, to reduce the amount of memory used during the search.

For the initial condition T1(0) = 5◦ C, T2(0) = 2◦ C and for Tamb = 25◦ C
we have done simulations for different horizons (the obtained optimal solution
is clearly the same both using the SAT-based B&B and the MILP), reported in
Table 1.

We can see that the performance of the SAT-based B&B is always better than
the one obtained by using the commercial MILP solver of CPLEX. In Table 1, we
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Table 1. Optimal control solution: comparison among SAT-based B&B, naive MILP,
and CPLEX MILP

T Bool. SATbB&B CPLEX Naive MILP
Vars (s) LPs SATs (s) LPs (s) LPs

5 82 0.09 5 6 0.03 18 0.48 23
10 157 0.18 5 6 0.13 79 3.7150 119
15 232 0.33 5 6 0.42 199 83.69 943
20 307 0.5110 6 8 0.5410 243 109.0870 2181
25 382 0.7620 8 10 0.8210 286 503.0030 3833
30 457 1.0520 9 12 1.0110 333 1072.3 6227
35 532 1.4420 10 13 1.7170 341 > 1200 −
40 607 1.8630 13 16 2.5030 374 > 1200 −
45 682 2.7740 15 20 3.8320 475 > 1200 −

Table 2. Computation time for solving a pure integer feasibility problem: comparison
between SAT (zCHAFF) and MILP (CPLEX)

T Bool. Constr SAT MILP
Vars (s) (s)

5 82 460 0 0.02
10 157 920 0.01 0.02
15 232 1380 0.02 0.03
20 307 1840 0.03 0.03
25 382 2300 0.04 0.05
30 457 2760 0.05 0.06
35 532 3220 0.06 0.07
40 607 3680 0.08 0.10
45 682 4140 0.09 0.13

also compare the performance of a “naive MILP” solver, that is obtained from
the SAT-based B&B code by simply disabling SAT inference. The main reason
is that the SAT B&B algorithm solves a much smaller number of LPs than an
MILP solver. The “cuts” performed by the SAT solver, i.e. the infeasible SAT
problems, obtained at step 3 of the algorithm turn out very useful to exclude
subtrees containing no integer feasible solution, see Figure 3. Moreover, the time
spent for solving the integer feasibility problem at the root node of the search
treee described as SAT problem is much smaller than solving a pure integer
feasibility problem, see Table 2. We can also see from Table 1 that the number
of feasible SAT solved equals the number of LP solved plus one. This one more
SAT is used to complete a feasible solution and it is very useful to further reduce
the computation time.
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Fig. 3. Comparison of the trees generated by the SAT-based and naive MILP algo-
rithms (T=30)

The results were simulated on a PC Pentium IV 1.8 GHz running CPLEX
9.0 and zCHAFF 2003.12.04.

5 Conclusions

In this paper we have proposed a new unifying framework for MIP and CSP
techniques based on the integration of convex programming and SAT solvers for
solving optimal control problems for discrete-time hybrid systems. The approach
consists of a logic-based branch and bound algorithm, whose performance in
terms of computation time can be superior in comparison to pure mixed-integer
programming techniques, as we have illustrated on an example.
Ongoing research is devoted to the improvement of the logic-based method by
including relaxations of the automaton and MS parts of the hybrid system in
the convex programming part, to the investigation of alternative relaxations of
the SAS dynamics that are tighter than the big-M method, and to the use of
SAT solvers for also performing domain reduction (cutting planes).
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