
Computers and Operations Research 81 (2017) 231–246 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

Optimal distributed task scheduling in volunteer clouds 

Stefano Sebastio 

a , ∗, Giorgio Gnecco 

b , Alberto Bemporad 

b 

a LIMS London Institute of Mathematical Sciences, W1K 2XF London, UK 
b IMT Institute for Advanced Studies, 55100 Lucca, Italy 

a r t i c l e i n f o 

Article history: 

Received 14 September 2015 

Revised 16 June 2016 

Accepted 5 November 2016 

Available online 14 November 2016 

Keywords: 

Cloud computing 

Distributed optimization 

Integer programming 

Combinatorial optimization 

ADMM 

a b s t r a c t 

The ever increasing request of computational resources has shifted the computing paradigm towards so- 

lutions where less computation is performed locally. The most widely adopted approach nowadays is rep- 

resented by cloud computing. With the cloud, users can transparently access to virtually infinite resources 

with the same aptitude of using any other utility. Next to the cloud, the volunteer computing paradigm 

has gained attention in the last decade, where the spared resources on each personal machine are shared 

thanks to the users’ willingness to cooperate. Cloud and volunteer paradigms have been recently seen as 

companion technologies to better exploit the use of local resources. Conversely, this scenario places com- 

plex challenges in managing such a large-scale environment, as the resources available on each node and 

the presence of the nodes online are not known a-priori. The complexity further increases in presence 

of tasks that have an associated Service Level Agreement specified, e.g., through a deadline. Distributed 

management solutions have then be advocated as the only approaches that are realistically applicable. 

In this paper, we propose a framework to allocate tasks according to different policies, defined by 

suitable optimization problems. Then, we provide a distributed optimization approach relying on the Al- 

ternating Direction Method of Multipliers (ADMM) for one of these policies, and we compare it with a 

centralized approach. Results show that, when a centralized approach can not be adopted in a real envi- 

ronment, it could be possible to rely on the good suboptimal solutions found by the ADMM. 

© 2016 Elsevier Ltd. All rights reserved. 

1

 

s  

t  

v  

a  

w

 

a  

t  

m  

a  

t  

h  

s  

t  

t  

u  

w  

E  

a  

l  

t  

h  

v  

t

 

t  

t  

t  

i  

c  

s  

d  

p  

c  

s  

t  

o  

h

0

. Introduction 

The ever growing demand of computational resources has

hifted users from local computation on personal devices towards

he adoption of centralized cloud computing technologies. Using the

irtualized resources available on remote data centers, the cloud

llows the access to virtually unlimited computational resources

ith the same aptitude of using any other utility service. 

Together with the latest advance on virtualization technologies

dopted by the cloud, in the last decade also the CPU manufac-

urers brought a great leap forward in performance starting the

ulti-core era even for the personal devices. Nowadays, desktop

nd laptop devices have resources largely unused for great part of

he time (e.g., during web-browsing or text-editing activities) while

aving possibly scarce resources for other activities (e.g., for large-

cale simulations or graphic-editing). These scenarios have opened

he door to the growth of another ICT trend of the last years:

he volunteer computing paradigm. Such a paradigm foresees the

se of the spared resources on personal devices by all other net-

ork participants, relying on the users’ willingness to cooperate.
∗ Corresponding author. 

E-mail address: stefano.sebastio@alumni.imtlucca.it (S. Sebastio). 

h  

h  

s  

ttp://dx.doi.org/10.1016/j.cor.2016.11.004 

305-0548/© 2016 Elsevier Ltd. All rights reserved. 
ach user shares a quote of its unused resources with other users,

nd receives other shared resources when he needs more than the

ocal resources at his disposal. Therefore, the volunteer network

urns out to be a heterogeneous (in terms of shared resources) and

ighly dynamic (not knowing a-priori the presence online of the

olunteers) large-scale system (usually constituted from hundreds

o thousands of nodes). 

The cloud can then be enhanced through the combination with

he volunteer paradigm. The combination is referred as the volun-

eer cloud [1] . Indeed, in specific application domains, such as la-

ency dependent environments, the cloud still suffers its central-

zed nature where, obviously, its data-centers can not be located

lose to all the users. Examples of such domains have been de-

cribed by Microsoft [2] as cloudlets , where the computational bur-

en on mobile devices running virtual- or augmented-reality ap-

lications can be alleviated relying on low-latency (i.e., closely lo-

ated) more powerful devices. The volunteer cloud should be con-

idered [3] as a companion force to possibly enhance the tradi-

ional cloud in specific domains such as computing- and storage-

riented applications (e.g., Map-Reduce and streaming applications

ave been deployed using this paradigm in [4] ). On the other

and, the volatile presence of the nodes makes it not suitable for

ervice-oriented applications. The growing interest and success of

http://dx.doi.org/10.1016/j.cor.2016.11.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.11.004&domain=pdf
mailto:stefano.sebastio@alumni.imtlucca.it
http://dx.doi.org/10.1016/j.cor.2016.11.004


232 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

Fig. 1. Example of a volunteer cloud network: each cloud site can be constituted by data centers, personal devices or both (from [10] ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n  

o

2

 

t  

a  

b  

i  

l  

k  

m  

m  

o  

i  

a  

m  

m

 

(  

w  

i  

T  

a  

i  

f  

m  

u  

o  

f  

l

 

w  

t  

i  

i

 

r  

c  

r  

t  
the volunteer cloud is witnessed by the large number of existing

platforms and projects based on such a paradigm, e.g., BOINC [5] ,

HTCondor [6] , OurGrid [7] , Seattle [8] and SETI@home [9] . 

Typically, the volunteer nodes are organized and can commu-

nicate with each other through a Peer-to-Peer (P2P) overlay net-

work. An example of the volunteer cloud network is depicted in

Fig. 1 . Despite centralized managing solutions are currently widely

adopted, the inherent characteristics of the volunteer cloud net-

work makes their distribution of execution-oriented applications

inefficient. Indeed, in such scenario a central node can constitute

a bottleneck without being able to have updated knowledge on

the nodes characteristics and their actual load in order to per-

form a global optimization while scheduling tasks with hetero-

geneous resource and performance requests. Distributed manag-

ing solutions have then been advocated as the only practical so-

lution. Several distributed computing approaches [11–13] based on

autonomic (i.e., self-managing) agents [14] have been explored in

the literature. We only mention some works without dwelling on

them since all the proposed solutions are pure heuristic solutions

e.g., relying on Ant Colony Optimization [15,16] , Evolutionary Algo-

rithm [17] , Spatial computing [18] or Reputation-based [19] tech-

niques. 

The present work aims at proposing a framework to distribute

task execution requests, according to different policies, each for-

malized as a mathematical optimization problem solved in a dis-

tributed fashion. In particular, we focus on the Alternating Direc-

tion Method of Multipliers (ADMM) [20] to decompose the opti-

mization problem, which is then distributed to and independently

solved by the volunteer nodes. 

Synopsis. The paper is structured as follows. Section 2 presents re-

lated work and particularly Section 2.1 briefly presents the ADMM.

Our volunteer cloud model is presented in Section 3 while the op-

timization problem is formalized in Section 4 . One of the policies

allowed by our framework is accurately illustrated in Section 5 and

solved with a centralized solution and with two different dis-

tributed ADMM variants. The considered scenario, its Matlab im-

plementation relying on CVX [21] and Gurobi [22] , is discussed in

Section 6 together with results and a numerical comparison of the

proposed solutions. The description of the objective functions for

the other policies of our framework is presented in Section 7 . Fi-
ally, Section 8 concludes the work with some final remarks and

utlines other current and future research effort s. 

. Related work 

Recently, the volunteer cloud has been modeled in [23] (called

he cloud-assisted approach therein). Criticality and infeasibility of

 centralized solution, to determine if a subset of tasks would be

etter executed by the cloud or by the volunteers, are highlighted

n that paper referring to the problem as a cloudy knapsack prob-

em i.e., an online knapsack problem but in presence of a limited

nowledge on the current state ( cloudy view ). Despite in the paper

otivation the authors argue for the need of a distributed decision

aking, later in the work the focus is only on the characterization

f the knapsack problem where the available budget (correspond-

ng to the available resources) is known only in terms of a prob-

bility distribution. Authors prove an upper bound on the perfor-

ance of their knapsack algorithm where a probability distribution

odels the budget uncertainty. 

In [24] authors accurately model the hybrid cloud environment

i.e., with some infrastructures operating solely for an organization

hile others provided in a multi-tenant environment) as a mixed-

nteger nonlinear programming problem specified in AMPL [25] .

he authors’ goal is the minimization of the monetary cost to run

 set of both compute- and data-intensive tasks. Actually, their

mplementation takes even the deadline into account in the cost

unction, although not in a explicit way. Indeed, their cost function

ixes the time for completing the tasks with the actual price for

sing a given service. Although there are some similarities with

ur model, the major differences are represented by their indif-

erence to distributed solutions and by not considering the actual

oad on machines. 

The above mentioned model is further extended in [26] to deal

ith workflows instead of independent tasks. The authors define

he workflow as a directed acyclic graph and then group the tasks

nto levels. In each level, tasks are independent among them and

ntermediate deadlines are assigned. 

DONAR [27] is a distributed system that aims at mapping

eplica selection in the cloud, i.e., the choice of a particular lo-

ation based on performance, load and cost in presence of geo-

eplicated services. Its optimization problem is designed in a way

o be easily decomposed into independent subproblems that can



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 233 

b  

n  

b  

r  

p  

d  

w  

a  

m  

i  

s  

t

 

t  

s  

t  

i  

I  

t  

f  

a  

(

 

c  

t  

b  

C  

t  

i  

a  

n  

a

M  

l

 

 

 

 

 

 

 

2

 

l  

a  

a  

l

 

i  

d  

T  

l  

c  

s  

o  

m  

a

 

o

m

s

w  

x  

t

 

m

L

a

x

z

y

w  

s  

o  

o  

s  

u

 

g  

p  

t  

v

 

d  

[  

t  

t  

n  

t  

m  

h  

A  

n  

t  

c  

r  

F  

(  

s  

r  

a

 

l  

a  

s  

o  

e  

i  

p  

t  

i  

a

e solved locally (since even the constraints can be split on the

odes). The global constraint (related to the bandwidth cap) could

e temporarily violated by the intermediate solutions of the algo-

ithm. Moreover, the problem turns out to be a convex quadratic

rogramming problem (with the objective function continuously

ifferentiable and convex on the entire set of variables) solved

ith the dual decomposition method, where the optimization vari-

bles are constituted by the portions of traffic load that should be

apped from each client to each node. A similar problem is dealt

n [28] . There a parallel implementation of ADMM is adopted to

olve a convex optimization problem that has been validated on a

race-driven simulation relying on the Wikipedia requests trace. 

DONAR is extended in [29] considering energy efficient solu-

ions as a “first-class” design constraint (i.e., a priority) along-

ide performance, while distributing tasks in the cloud. In par-

icular, the objective function takes into account the energy costs

n the presence of data-intensive services deployed in the cloud.

n more details, the objective function of the convex optimiza-

ion problem in [29] is constituted by the sum of local objective

unctions, and the problem is solved using the dual decomposition

nd the consensus-based distributed projected subgradient method

CDPSM) [30] . 

The task allocation problem in presence of hard deadlines and

lasses of priorities has been studied in [31] for powertrain au-

omotive applications. Their problem formulation turns out to

e a mixed integer linear programming problem solved using

PLEX [32] . The different characteristics of their domain of applica-

ion makes difficult a direct comparison with our approach, despite

t is possible to recognize that their solution assumes a centralized

pproach where an updated global knowledge on the load of the

odes is available (since their problem does not need to deal with

 large-scale system). 

ain contributions. All in all, our paper contributes to the existing

iterature related to the volunteer cloud in that it proposes: 

• a framework to accommodate different task distribution poli-

cies in large-scale distributed cloud environments; 
• a mathematical formulation of the optimization problem asso-

ciated with such a framework, which is driven by real system

requirements of the volunteer cloud and takes into account var-

ious issues, such as, FIFO (First In, First Out) queue, tasks with

deadlines, the actual load on the machines, the need to adopt a

distributed solution; 
• the application of the distributed ADMM for solving the above

optimization problem. 

.1. The ADMM: alternating direction method of multipliers 

The increasing size and complexity of many datasets pose chal-

enges to analyze such problems especially when the data under

nalysis originate from decentralized sources. Distributed solutions

re thus advocated as promising and desirable to work in such

arge-scale domains. 

Recently the Alternating Direction Method of Multipliers (ADMM)

s gaining momentum [20] in the field of distributed optimization,

espite the method has been developed almost fifty years ago.

he ADMM is an algorithm to solve convex optimization [33] prob-

ems in a distributed/parallelized fashion adopting a decomposition-

oordination method, in which the problem is subdivided into

mall problems that can be solved independently, under the “co-

rdination” of a central node, to solve the original problem. The

ethod has its roots on the methods of dual decomposition and

ugmented Lagrangian. 
The method is usually applied to convex optimization problems

f the form: 

inimize f (x ) + g(z) , (1a) 

ubject to Ax + Bz = c, (1b) 

here f : R 

n → R and g : R 

m → R are convex functions, and

 ∈ R 

n , z ∈ R 

m , A ∈ R 

p×n , B ∈ R 

p×m , c ∈ R 

p . Here, R denotes the ex-

ended real number line. 

Then, given the penalty parameter ρ > 0 and y ∈ R 

p , the aug-

ented Lagrangian is expressed as: 

 ρ (x, z, y ) = f (x ) + g(z) + y T (Ax + Bz − c) + 

ρ

2 

‖ Ax + Bz − c‖ 

2 
2 , 

(2) 

nd, finally, each iteration of the ADMM is defined as follows: 

 

k +1 := argmin 

x 
L ρ (x, z k , y k ) , (3a) 

 

k +1 := argmin 

z 
L ρ (x k +1 , z, y k ) , (3b) 

 

k +1 := y k + ρ(Ax k +1 + Bz k +1 − c) , (3c) 

here the penalty parameter in the augmented Lagrangian con-

titutes the step size while updating the dual variable y . ADMM is

ften transformed in the equivalent scaled form for convenience

f implementation, resulting in a more compact expression. The

caled form of ADMM is expressed scaling the dual variable as

 = 

1 
ρ y . 

We refer the interested reader to [20] for the proof of conver-

ence (under mild conditions) and methods to compute the stop-

ing criterion of the ADMM. A method for the optimal choice of

he ρ parameter in ADMM that ensure the smallest possible con-

ergence factor for quadratic problems is provided in [34] . 

If the problem is not convex, it is still possible to apply ADMM,

espite this should be just considered as a heuristic in that case

20] . An extension of the ADMM for nonconvex problems through

he use of heuristics is proposed in [35] . There, integer and con-

inuous variables of the problem are identified, and the source of

on convexity are the first variables. The continuous relaxation of

he problem is initially considered obtaining bounds on the opti-

al solution value of the original problem and thus using these

ints to reduce the search space. The basic idea is to start with

DMM and integer variables, but once these variables are observed

ot to change values for some iterations, their value is fixed (so ac-

ually excluding them from the variables set and changing them to

onstants), to simplify the following ADMM iterations that could

efine the solution for the continuous variables. Their Release and

ix approach swings from the original to the simplified problem

i.e., without the integer variables) at each iteration. Numerical re-

ults demonstrate that their distributed approach can reach a 1%

elative optimality gap with a reduced solution time compared to

 centralized solution, while it is executed on a computer cluster. 

Another interesting application of ADMM for nonconvex prob-

ems in computer vision is studied in [36] . There, the authors adopt

 tree-based decomposition of discrete labeling problems in large-

cale random fields. The decomposition exploits the submodularity

f the non-convex subproblem functions allowing to solve them

xactly. Despite the lack of guarantees on convergence for the orig-

nal problem, their empirical results are encouraging. A parallel im-

lementation relying on both CPU and GPU cores allowed the au-

hors of [36] to obtain a significant speed-up while benchmark-

ng low-level vision problems such as stereo correspondence, im-

ge segmentation and denoising. 



234 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

t  

t  

i  

s  

n  

s  

a  

p  

V  

s

D  

w  

a

D  

q  

V  

l

E  

i  

v  

w  

t

 

〈  

s

μ  

 

q  

s  

o

4

 

a  

l  

c

 

p  

r  

t  

t  

s  

T  

v  

m  

t  

t  

l

 

t  

M  

b  

t

4

 

d  

t

3. The volunteer cloud computing model 

The volunteer cloud environment is constituted by a large num-

ber of nodes that share their computational and/or storage re-

sources with the other network participants. Usually the cloud ar-

chitecture relies on a centralized load balancer which collects in-

formation from and distributes commands to the nodes. Unfortu-

nately, in the volunteer cloud, the large-scale nature of such a kind

of network (in the order of hundreds or thousands of nodes) and

the volatility of the nodes participation (i.e., it is not possible to

know a-priori the time a node will join or leave the network),

makes the dissemination of resources and load characteristics to

a central load balancer a hard, if not impossible, job. Consequently,

tasks execution requests (whose characteristics could be diversified

in terms of both required resources and service performance) can-

not be distributed by solving an optimization problem in a com-

pletely centralized way. 

Distributed optimization techniques are then advocated as

promising alternatives. In this work we focus on such a technique,

to optimize the task allocation among the volunteer nodes. This

section presents the volunteer cloud computing model that will be

used in Section 4 to define the optimization problem of interest.

Since our focus is on the distribution of tasks execution requests,

the main component of our model are the tasks ( Section 3.1 ) and

the resources ( Section 3.2 ). In such a large-scale decentralized en-

vironment each node acts as both producer and consumer of tasks

execution requests. 

3.1. Tasks 

Application programs are modeled as sets of independent tasks .

Each task is defined by its duration, the degree of parallelism that

it is able to exploit, and its minimum memory requirement. Our

model assumes that the task duration can be predicted with accu-

racy. Moreover, we assume a perfect linear speed-up for the paral-

lelism. 

Definition 3.1 (task) . A task is a tuple 〈 δ, ρ , μ〉 , where δ ∈ N 

+ is

the task duration (expressed in clock cycles), ρ ∈ N 

+ is the degree

of parallelism of the task, and μ ∈ N 

+ is the memory requirement

of the task. 

Adopting a perfect linear speed-up model, a degree of paral-

lelism ρ means that a task with duration δ can be ideally executed

with a CPU that has ρ computational units (e.g., cores) in � δρ 	 con-

secutive clock cycles. If less than ρ computational units are avail-

able, the time to execute the task will be bounded in terms of the

number of available units (as expressed in the following Eq. (4) ).

For typical tasks, the relative error between 

δ
ρ and � δρ 	 is close

to 0. Therefore, in the following, for simplicity of notation, � δρ 	 is
replaced by δ

ρ . 

Definition 3.2 (task execution request) . A task execution request is

a tuple 〈 δ, ρ , μ, τ a , τ d 〉 , where 〈 δ, ρ , μ〉 is a task, τa ∈ R 

+ is the

task arrival date, and τd ∈ R 

+ is its termination deadline. The dead-

line can constitute one of the parameters specified in the task Ser-

vice Level Agreement (SLA) [37] . 

We assume that for each task a single execution is required,

i.e., it is enough that a single node takes the execution request in

charge. 

3.2. Virtual resources 

The volunteer nodes provide an isolated environment for each

task execution request through a Virtual Machine (VM), modeled
y memory and processing units. In our scenario, the main fea-

ure of interest of the VMs is the latter since our main concern is

he running time of tasks, which we consider to be computation-

ntensive (rather than data- or communication-intensive). We as-

ume that, given the voluntary participation of the nodes and the

ot dedicate use of the physical machine (only spare resources are

hared by users), each node runs a single VM. Therefore, to provide

n isolated environment for each user, tasks execution requests are

rocessed one at a time. For the sake of simplicity we consider that

Ms have homogeneous processing units, i.e., all the cores in the

ame VM have the same clock frequency. 

efinition 3.3 (Virtual Machine, VM) . A VM is a tuple 〈 κ , φ, ν〉
here κ ∈ N 

+ is the number of cores, φ ∈ N 

+ is their frequency,

nd ν ∈ N 

+ is the amount of memory. 

efinition 3.4 (Execution time) . The execution time E ( T , VM ) re-

uired for completing a task T = 〈 δ, ρ, μ〉 on a virtual machine

 M = 〈 κ, φ, ν〉 whose cores have frequency φ is defined by the fol-

owing equation: 

(T , V M) = E(δ, φ, ρ, κ) = 

δ

φ · min { ρ, κ} , (4)

.e., the task duration on a single core which is equal to δ/ φ is di-

ided by the maximum degree of parallelism that can be exploited,

hich is bounded by both the amount of available cores ( κ) and

he degree of parallelism of the task ( ρ). 

A task T = 〈 δ, ρ, μ〉 can be executed on a virtual machine V M =
 κ, φ, ν〉 only if the following memory requirement constraint is

atisfied: 

≤ ν. (5)

Tasks accepted for execution are added to the node execution

ueue and executed according to a FIFO policy. If not otherwise

pecified, a machine VM can accept a task T in its execution queue

nly if it can respect the task deadline. 

. The optimization problem 

In our model, resource capacities (i.e., memory and cores char-

cteristics) and tasks already on the node execution queue pose

imits on the following task execution requests that a node can ac-

ept respecting the associated SLAs. 

In a first approximation, task execution requests can be dis-

atched periodically according to an allocation period . In each pe-

iod, task requests should be distributed optimizing with respect

o an allocation policy defined by the volunteer cloud manager. All

he tasks generated during an allocation period are assigned to the

ubsequent task set and dispatched in the next allocation period.

he duration of the period itself constitutes a parameter which can

ary the performance of the system. A short period could allow a

ore timely allocation of the tasks while resulting more computa-

ionally expensive. Conversely, a large period can possibly reduce

he chance to satisfy task requests that have more stringent dead-

ines, despite they could be less computational demanding. 

This section presents the data structures ( Section 4.1 ) used in

he definition and in the resolution of our optimization problem.

oreover a brief description of some allocation policies that can

e implemented within our framework is presented at the end of

he section ( Section 4.2 ). 

.1. Data structures 

In each allocation period t , having K tasks and N nodes, the

ata structures used hereinafter (following the notations used in

he definitions in Sections 3.1 and 3.2 ) are as follows: 



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 235 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

l  

W  

a  

b  

t  

l  

t  

p

 

b  

a  

t  

p  

t  

e  

v

 

d  

t  

t  

r  

a  

e  

b  

m  

b

4

 

i  

t  

e

 

 

 

 

 

 

 

o  

c

 

 

 

 

 

 

 

 

 

 

I  

o  

a  

t  

5

 

t  

n  

c  

S

 

n  

a  

m

N

 

• taskSet = 

( 

τa 1 τd1 ρ1 δ1 μ1 

. . 

. · · · · · · · · ·
. . 
. 

) 

∈ R 

K×5 , where the

tasks are sorted according to their deadline τ d , from closest

to farthest (this sorting should increase the chance to execute

more tasks respecting their deadline, see the notes at the end

of this section). 

• nodeSet = 

( 

φ1 κ1 ν1 

. 

. 

. · · ·
. 
. 
. 

) 

∈ R 

N×3 , with the characteristics

of the VMs. 

• f reeT imes = 

( 

f ree 1 
. 
. 
. 

) 

∈ R 

N , with the times at which each

node completes the execution of all the tasks that are already

in its execution queue (i.e., execution requests that have been

assigned to the nodes in the previous allocation periods but

that have not yet been completed). 
• X(:= taskAl l oc) ∈ Z 

K×N 
2 

is the task allocation matrix , a binary

matrix ( Z 2 = { 0 , 1 } ) where the element x ij is equal to 1 if the

task i is executed on node j and 0 otherwise. Thus, reading it

by column one gets the tasks accepted by each node in the cur-

rent allocation period; while, reading it by row one gets the

node(s) that has (have) accepted the task for execution, if any.

This matrix represents the decision variable of our optimization

problem. 
• execEnd X ∈ R 

K , collects the times at which each task execu-

tion is completed, taking into account the subset of tasks each

node has accepted for execution in the current allocation X (a

more formal definition and a step-to-step computation is given

in the following, see Section 5 ). The components of execEnd X 
assume value 0 for the tasks that are not accepted by any

node. 
• executedT asks ∈ N 

N , collects the number of tasks, belonging to

the current allocation period, that each node has taken in

charge to execute. Each component executedTasks j is expressed

as 
∑ K−1 

l=0 
X(l, j) . 

In each allocation period, tasks are sorted and evaluated for

xecution according to their deadline, thus the considered al-

ocation scheduling policy is the EDF (Earliest Deadline First).

hile, as stated before, once the tasks have been accepted, they

re executed according to a FIFO policy. This choice is dictated

y the willingness to increase the chance to accept as many

asks as possible (respecting their deadlines), while maintaining a

ow complexity, avoiding to rearrange the execution queue every

ime new tasks are accepted for execution in the next allocation

eriod. 

It is worth noting that the choice of the scheduling policies (for

oth allocation and execution) affects the selection of tasks that

re assigned to the nodes. Indeed, a different sorting in the tasks

o be executed or allocated could bring to a different time for com-

leting the tasks ( execEnd X ) and in turn to a different allocation of

he tasks ( X ). In other terms, with a different sorting of the ex-

cution requests a feasible allocation could become unfeasible and

ice-versa. 

For instance, let us consider a long-running task with a relaxed

eadline that is evaluated for allocation before other small-running

asks but with high demand on deadline: the first task can consti-

ute a bottleneck for all other tasks, which could not be executed

especting their SLAs. A simple tasks sorting (where the tasks with

 high demand on deadline are evaluated first) could allow to ex-

cute more tasks, while the tasks with a relaxed deadline could

e executed later without any effect on their SLA. Obviously, other,

ore sophisticated and effective scheduling disciplines could also

e implemented and evaluated. 
.2. Allocation policies 

The objective function considered in our framework could take

nto account different performance metrics while allocating the

asks to the nodes. In this section we briefly describe five differ-

nt allocation policies: 

• Number of executed task : it attempts to maximize the number

of executed tasks ( Section 5 ). 
• Termination time : it attempts to minimize the time at which the

execution ends for the entire task set ( Section 7.1 ). 
• Response time : it attempts to minimize the sum of the response

times for each task in the set, even ignoring the SLA if needed.

Thus, all the execution requests are assigned ( Section 7.2 ). 
• Fair strategy : it attempts to evenly distribute the tasks among

the participant nodes ( Section 7.3 ). 
• Green strategy : it attempts to consolidate the tasks among few

participant nodes ( Section 7.4 ). 

Each of the above mentioned policies, during the formalization

f the optimization problem, will require one or a subset of the

onstraints which are listed here: 

(a) each node can execute a task only if it has enough memory:

μl ≤ ν j ∀ task l executed on a node j ; (6) 

(b) each task must be assigned to one and only one node, even

if there is no node that can satisfy its deadline requirement:

N−1 ∑ 

j=0 

X (l, j) = 1 ∀ l ∈ { 0 , 1 , . . . , K − 1 } . (7)

If it is impossible to satisfy all the tasks deadlines, other

node policies will discern which tasks should be executed

first and which ones discarded or completed lately (i.e., on

a best-effort basis not fulfilling the deadline specified in the

SLA); 

(c) each task, if executed, should complete respecting its dead-

line: 

execEnd X (l) ≤ τd (l) ∀ task l, (8) 

where τ d is a column vector with the task deadlines; 

(d) each task can be executed by only one node: 

N−1 ∑ 

j=0 

X (l, j) ≤ 1 ∀ l ∈ { 0 , 1 , . . . , K − 1 } . (9)

t is worth noting that some of the above mentioned constraints,

n certain conditions, could prove to be mutually exlusive (i.e., (b)

nd (c)) while constraint (d) relaxes constraint (c). Obviously, in

hese situations, those constraints are not placed at the same time.

. Maximization of the number of executed tasks 

In this section we focus on the accurate description of one of

he policies of our framework, namely, the maximization of the

umber of executed tasks. Without loss of generality other poli-

ies can be implemented straightforwardly as exemplified later in

ection 7 . 

The policy described in this section aims at optimizing the

umber of tasks that are executed respecting their deadline. The

ssociated optimization problem can then be written as the maxi-

ization of: 

−1 ∑ 

j=0 

K−1 ∑ 

l=0 

taskAl l oc(l , j) , (10)



236 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f  

s  

t

t

 

w  

v

 

t

e

 

w  

m  

f

 

w  

c  

c  

t

e  

 

e

 

w  

E  

b  

n  

c  

w  

t  

e  

c  

u  

e  

t  

d  

w  

t  

fi  

i

o  

i  

a

 

s  

m  

p  

b  

c  
where the inner summation counts the tasks executed on the node

j . The constraints (a), (c) and (d) must be met. 

Thus, more formally, the optimization problem is: 

maximize 

N−1 ∑ 

j=0 

K−1 ∑ 

l=0 

X (l, j) , (11)

subject to: 

N−1 ∑ 

j=0 

( diag (μ) · X )(l, j) ≤ X · ν ∀ l ∈ { 0 , ...K − 1 } , (12a)

N−1 ∑ 

j=0 

X (l, j) ≤ 1 K ∀ l ∈ { 0 , ...K − 1 } , (12b)

execEnd X (l) ≤ τd (l) ∀ task l ∈ { 0 , ...K − 1 } , (12c)

where all the inequalities are component-wise comparisons and

the · symbol denotes the matrix product, while diag (μ) is a diago-

nal square matrix in which the elements on the main diagonal are

the memory requirements for the tasks in the current allocation

period. The left side of Eq. (12c) , with the implicit dependency

from X , expresses the time required to complete the execution of

each task l according to the node j that has taken in charge its

execution, if any. 

Throughout the paper, if not otherwise specified, the index l

refers to a task, j refers to a volunteer node, while i refers to one

of the constraints related to the optimization problem under study.

The above mentioned optimization problem has been solved in

Matlab relying on the CVX modeling system, which is based on

the Disciplined Convex Programming ruleset (DCP). The DCP rule-

set [38] allows one to describe problems that are convex by con-

struction. Objective functions and constraints are expressed relying

on a set of basic atoms and a restricted set of operation rules that

preserve convexity. In this way, DCP is able to keep track of affine,

convex and concave expressions. If a problem does not adhere to

the DCP it is rejected even if it is convex, the converse instead

can not happen (i.e., a problem recognized as convex by DCP is

always convex). CVX [21,38] is a modeling system that, relying on

DCP, is able to simplify the task of specifying the problem for: lin-

ear (LPs), quadratic (QPs), second-order cone (SOCPs) and semidef-

inite (SDPs) programs. Recently, CVX has been extended to support

mixed-integer models where one or more variables have integer or

binary values (as X in our problem). These models are defined as

Mixed-Integer Disciplined Convex Problems (MIDCPs) . Strictly speak-

ing, these are nonconvex optimization problems for which, if the

integrality constraint is removed, one obtains a Disciplined Convex

Problem. 

While all other constraints can be written straightforwardly, the

implementation of Eq. (12c) in CVX requires some computations to

respect the DCP, since the ruleset implies that convexity should be

an explicit goal of the modeling process itself. In the following we

describe the computations required to express the last constraint

in CVX . Recalling the definition of execution time in Eq. (4) , we

construct a matrix e whose generic element e lj represents the com-

putational time required to execute the task l on node j . 

A row vector initTime with the times at which each node can

start the execution in the current allocation period, can be built

considering the current time t and the residual computation from

the previous time periods ( freeTimes ): 

initT ime := max { t, f reeT imes } ∈ R 

1 ×N . (13)

Thus, in order to evaluate the time required to execute the

tasks in the current period, the node should consider the compu-

tation in progress and the tasks already in its queue (and accepted
or execution in the previous allocation periods). An intermediate

tep of computation requires adding initTime to the tasks execution

imes: 

imeT oExecT ask = e + 

(
initT ime 

0 

)

= 

⎛ 

⎝ 

e 11 + it 1 e 12 + it 2 · · ·
e 21 e 22 · · ·

. . . 
. . . 

. . . 

⎞ 

⎠ , (14)

here 0 K−1 ,N is a zero matrix, while it j are the elements of the

ector initTime . 

Then, assuming a FIFO policy during the task execution, if every

ask was executed by each node, one would obtain: 

xecCum = cumulat i v eSum (t imeT oExecT ask ) = 

= 

⎛ 

⎝ 

e 11 + it 1 e 12 + it 2 · · ·
e 21 + e 11 + it 1 e 22 + e 12 + it 2 · · ·

. . . 
. . . 

. . . 

⎞ 

⎠ , (15)

here the cumulativeSum function ( cumsum in Matlab ) returns a

atrix containing the cumulative sums for each column starting

rom the first row. 

Defining X as the complement matrix of the binary matrix X

ith the tasks that are not executed by the nodes, with further

omputation it is possible to compute the time at which the exe-

ution of each task is completed ( execEnd X ) according to the node

hat has taken it in charge, if any: 

xecRemov edNotExec = execCum − X . ∗ execCum, (16a)

f inishingT imeDirty = execRemov edNotExec 

− cumulati v eSum ( X . ∗ e ) , (16b)

xecEnd X = f inishT ime = max 
∀ row 

{ 0 , max 
∀ row 

{ f inishingT imeDirty }} 
= 

∑ 

by row 

( f inishingT imeDirty + ) , (16c)

here . ∗ is the element-by-element product of the matrices.

q. (16a) sets to zero the cells for the tasks that are not executed

y the corresponding node in Eq. (15) . However, this operation is

ot enough to obtain the time needed to complete the tasks exe-

utions. Indeed, observing Eq. (15) , it is possible noting that since

e are considering a FIFO policy, setting to zero the cells for the

asks not executed is not enough. For instance, if the first node ex-

cutes the second but not the first task, with Eq. (16a) the first

ell is set to zero but the element in the second row first col-

mn still maintains a dependency from a task that is not actually

xecuted ( e 11 in this example). Eq. (16b) is introduced to remove

hese undesired dependencies. Conversely, this operation builds a

irty matrix, since its matrix elements could have negative values

hile subtracting from cells that where already set to zero from

he first operation ( Eq. (16a) ). Finally, Eq. (16c) builds the tasks

nishing times for the tasks that are actually executed, consider-

ng the nodes that have accepted their executions (where the (·) + 
perator chops off the negative values). Note that the last equality

n Eq. (16c) is obtained considering that for each row there can be

t most one positive element. 

Other simpler operations could have led to the same re-

ult but requiring, at some point, the product between ele-

ents of the (matrix) optimization variable X . For instance, a

ossible easily attained computation of execEnd X could be given

y 
∑ 

by row 

(cumulati v eSum (e. ∗ X ) . ∗ X ) + X ∗ initT ime T , where the

umulati v eSum is needed by the FIFO queue and the second



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 237 

e  

r  

s  

s

N

 

a  

s  

l  

l  

s  

t  

a  

f  

I  

l  

t  

l

 

c  

u  

l

5

 

a  

l  

a  

o  

e  

p  

c

m

s

μ

N

e

 

o

m  

o  

p  

p

m

s

m

s

e

 

m  

t  

T  

r  

(  

t  

p

m  

s

h

h

h

 

i

L

a

X

z

y

w

 

v  

X  

n  

p  

a  

s

 

t  

n  

m

5

 

s  

r

∑

b

L

lement-by-element product sets to zero the matrix elements cor-

esponding to the tasks not executed by a node. Unfortunately, de-

pite in our definition X is binary, this operation brings the expres-

ion to be not convex as well as not comply with the DCP ruleset. 

ote on the Optimization Problem 

The problem formulated above ( Eqs. (10 )–( 12c) ) can be seen as

n Integer Programming (IP) problem (since the elements of X as-

ume integer values) whose goal consists in finding an optimal al-

ocation of the tasks. With some implementation effort, particu-

arly when K and/or N are large, Eq. (16c) can be reformulated sub-

tituting the max operator with linear inequalities, therefore ob-

aining an Integer Linear Programming (ILP) problem. ILP problems

re well known to be NP-complete in literature. Moreover, in our

ormulation the (matrix) optimization variable X is binary. The 0-1

LP (also referred as Binary ILP , BILP) expressed as a decision prob-

em constituted by only restrictions without an optimization func-

ion, has been classified as one of the Karp’s 21 NP-complete prob-

ems [39] . 

Relaxing the elements of the X variable in the real domain, a

onvex problem could be obtained which could provide an useful

pper bound for the optimal solution value of the original prob-

em. 

.1. ADMM: unscaled form and augmented Lagrangian 

The optimization problem, as expressed in the previous section,

llows CVX and Gurobi to solve the problem, but it is still formu-

ated in a completely centralized way. As stated above, such an

pproach can be hard to be applied in practice in the domain of

ur interest, since distributing resource characteristics and load of

ach node (with hundreds or thousands of nodes) is challenging. A

ossible way to solve the problem in a distributed fashion can be

onstituted by the iterative ADMM [20] . 

The original optimization problem is reported here: 

aximize 

N−1 ∑ 

j=0 

K−1 ∑ 

l=0 

X (l, j) , (17) 

ubject to: 

X ≤ X ν, (18a) 

−1 ∑ 

j=0 

X (l, j) ≤ 1 K , (18b) 

xecEnd X ≤ τd . (18c) 

For ease of exposition, we rename the functions as: 

f (X ) = − ∑ N−1 
j=0 

∑ K−1 
l=0 

X(l, j) , μX = m r (X ) (the requested mem-

ry), X ν = m a (X ) (the memory available) and then m r (X ) −
 a (X ) = m (X ) (memory constraint), 

∑ N−1 
j=0 X (l, j) = s (X ) (number

f executions / nodes for each task), execEnd X = e (X ) . Finally, the

roblem in Eqs. (17 ) and ( 18) can be rewritten as a minimization

roblem as follows: 

inimize f (X ) , (19) 

ubject to: 

 (X ) ≤ 0 K , (20a) 

 (X ) ≤ 1 K , (20b) 

 (X ) ≤ τd . (20c) 
The ADMM (and more in general the augmented Lagrangian

ethod) does not explicitly allow the use of inequality constraints,

hus the use of a slack vector z for each constraint is required [40] .

he inequality is implicitly considered in the optimization function

equiring z to be non-negative through the indicator function I + (z)

that can be seen as an infinite penalty on the optimizing func-

ion when z is negative, and is zero otherwise). More precisely, the

revious optimization problem is rewritten as: 

inimize f (X ) + I + (z 1 ) + I + (z 2 ) + I + (z 3 ) , (21)

ubject to: 

 1 (X, z 1 ) = m (X ) + z 1 = 0 , (22a) 

 2 (X, z 2 ) = s (X ) − 1 + z 2 = 0 , (22b) 

 3 (X, z 3 ) = e (X ) − τd + z 3 . (22c) 

The augmented Lagrangian used in the ADMM can thus be eas-

ly written as: 

 ρ (X, z, y ) = f (X ) + 

3 ∑ 

i =1 

y T i h i (X, z i ) + 

3 ∑ 

i =1 

ρ

2 

‖ h i (X, z i ) ‖ 

2 
2 + I + (z 1 ) 

+ I + (z 2 ) + I + (z 3 ) , (23) 

nd the ADMM (in unscaled form) is expressed as: 

 

k +1 = argmin 

X 

L ρ (X, z k i , y 
k 
i ) , (24a) 

 

k +1 
i 

= max { argmin 

z i 

L ρ (X 

k +1 , z i , y 
k 
i ) , 0 } , (24b) 

 

k +1 
i 

= y k i + ρ(h i (X 

k +1 , z k +1 
i 

)) , (24c) 

ith i = 1 , 2 , 3 and ρ > 0 (the augmented Lagrangian parameter). 

More exactly, given that the problem is not con-

ex, in the previous equation we should have considered

 

k +1 ∈ argmin X L ρ (X, z k 
i 
, y k 

i 
) , since argmin X L ρ (X, z k 

i 
, y k 

i 
) is not

ecessarily a set made of only one element, but, for ease of

resentation, we used the equality with the convention that X is

ny of the values in which the augmented Lagrangian attains its

mallest value. A similar remark holds for Eq. (24b) . 

It is worth noting that the update of z i in Eq. (24b) has required

he use of the max operator to take into account that z i cannot be

egative (recalling the introduction of the I + function in the opti-

ization problem to deal with the inequality constraints). 

.2. ADMM: scaled form and augmented Lagrangian 

For ease of implementation the ADMM can be rewritten in

caled form. The terms in the augmented Lagrangian containing

 i = h i (X, z i ) can be transformed as: 

3 
 

i =1 

y T i r i + 

3 ∑ 

i =1 

ρ

2 

‖ r i ‖ 

2 
2 = 

3 ∑ 

i =1 

ρ

2 

‖ r i + 

1 

ρ
y i ‖ 

2 
2 −

3 ∑ 

i =1 

1 

2 ρ
‖ y i ‖ 

2 
2 = 

u i = 1 ρ y i 

= 

3 ∑ 

i =1 

ρ

2 

‖ r i + u i ‖ 

2 
2 −

3 ∑ 

i =1 

ρ

2 

‖ u i ‖ 

2 
2 , (25) 

ecoming: 

 ρ (X, z, u ) = f (X ) + I + (z 1 ) + I + (z 2 ) + I + (z 3 ) + 

3 ∑ 

i =1 

ρ

2 

‖ h i (X, z i ) 

+ u i ‖ 

2 
2 −

3 ∑ 

i =1 

ρ

2 

‖ u i ‖ 

2 
2 , (26) 



238 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

 

z

 

Y  

y  

 

o  

t  

f  

t  

a  

S  

t  

o  

X

5

 

R  

L

L

 

 

c

X

 

Z

 

z

 

U  

u
i i 

 

and finally the ADMM expressed in scaled form is: 

X 

k +1 = argmin 

X 

( 

f (X ) + 

3 ∑ 

i =1 

ρ

2 

‖ h i (X, z i ) + u 

k 
i ‖ 

2 
2 

) 

, (27a)

z k +1 
i 

= max 

{ 

argmin 

z i 

( 

3 ∑ 

i =1 

ρ

2 

‖ h i (X, z i ) + u 

k 
i ‖ 

2 
2 

) 

, 0 

} 

, (27b)

u 

k +1 
i 

= u 

k 
i + h i (X 

k +1 , z k +1 
i 

) . (27c)

The scaled form makes easier the implementation in Matlab ex-

pressing the ADMM in a more compact and convenient form. Ob-

viously, the two forms (scaled and unscaled) are equivalent. 

5.3. Distributed ADMM using global consensus 

The ADMM formulations defined in the previous

Sections 5.1 and 5.2 allow only a marginal parallelization of

the algorithm on z i and y i ( u i ), where i = { 1 , 2 , 3 } . Reasoning about

a real implementation of one of these formulations in the volun-

teer cloud environment, the ADMM turns out to be parallelized in

only three computational threads but definitely not distributable

on all the volunteers. To better exploit the distribution capabilities

of the ADMM on all the volunteers, it is required to have X parti-

tionable and f separable with respect to this partition. The original

problem can be rewritten as a Global Consensus problem where the

N nodes want to converge towards an optimal shared solution X .

Expressing as f j (X ) = −∑ K−1 
l=0 

X(l, j) the number of tasks per node

(the “minus” sign is used to express the optimization problem as

a minimization one), the problem in Eqs. (21 ) and ( 22) has the

form: 

minimize 

N−1 ∑ 

j=0 

f j (X ) + 

3 ∑ 

i =1 

I + (z i ) , (28)

subject to: 

h i (X, z i ) = 0 ∀ i = 1 , 2 , 3 , (29)

that can be distributed over the nodes introducing the local vari-

ables X j , one for each node. Each X j is a copy of the original X ,

and is updated locally and independently by each node. The global

consensus variable Z is added. For ease of presentation the range

of the j index is shifted from 1 to N in the following: 

minimize 

N ∑ 

j=1 

f j (X j ) + 

3 ∑ 

i =1 

I + (z i ) , (30)

subject to: 

X j − Z = 0 ∀ j = 1 , . . . , N, (31a)

h i (Z, z i ) = 0 ∀ i = 1 , 2 , 3 . (31b)

The augmented Lagrangian is: 

L ρ (X 1 , . . . , X j , . . . , X N , Z, z 1 , z 2 , z 3 , Y 1 , . . . , Y N , y N+1 , y N+2 , y N+3 ) 

= 

N ∑ 

j=1 

(
f j (X j ) + Y j (X j − Z) + 

ρ

2 

‖ X j − Z‖ 

2 
2 

)

+ 

3 ∑ 

i =1 

(
y N+ i h i (Z, z i ) + 

ρ

2 

‖ h i (Z, z i ) ‖ 

2 
2 + I + (z i ) 

)
. (32)

The ADMM for the global consensus problem becomes: 

X 

k +1 
j 

= argmin 

X j 

(
f j (X j ) + Y k j (X j − Z k ) + 

ρ

2 

‖ X j − Z k ‖ 

2 
2 

)

∀ j = 1 , . . . , N, (33a)

 

k +1 = argmin 

Z 

( N ∑ 

j=1 

(
− Y k j Z + 

ρ

2 

‖ X 

k +1 
j 

− Z‖ 

2 
2 

)

+ 

3 ∑ 

i =1 

(
y k i + N h i (Z, z k i ) + 

ρ

2 

‖ h i (Z, z k i ) ‖ 

2 
2 

))
, (33b)

 

k +1 
i 

= max 
{

argmin 

z i 

(
y k i h i (Z k +1 , z i ) + 

ρ

2 

‖ h i (Z k +1 , z i ) ‖ 

2 
2 

)
, 0 

}
∀ i = 1 , 2 , 3 , (33c)

 

k +1 
j 

= Y k j + ρ(X 

k +1 
j 

− Z k +1 ) ∀ j = 1 , . . . , N, (33d)

 

k +1 
i 

= y k i + ρ(h i −N (Z k +1 , z k +1 
i 

)) ∀ i = N + 1 , N + 2 , N + 3 . (33e)

Thus, the steps for updating X j and Y j can be executed locally

n each node, while Z performs the role of the central collector for

he optimization problems solved locally. Summing up, the ADMM

ormulation of the problem expressed in this section, compared to

he solution proposed in the previous section, is characterized by

n increase in the computation performed locally by the nodes.

ome steps of the algorithm still need to be executed in a cen-

ralized fashion (i.e., the updates of the variables Z , z i , y i ), while

thers could be executed locally (i.e., the updates of the variables

 j , Y j ). 

.4. Distributed ADMM using global consensus, scaled form 

Similarly to what has been done in Section 5.2 , substituting

 j = X j − Z, r i = h i (Z, z i ) and u i = 

1 
ρ y i , U j = 

1 
ρ Y j , the augmented

agrangian can be rewritten as: 

 ρ (X 1 , . . . , X j , . . . , X N , Z, z 1 , z 2 , z 3 , U 1 , . . . , U N , u N+1 , u N+2 , u N+3 ) 

= 

N ∑ 

j=1 

(
f j (X j ) + 

ρ

2 

‖ R j + U j ‖ 

2 
2 −

ρ

2 

‖ U j ‖ 

2 
2 

)

+ 

3 ∑ 

i =1 

(ρ

2 

‖ r i + u i + N ‖ 

2 
2 −

ρ

2 

‖ u i + N ‖ 

2 
2 + I + (z i ) 

)
. (34)

Then, the scaled ADMM for the global consensus problem be-

omes: 

 

k +1 
j 

= argmin 

X j 

(
f j (X j ) + 

ρ

2 

‖ X j − Z k + U 

k 
j ‖ 

2 
2 

)
∀ j = 1 , . . . , N, 

(35a)

 

k +1 = argmin 

Z 

( N ∑ 

j=1 

(ρ

2 

‖ X 

k +1 
j 

− Z + U 

k 
j ‖ 

2 
2 

)

+ 

3 ∑ 

i =1 

(ρ

2 

‖ h i (Z, z k i ) + u 

k 
i + N ‖ 

2 
2 

))
, (35b)

 

k +1 
i 

= max 
{

argmin 

z i 

(ρ

2 

‖ h i (Z k +1 , z i ) + u 

k 
i + N ‖ 

2 
2 

)
, 0 

} ∀ i = 1 , 2 , 3 , 

(35c)

 

k +1 
j 

= U 

k 
j + X 

k +1 
j 

− Z k +1 ∀ j = 1 , . . . , N, (35d)

 

k +1 = u 

k 
i + h i −N (Z k +1 , z k +1 ) ∀ i = N + 1 , N + 2 , N + 3 . (35e)



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 239 

 

l  

l  

w  

p  

s  

c

5

 

A  

o  

Z

i  

p  

c  

t  

t

m  

s

X

h

 

c  

L

L  

 

a  

m

X

Z  

z

 

 

Y

y

 

c  

a

5

 

a  

o  

i  

a  

A  

q  

v  

s

 

S  

q  

t  

c  

l

 

t  

v

i

6

 

t  

i

T  

n  

s  

i  

g  

r  

R  

e  

c  

F  

a  

o  

s  

R  

t  

b  

p  

t  

g  

1  

f  

e  

R
 

g  

f

6

 

m  

1 
The fairness and distributed capabilities of this approach (prob-

em formulated as global consensus and solved with ADMM) re-

ies on the fact that each node can take its decision autonomously

ithout a central decision system. Conversely, this approach com-

ared to Section 5.2 has incremented the number of the con-

traints: from the initial 3 up to N + 3 with the distributed (global

onsensus) approach. 

.5. A more distributed ADMM using global consensus 

Observing the global consensus problem in Eq. (30) and the

DMM steps in Eqs. (33) , it is worth noting that each y i depends

n the constraint h i , which in turn depends on the global variable

 . This dependency does not allow to execute the step to update y i 
n a distributed fashion. It is thus possible to define an equivalent

roblem considering the X j local on each node even concerning the

onstraints h i . Using X j even for the constraints it is thus possible

o increase the degree of distribution of the ADMM, applying it to

he following equivalent optimization problem: 

inimize 

N ∑ 

j=1 

f j (X j ) + 

3 ∑ 

i =1 

I + (z i ) , (36)

ubject to: 

 j − Z = 0 ∀ j = 1 , . . . , N, (37a) 

 i (X j , z i ) = 0 ∀ i = 1 , 2 , 3 ∧ j = 1 , . . . , N. (37b) 

Thus the original constraints are distributed on each node be-

oming a total of 3 · N . In this way one obtains the augmented

agrangian: 

 ρ (X 1 , . . . , X j , . . . , X N , Z, z 1 , z 2 , z 3 , Y 1 , . . . , Y j , . . . , Y N , y 11 , . . . , y i j , . . . )

= 

N ∑ 

j=1 

(
f j (X j ) + Y j (X j − Z) + 

ρ

2 

‖ X j − Z‖ 

2 
2 

)

+ 

N ∑ 

j=1 

( 3 ∑ 

i =1 

(
y i j h i (X j , Z i ) + 

ρ

2 

‖ h i (X j , z i ) ‖ 

2 
2 + I + (z i ) 

))

= 

N ∑ 

j=1 

(
f j (X j ) + Y j (X j − Z) + 

ρ

2 

‖ X j − Z‖ 

2 
2 

+ 

3 ∑ 

i =1 

(
y i j h i (X j , Z i ) + 

ρ

2 

‖ h i (X j , z i ) ‖ 

2 
2 + I + (z i ) 

))
, (38)

nd then, the ADMM steps (where, through the y ij , each node j can

anage its own subset i of constraints): 

 

k +1 
j 

= argmin 

X j 

(
f j (X j ) + Y k j (X j − Z k ) + 

ρ

2 

‖ X j − Z k ‖ 

2 
2 

+ 

3 ∑ 

i =1 

(
y k i j h i (X j , Z 

k 
i ) + 

ρ

2 

‖ h i (X j , Z 
k 
i ) ‖ 

2 
2 

)) ∀ j = 1 , . . . , N, (39a) 

 

k +1 = argmin 

Z 

( N ∑ 

j=1 

(
− Y k j Z + 

ρ

2 

‖ X 

k +1 
j 

− Z‖ 

2 
2 

))
, (39b)

 

k +1 
i 

= max 

{ 

argmin 

z i 

( N ∑ 

j=1 

(
y k i j h i (X 

k +1 
j 

, z i ) + 

ρ

2 

‖ h i (X 

k +1 
j 

, z i ) ‖ 

2 
2 

)
, 0 

}
∀ i = 1 , 2 , 3 , (39c)

 

k +1 
j 

= Y k j + ρ(X 

k +1 
j 

− Z k +1 ) ∀ j = 1 , . . . , N, (39d) 
 

k +1 
i j 

= y k i j + ρ
(
h i (X 

k +1 
j 

, z k +1 
i 

) 
) ∀ i = 1 , 2 , 3 ∧ j = 1 , . . . , N. (39e) 

This new version of the distributed ADMM has more steps that

an be executed in parallel (i.e., the updates of the y ij ) than the

pproach presented in Section 5.3 . 

.6. About distributing the optimization problem with ADMM 

Despite the ADMM does not allow to obtain a fully distributed

pproach, due to the presence of the central collector , great part

f the problem is solved locally on the nodes, while the central-

zed effort is significantly reduced. In Table 1 we report the steps

nd the parallelism achievable with the three formulations of the

DMM. The steps identify the barriers (synchronization points) re-

uired by the parallelization, namely, the points in time where one

ariable depends on one or more variables computed in previous

teps. 

In the two distributed ADMM approaches described above (see

ections 5.3 and 5.5 ), for each iteration of the algorithm it is re-

uired to exchange a total of 2 N messages among the nodes: N

o distribute the local computation of X k +1 
j 

and Y k 
j 

to the central

ollector ( distribution phase ), and N to receive from the central col-

ector the computation of Z k ( gathering phase ). 

It is worth noting that it could be possible to further parallelize

he algorithm in Section 5.5 acting on z i and introducing separate

ariables z ij for each node, similarly to what has been done for y ij 
n Section 5.5 . 

. Implementation and numerical results 

The methods have been implemented in Matlab with the CVX

oolbox for the definition of the optimization problems and us-

ng the Gurobi solver which allows one to use integer variables. 1 

his section presents the evaluated scenario ( Section 6.1 ) and some

umerical results ( Section 6.2 ) comparing the two different ver-

ions of the ADMM (presented in Sections 5.2 and 5.4 ) with the

nitial ILP formulation solved in a centralized way (see the be-

inning of Section 5 ) and with two well-known scheduling algo-

ithms, namely Random-First Fit (Random-FF) and Round
obin-First Fit (RR-FF) [41] . In Random and RR , task ex-

cution requests are forwarded to a node chosen, respectively, ac-

ording to a uniform distribution and in circular order. The First
it is an algorithm variant, usually considered in memory man-

gement contexts, consisting in stopping the search for a node

nce one that can satisfy the task request is found. An additional

topping criterion is usually associated to both the algorithms (i.e.,

andom and RR ), in case none of the inquired nodes accepts the

ask execution. Otherwise both the approaches will turn into a

rute-force search solving the original combinatorial optimization

roblem. For our experiments we arbitrarily chose to limit, for each

ask, the number of request to the 20% of the nodes involved in a

iven scenario. E.g., adopting the random scheduling and having

00 nodes, up to 20 nodes can be randomly selected and inquired

or accepting a given task before stating that the task can not be

xecuted. It is worth noting that the plain implementation of the

R algorithm requires a centralized coordination to be executed. 

The centralized resolution of the ILP formulation provides the

lobal maximum, while, as shown later in this section, the ADMM

ormulations usually provide good suboptimal solutions. 

.1. Scenario 

We focus on two main aspects: the network and the workload

odels. As a matter of fact each simulation run has two stages:
https://github.com/distributedResearch/taskSchedulingADMM . 

https://github.com/distributedResearch/taskSchedulingADMM


240 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

Table 1 

Parallelism capabilities of the ADMM formulations. 

Step ADMM centralized ADMM distributed ADMM more distributed 

Variable Parallelism Variable Parallelism Variable Parallelism 

I X 1 X j N X j N 

II z i 3 Z 1 Z 1 

}
4 

z i 3 

III y i 3 z i 3 

}
3 + N Y j N 

}
N + 3 · N

Y j N y ij 3 · N 

IV y i 3 

Table 2 

Node attributes. 

CPU frequency (GHz) CPU (cores) RAM (GBs) 

1 − 3 1 − 4 0 . 5 − 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R  

t  

S  

c  

w

 

L  

G  

v  

t  

l  

t  

s  

t  

c  

c

 

d  

K  

i  

s  

a  

f  

M  

w  

w  

t  

t  

p  

A  

d  

t  

t  

l

 

t  

m  

m  

a  

a

 

i  

b  

t  

m  

a  

r  

d  

I  

f  

o  

t  
one for generating the network configuration (cloud participants),

and another one for evaluating the actual activity period. 

The nodes characteristics are shown in Table 2 , where values

are uniformly distributed within the specified intervals. We con-

sider the communication overhead for transferring data as negli-

gible. Since our problem formulation assumes a task distribution

through allocation periods, the dynamism in the online presence

of the volunteer nodes can be managed similarly. Evaluating allo-

cation periods with a reasonable short duration, the optimization

problem, in a first approximation, could consider only the nodes

actually online at the beginning of such period. If a node correctly

leaves the network (informing the other participants of its action),

the tasks in its queue could be evaluated for re-execution in the

subsequent allocation period. While, if a node abruptly leaves the

network, all the tasks in its execution queue are lost. 

For the workload characterization, our main reference is the

Google Cloud Backend described in [42] . There, tasks are character-

ized according to their duration, CPU and memory requirements,

each abstracted as either small ( s ) or large ( l ). For confidentiality

reasons, the Google Cluster dataset [43] provides obfuscated infor-

mation about the real hardware characteristics of the Google clus-

ter nodes: every reported value is normalized to the capacity of

the best cluster node. Another obfuscated information relevant for

the purpose of our work regards the QoS properties such as dead-

lines. For these reasons we have made some assumptions. We con-

sider that the CPUs of the cluster have a frequency of 1 GHz. In

this work we have considered only the tasks of type large , whose

attributes are uniformly distributed within the intervals (grouped

by qualitative coordinates), as reported in Table 3 . 

Evaluating the task execution time as defined in Eq. (4) , while

using the characteristics of nodes and tasks considered during our

experiments and defined above, it is possible to plot the time re-

quired to execute the tasks. In Fig. 2 , the x and y axes repre-

sent, respectively, the execution capability that the node can ex-

ploit and the task duration while the z -axis shows the required

execution time. From the plot it is possible noting that the task

duration is largely affected by the node capabilities. In fact observ-

ing Table 3 the considered tasks have a good degree of parallelism

that can be exploited to significantly reduce the required execution

time (the blue region in the plot). 

6.2. Results 

In this section, we compare the optimal solution value of the

original ILP optimization problem with values obtained apply-

ing the two versions of ADMM discussed in Section 5 , and with
andom-FF and RR-FF (discussed earlier in this section). In par-

icular, the quality of the ADMM solutions has been evaluated.

ince the ADMM, in presence of nonconvex problem, should be

onsidered as a heuristic without any guarantee on convergence,

e assume as stopping criterion 10 0 0 iterations of ADMM. 

All the experiments have been performed on a machine running

inux 3.16.0-46 64-bit equipped with an Intel Core i5-4460 and 32

B of RAM, using Matlab 2015a with CVX 2.1 and the Gurobi solver

ersion 6.0.4. A single run, with the largest problem, considering

hat our Matlab implementation is not able to exploit the paral-

elism of the algorithm, has required around one hour of execution

o perform 10 0 0 iterations of the ADMM (recalling that no other

topping criterion has been adopted). Increasing the parallelism,

he subproblems for the computation of the ADMM variables be-

ome easier, and so the computational time for each iteration de-

reases. 

To evaluate the scalability of the approach, we have considered

ifferent sizes of the problem (number of elements of X ) varying

 (number of tasks) and N (number of nodes). The results shown

n this section are the averages of 10 runs, where the random

eed changes the characteristics of nodes and tasks at each run

ccording to Tables 2 and 3 . CVX currently supports three solvers

or problems that make use of integer variables, namely, Gurobi,

OSEK and GLPK . Unfortunately, none of these solvers compatible

ith CVX allows obtaining all the solutions in a straightforward

ay (it is only possible to apply some tricks to force the solver

o skip the solutions already found, e.g., applying cuts that make

he solutions already found unfeasible). Thus, comparing the ap-

roaches, not all the solutions of the problem found by the two

DMM implementations are identical. The main metric of interest

uring our experiments is the hit rate , defined as the number of

asks successfully executed (i.e., the value found for the optimiza-

ion function normalized over K ). This is evaluated at the best so-

ution found by each method. 

Performance results are summarized through descriptive statis-

ics [44] (with empirical mean, median, 1 st and 3 rd quartile, min,

ax, standard deviation, and standard deviation of the estimated

ean also called standard error of the mean) in Tables 4 and 5

nd pictorially represented in Fig. 3 and, with box-plots, in Figs. 4

nd 5 . 

Fig. 3 shows the numerical results of our comparisons. Increas-

ng the size of the problem, the relative number of tasks that can

e executed remains almost constant to the 80% (scaling X , the ra-

io between K and N is kept constant at about 1: 2). The global

aximum (gray line), the performance of Random-FF and RR-FF ,
nd the best value found by the ADMM formulations for the hit

ate are shown in Fig. 3 a. The relative error, defined as the relative

ifference of each solution with the ILP one, is reported in Fig. 3 b.

t is worth noting that, for each size of the problem, the ADMM

ormulations have found the global maximum in several runs. This

bservation is supported by the content of the rows referring to

he minimum relative error and to the 1 st quartile in Table 5 , and



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 241 

Fig. 2. Required execution time with varying tasks/nodes characteristics. (For interpretation of the references to color in this figure, the reader is referred to the web version 

of this article). 

Table 3 

Task attributes. 

Size Duration (h) CPU (cores) RAM (GBs) Deadline offset (% on duration) Poisson mean arrival (ms) 

Large 1 − 12 1 − 4 1 − 4 0.4 600 

Table 4 

Hit rate by problem complexity – descriptive statistics. 

Algorithm Metrics Problem complexity 

44 60 78 98 

ILP Mean 80 76 76.667 77.143 

Median 75 80 83.333 71.429 

1 st quartile ( 25 th percentile) 75 60 60.667 71.429 

3 rd quartile ( 75 th percentile) 100 80 83.333 85.714 

Min 50 60 66.667 71.429 

Max 100 100 83.333 85.714 

Stdev 18.708 14.967 8.165 6.999 

Std err of the mean 8.367 6.693 3.651 3.130 

ADMM Mean 55 56 60 62.857 

Median 50 60 66.667 71.429 

1 st quartile ( 25 th percentile) 50 60 50 57.143 

3 rd quartile ( 75 th percentile) 50 60 66.667 71.429 

Min 50 40 33.333 28.571 

Max 75 60 83.333 85.714 

Stdev 10 8 16.997 19.378 

Std err of the mean 4.472 3.578 7.601 8.667 

distributed ADMM Mean 60 56 63.333 65.714 

Median 50 60 66.667 57.143 

1 st quartile ( 25 th percentile) 50 60 66.667 57.143 

3 rd quartile ( 75 th percentile) 75 60 66.667 71.429 

Min 50 40 33.333 57.143 

Max 75 60 83.333 85.714 

Stdev 12.247 8 16.330 11.429 

Std err of the mean 5.478 3.578 7.303 5.111 

FF-Random Mean 35 36 43.333 37.143 

Median 25 40 50 42.857 

1 st quartile ( 25 th percentile) 25 20 33.333 28.571 

3 rd quartile ( 75 th percentile) 50 40 50 42.857 

Min 0 20 33.333 28.571 

Max 75 60 50 42.857 

Stdev 25.495 14.967 8.165 6.999 

Std err of the mean 11.402 6.693 3.651 3.130 

FF-RR Mean 65 52 60 45.714 

Median 75 40 66.667 42.857 

1 st quartile ( 25 th percentile) 50 40 50 28.571 

3 rd quartile ( 75 th percentile) 75 60 66.667 57.143 

Min 50 40 33.333 28.571 

Max 75 80 83.333 71.429 

Stdev 12.247 16 16.997 16.660 

Std err of the mean 5.477 7.155 7.601 7.451 



242 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

Table 5 

Relative error by problem complexity – descriptive statistics. 

Problem complexity 

Algorithm Metrics 44 60 78 98 

ADMM Mean 0.267 0.23 0.2 0.187 

Median 0.333 0.25 0 0 

1 st quartile ( 25 th percentile) 0 0 0 0 

3 rd quartile ( 75 th percentile) 0.5 0.4 0.4 0.333 

Min 0 0 0 0 

Max 0.5 0.5 0.6 0.6 

Stdev 0.226 0.203 0.253 0.244 

Std err of the mean 0.101 0.091 0.113 0.109 

distributed ADMM Mean 0.2 0.23 0.16 0.147 

Median 0 0.25 0 0.2 

1 st quartile ( 25 th percentile) 0 0 0 0 

3 rd quartile ( 75 th percentile) 0.5 0.4 0.2 0.2 

Min 0 0 0 0 

Max 0.5 0.5 0.6 0.333 

Stdev 0.245 0.204 0.233 0.129 

Std err of the mean 0.110 0.091 0.104 0.058 

FF-Random Mean 0.583 0.58 0.43 0.52 

Median 0.5 0.5 0.4 0.5 

1 st quartile ( 25 th percentile) 0.5 0.4 0.4 0.5 

3 rd quartile ( 75 th percentile) 0.667 0.667 0.5 0.6 

Min 0.25 0.333 0.25 0.4 

Max 1 0.75 0.6 0.6 

Stdev 0.247 0.157 0.117 0.075 

Std err of the mean 0.111 0.070 0.0052 0.033 

FF-RR Mean 0.15 0.323 0.22 0.42 

Median 0 0.333 0.2 0.4 

1 st quartile ( 25 th percentile) 0 0.25 0 0.333 

3 rd quartile ( 75 th percentile) 0.25 0.333 0.4 0.6 

Min 0 0.2 0 0.167 

Max 0.5 0.5 0.5 0.6 

Stdev 0.2 0.102 0.204 0.166 

Std err of the mean 0.089 0.457 0.091 0.074 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

c  

n  

m  

t  

t  

m  

u  

s

7

 

p  

s  

t

 

s  

n  

n  

e  

s  

t

 

w

 

is pictorially represented by the box plots in Fig. 5 where, both

the ADMM implementations, in all the studied problem complex-

ity have the 1 st quartile coinciding with 0. The centralized RR-FF
is able to tie the performance of ADMM in some scenarios, but

its performances are not stable varying the problem complexity,

and it has a hit rate about 20% lower than ADMM in the most

complex scenario (see the mean hit rate row in Table 4 ). Instead,

the Random-FF performs worse for all of the considered problem

complexity. 

The box plots in Fig. 4 , grouped by problem complexity, show

some statistics of the hit rate results, in particular, through their

quartiles. Some of the boxes referring to ADMM are collapsed in

a single line since the 1 swe st and 3 rd quartiles overlap with the

mean value. 

Despite the ADMM is not always able to find the global opti-

mum, in relation to the goodness of the local maximum and con-

sidering its ability to fairly distribute the execution on all the vol-

unteer nodes, it should be considered a compelling approach in

a real distributed implementation, when the centralized approach

can not be practically applied. 

It is worth observing that the size of the optimization vari-

able could be reduced through a simple pre-filtering on the nodes’

memory. Indeed, the memory is a hard-constraint ( Eq. (12a) ) that

must be satisfied by each node independently from the choices

of all other nodes and from the other accepted tasks. Thus, it

is possible that, for each optimization period, all the nodes per-

form an initial bid with the set of tasks for which they can satisfy

the memory constraint. The original problem can then be subdi-

vided into simpler problems, where the memory constraint can be

removed. 

m  
. The optimization framework 

In this section, we briefly formulate other task distribution poli-

ies which can be modeled according to our framework. The defi-

ition of these policies has proved to be straightforward and only

inor changes in the objective function have been required while

he ADMM implementation can be basically used as-is , changing

he f ( X ) in Section 5 , as described in the following. The imple-

entation of all the following policies could be used to obtain an

pper bound for the global optimum while evaluating our other

imulation-based studies e.g., [3,10,13,16,19] . 

.1. Minimization of the termination time for the task set 

In this scenario, we want to minimize the time needed to com-

lete all the tasks in the set. With this approach, the nodes become

ooner free, and thus can more easily execute future requests in

he subsequent allocation period. 

The first step is the construction of the execEnd X vector as de-

cribed in Eq. (12c) , according to the actual choice of the executor

odes. Since the execution end time is zero for the tasks that are

ot executed, a trivial solution could be constituted by no task ex-

cuted by any node. This misleading behavior can be eliminated

timulating the execution by adding a penalty factor for the tasks

hat are not actually executed: 

penalty := c ·
( 

K −
N−1 ∑ 

j=0 

executed T asks ( j ) 

) 

, (40)

here c > 0 is the penalty factor for not executing a task. 

The optimization problem can then be expressed as the mini-

ization of the sum of the total time needed to execute the tasks



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 243 

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 40  50  60  70  80  90  100

H
it 

R
at

e 
(%

)

Problem complexity (number of elements of X)

ILP
ADMM

 distributed ADMM
Random First Fit

Round Robin First Fit

 0

 0.2

 0.4

 0.6

 0.8

 1

 40  50  60  70  80  90  100

R
el

at
iv

e 
er

ro
r 

of
 th

e 
so

lu
tio

ns

Problem complexity (number of elements of X)

ADMM
 distributed ADMM

Random First Fit
Round Robin First Fit

Fig. 3. Numerical results for the ADMM, distributed ADMM, random-FF and RR-FF formulations: hit rate (top) and relative error (bottom). The vertical bar refers to the 

standard error of the mean. 

a

m

s

 

c  

t  

w

7

 

m  

T  

p  

s  

i  

a

m

s

7

 

o  

p  

m  

t  

t

�task  
nd the penalty term mentioned above: 

inimize 

K−1 ∑ 

l=0 

execEnd X (l) + penalty, (41) 

ubject to the constraints (a), (c) and (d). 

In the penalty factor assignment, a more sophisticated strategy

ould take into account the class s of “importance” for the tasks

hat are not executed. This point will be considered in a future

ork. 

.2. Minimization of the response time 

The minimization of the response time proceeds similarly to the

inimization of the termination time for the task set ( Section 7.1 ).

he main difference relies on the choice of the constraints. In this

roblem, each task is assigned to a node, even if is not possible to

atisfy the deadline requirement. This constraint makes useless the
nclusion of a penalty factor and thus the problem is formulated

s: 

inimize 

K−1 ∑ 

l=0 

execEnd X (l) , (42) 

ubject to the constraints (a) and (b). 

.3. Maximization of nodes fairness 

In this case, the goal is the maximization of the distribution

f tasks among nodes. Thus, the highest number of nodes should

articipate in the execution of the task set. The objective function

easures the node _ fairness and is computed as the difference of

asks executed by the node that executes more tasks to the node

hat executes less: 

= max (executedT asks ) − min (executedT asks ) . (43)



244 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

Fig. 4. Box plots for the hit rate, grouped by problem complexity (in increasing order). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g

 

 

e  

o  

t  

c  

i  

s  

a  

u  

1  

i  

n  

n

 

E  

w  

t  

s  

o  

(  

f

 

[

8

 

h  
This strategy, if implemented trivially, brings to a situation

where none of the nodes execute tasks since this situation al-

lows to have �task = 0 . To prevent this vicious behavior from

behalf of the nodes, the number of executed tasks is checked

and for each not executed task a penalty is assigned ( Eq. (40) ).

It is possible to express this problem as a maximization prob-

lem: maximize (node _ fairness ( · · · )) , or dually as a minimization

one: minimize (node _ un fairness ( · · · ) . Our implementation follows

the latter approach: 

minimize �task + penalty, (44)

subject to the constraints (a), (c) and (d). 

7.4. Maximization of nodes greenness 

In this case, the goal is the reduction of the number of nodes

performing computation in a given allocation period, while taking

into account the nodes that are already active and running tasks

belonging to previous periods. The underlying idea is that in this

way the nodes that do not execute any task can shift towards an

energy-saving state. The executed tasks must still respect the dead-

line constraints, but solutions that use a lower number of nodes

are preferred. 

This green policy consolidates the tasks in the smallest possible

number of nodes but, to prevent that no tasks will be executed, a

penalty factor is added ( Eq. (40) ). Maximizing the greenness (i.e.,

maximizing the number of nodes off) is analogous to minimizing

the green cost (i.e., minimizing the number of nodes on ). In the

following we adopted the latter approach. Given c 2 > 0 and b > 0,

the computation of the green cost is articulated in a few steps: 

acti v eNodes t = min 

{ K−1 ∑ 

l=0 

X (l, j) , 1 N 

} 

, (45a)

switched = acti v eNodes t−1 − acti v eNodes t , (45b)
reenCost = c 2 ·
N−1 ∑ 

j=0 

| min { switched ( j ) , 0 N }| + 

− b ·
N−1 ∑ 

j=0 

max { switched ( j ) , 0 N } + penalty. (45c)

The active nodes are evaluated in Eq. (45a) , where the min op-

rator is used to count a node as active disregarding the number

f tasks it is executing (since just one task is enough to require

he node to be running). Then, in Eq. (45b) the nodes that should

hange their state in the current allocation period t are evaluated,

.e., each element of the vector switched ∈ R 

N is 1 if a node can be

witched to an energy-saving state, −1 if a new node needs to be

ctivated, and 0 if no change of the state occurs. It follows that the

ndesired situations occur for the −1 elements of switched, while

 represents the preferred value. Finally, the greenCost is computed

n Eq. (45c) , where the penalty factor c 2 takes into account the

odes that are required to wake-up, while b is a bonus for the

odes switched to energy-saving state. 

In fact, the green optimization problem as formulated in

qs. (45) , turns out to be a multi-criteria optimization problem,

here a trade-off among the benefit of executing more tasks (last

erms of Eq. (45c) ) and the use of fewer nodes (the middle term)

hould be weighted with the need to wake-up further nodes. The

ptimization problem considers the minimization of the greenCost

 Eq. (45c) ) and it is subject to the constraints (a), (c) and (d) of our

ramework. 

Other policies to greening the volunteer cloud can be found in

45] . 

. Conclusions and future work 

The volunteer cloud computing is characterized by a large-scale

eterogeneous and dynamic environment. Such a complex envi-



S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 245 

Fig. 5. Box plots for the relative error with respect to the global optimum solution (ILP), grouped by problem complexity (in increasing order). 

r  

m  

t  

i  

m

 

t  

e  

f  

v  

w  

b  

g  

f  

a  

m  

s  

c  

w  

A  

s  

o  

u  

A  

n

 

i  

t  

o  

t  

t  

t  

E

f  

(  

m

A

 

H  

p  

i

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

onment makes it hard, if not impossible, to perform global opti-

ization algorithms, and to distribute tasks execution requests (of-

en with associated deadline requirements), in a centralized fash-

on. Distributed algorithms are thus advocated, as the only solution

ethods applicable in a real environment. 

In this work, we propose a distributed framework defining

he optimization problem related to the allocation of the tasks

xecution requests according to different policies. Our problem

ormulation has been driven by the requirements of a real en-

ironment that we considered in our other previous simulative

orks [3,10,13,16,19] based on pure heuristic solutions. At the

est of our knowledge, those requirements are instead often ne-

lected in the literature related to the volunteer cloud, simpli-

ying the domain specification while formalizing the problem as

n optimization problem. Examples of the key elements of our

odeling are: execution queue with FIFO policy, tasks with as-

ociated deadline, and evaluation of the actual load on the ma-

hines. Without loss of generality in the context of our frame-

ork, one of these policies has been implemented relying on the

DMM, with various parallelism capabilities. The numerical re-

ults show that, despite the ADMM is just a heuristic in presence

f a non-convex problem (as in our formulation), it can still be

sed successfully. Up to the authors’ knowledge, the application of

DMM for task scheduling in the context of the volunteer cloud is

ovel. 

We conclude by mentioning that, in a real domain, a single pol-

cy could be driven by multiple goals. We are investigating how

o fruitfully integrate multi-criteria optimization techniques [46] in

ur framework. A further point that can be investigated to increase

he realism of our model is related to the time required to transfer

he task towards the executor node (recalling that, in the volun-

eer cloud, each node acts as both task producer and consumer).

.g., evaluating the execTime it is possible to build a “local-view”

or each node. In each allocation period the tasks could be sorted
preferred) by each node according to the above mentioned trans-

ission cost. 

cknowledgment 

This research was partially supported by the EU through the

OME/2013/CIPS/AG/40 0 0 0 05013 project CI2C . The contents of the

aper do not necessarily reflect the position or the policy of fund-

ng parties. 

eferences 

[1] Cunsolo VD, Distefano S, Puliafito A, Scarpa M. Volunteer computing and desk-

top cloud: the cloud@home paradigm. In: Proceedings of the eighth IEEE in-

ternational symposium on network computing and applications (NCA); 2009.
p. 134–9. doi: 10.1109/NCA.2009.41 . 

[2] Satyanarayanan M, Bahl P, Caceres R, Davies N. The case for VM-based
cloudlets in mobile computing. IEEE Pervasive Comput 2009;8(4):14–23.

doi: 10.1109/MPRV.2009.82 . 
[3] Sebastio S, Amoretti M, Lluch Lafuente A. AVOCLOUDY: a simulator of volun-

teer clouds. Softw Pract Exp 2016;46(1):3–30. doi: 10.1002/spe.2345 . 

[4] Costa F, Silva L, Dahlin M. Volunteer cloud computing: mapreduce over the
internet. In: Proceedings of the 2011 IEEE international symposium on par-

allel and distributed processing workshops and Phd forum (IPDPSW); 2011.
p. 1855–62. doi: 10.1109/IPDPS.2011.345 . 

[5] Anderson DP. BOINC: a system for public-resource computing and storage. In:
Proceedings of the 5th IEEE/ACM international workshop on grid computing

(GRID ’04). Washington, DC, USA: IEEE Computer Society; 2004. p. 4–10. ISBN

0-7695-2256-4. doi: 10.1109/GRID.2004.14 . 
[6] Thain D , Tannenbaum T , Livny M . Distributed computing in practice: the con-

dor experience.. Concurr Pract Exp 2005;17(2-4):323–56 . 
[7] Brasileiro F, Araujo E, Voorsluys W, Oliveira M, Figueiredo F. Bridging the high

performance computing gap: the ourgrid experience. In: Proceedings of the
seventh IEEE international symposium on cluster computing and the grid (CC-

GRID ’07). Washington, DC, USA: IEEE Computer Society; 2007. p. 817–22. ISBN
0-7695-2833-3. doi: 10.1109/CCGRID.2007.28 . 

[8] Cappos J, Beschastnikh I, Krishnamurthy A, Anderson T. Seattle: a platform

for educational cloud Computing. SIGCSE Bull 2009;41(1):111–15. doi: 10.1145/
1539024.1508905 . 

[9] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. SETI@home: an
experiment in public-resource computing. Commun ACM 2002;45(11):56–61. 

doi: 10.1145/581571.581573 . 

http://dx.doi.org/10.1109/NCA.2009.41
http://dx.doi.org/10.1109/MPRV.2009.82
http://dx.doi.org/10.1002/spe.2345
http://dx.doi.org/10.1109/IPDPS.2011.345
http://dx.doi.org/10.1109/GRID.2004.14
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0006
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0006
http://dx.doi.org/10.1109/CCGRID.2007.28
http://dx.doi.org/10.1145/1539024.1508905
http://dx.doi.org/10.1145/581571.581573


246 S. Sebastio et al. / Computers and Operations Research 81 (2017) 231–246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[10] Sebastio S, Scala A. A workload-based approach to partition the volunteer
cloud. In: Proceedings of the 2015 IEEE conference on collaboration and in-

ternet computing (CIC); 2015. p. 210–18. doi: 10.1109/CIC.2015.27 . 
[11] Babaoglu O, Marzolla M, Tamburini M. Design and implementation of a P2P

cloud system. In: Proceedings of the 27th annual ACM symposium on applied
computing (SAC ’12). New York, NY, USA: ACM; 2012. p. 412–17. ISBN 978-1-

4503-0857-1. doi: 10.1145/2245276.2245357 . 
[12] Di Nitto E, Dubois DJ, Mirandola R. On exploiting decentralized bio-inspired

self-organization algorithms to develop real systems. In: Proceedings of the

2009 ICSE workshop on software engineering for adaptive and self-managing
systems (SEAMS ’09). Washington, DC, USA: IEEE Computer Society; 2009.

p. 68–75. ISBN 978-1-4244-3724-5. doi: 10.1109/SEAMS.2009.5069075 . 
[13] Amoretti M, Lafuente AL, Sebastio S. A cooperative approach for distributed

task execution in autonomic clouds. In: Proceedings of the 2013 21st euromi-
cro international conference on parallel, distributed and network-based pro-

cessing, (PDP); 2013. p. 274–81. doi: 10.1109/PDP.2013.47 . 

[14] Talia D . Cloud computing and software agents: towards cloud intelligent ser-
vices. In: Fortino G, Garro A, Palopoli L, Russo W, Spezzano G, editors. Pro-

ceedings of the 12th workshop on objects and agents, Rende (CS), Italy, Jul
4-6, 2011. CEUR Workshop Proceedings, vol. 741; 2011. p. 2–6 . CEUR-WS.org 

[15] Dorigo M , Gambardella LM . Ant colony system: a cooperative learning
approach to the traveling salesman problem. IEEE Trans Evol Comput

1997;1(1):53–66 . 

[16] Sebastio S, Amoretti M, Lluch Lafuente A. A computational field framework
for collaborative task execution in volunteer clouds. In: Proceedings of the

9th international symposium on software engineering for adaptive and self-
managing systems (SEAMS 2014). New York, NY, USA: ACM; 2014. p. 105–14.

ISBN 978-1-4503-2864-7. doi: 10.1145/2593929.2593943 . 
[17] Tsai J-T, Fang J-C, Chou J-H. Optimized task scheduling and resource allocation

on cloud computing environment using improved differential evolution algo-

rithm. Comput Oper Res 2013;40(12):3045–55. doi: 10.1016/j.cor.2013.06.012 . 
[18] Zambonelli F., Mamei M. Spatial computing: an emerging paradigm for auto-

nomic computing and communication. In: Smirnov M., editor. Autonomic com-
munication; vol. 3457of Lecture Notes in Computer Science. Springer, Berlin,

Heidelberg. ISBN 978-3-540-27417-9;, p. 44–57. 10.1007/11520184_4. 
[19] Celestini A, Lluch Lafuente A, Mayer P, Sebastio S, Tiezzi F. Reputation-based

cooperation in the clouds. In: Zhou J, Gal-Oz N, Zhang J, Gudes E, editors. Trust

management VIII. IFIP Advances in Information and Communication Technol-
ogy, vol. 430. Berlin, Heidelberg: Springer; 2014. p. 213–20. ISBN 978-3-662-

43812-1. doi: 10.1007/978- 3- 662- 43813- 8 _ 15 . 
[20] Boyd S , Parikh N , Chu E , Peleato B , Eckstein J . Distributed optimization and

statistical learning via the alternating direction method of multipliers. Found
Trends Mach Learn 2011;3(1):1–122 . 

[21] Grant M., Boyd S.. CVX: matlab software for disciplined convex programming,

version 2.1. http://cvxr.com/cvx ; 2014. 
[22] Gurobi Optimization I.. Gurobi Optimizer Reference Manual. 2015. http://www.

gurobi.com . 
[23] Haridas H, Kailasam S, Dharanipragada J. Cloudy knapsack problems: an op-

timization model for distributed cloud-assisted systems. In: Proceedings of
the 14th IEEE international conference on peer-to-peer computing (P2P); 2014.

p. 1–5. doi: 10.1109/P2P.2014.6934313 . 
[24] Malawski M, Figiela K, Nabrzyski J. Cost minimization for computational

applications on hybrid cloud infrastructures. Futur Gener Comput Syst

2013;29(7):1786–94. doi: 10.1016/j.future.2013.01.004 . 
[25] Fourer R , Gay DM , Kernighan B . AMPL: a modeling language for mathematical

programming. 2nd. Cengage Learning; 2002. ISBN 0-534-38809-4 . 
[26] Malawski M, Figiela K, Bubak M, Deelman E, Nabrzyski J. Scheduling multilevel
deadline-constrained scientific workflows on clouds based on cost optimiza-

tion. Sci Program 2015;2015:1–13. doi: 10.1155/2015/680271 . 
[27] Wendell P, Jiang JW, Freedman MJ, Rexford J. DONAR: decentralized server se-

lection for cloud services. SIGCOMM Comput Commun Rev 2010;41(4). doi: 10.
1145/1851275.1851211 . 

[28] Xu H, Li B. Joint request mapping and response routing for geo-distributed
cloud services. In: Proceedings IEEE INFOCOM; 2013. p. 854–62. doi: 10.1109/

INFCOM.2013.6566873 . 

[29] Li B, Song SL, Bezakova I, Cameron KW. EDR: an energy-aware runtime load
distribution system for data-intensive applications in the cloud. In: Proceed-

ings of the 2013 IEEE international conference on cluster computing (CLUS-
TER); 2013. p. 1–8. doi: 10.1109/CLUSTER.2013.6702674 . 

[30] Nedic A, Ozdaglar A, Parrilo PA. Constrained consensus and optimization in
multi-agent networks. IEEE Trans Autom Control 2010;55(4):922–38. doi: 10.

1109/TAC.2010.2041686 . 

[31] Zhu Q, Zeng H, Zheng W, Natale MD, Sangiovanni-Vincentelli A. Optimization
of task allocation and priority assignment in hard real-time distributed sys-

tems. ACM Trans Embed Comput Syst 2013;11(4):1–30. doi: 10.1145/2362336.
2362352 . 

[32] IBM. ILOG CPLEX optimizer. https://www.ibm.com/software/commerce/
optimization/cplex-optimizer , March 2014. 

[33] Boyd S , Vandenberghe L . Convex optimization. New York, NY, USA: Cambridge

University Press; 2004. ISBN 0521833787 . 
[34] Ghadimi E, Teixeira A, Shames I, Johansson M. Optimal parameter selection for

the alternating direction method of multipliers (ADMM): quadratic problems.
IEEE Trans Autom Control 2015;60(3):644–58. doi: 10.1109/TAC.2014.2354892 . 

[35] Feizollahi MJ, Costley M, Ahmed S, Grijalva S. Large-scale decentralized unit
commitment. Int J Electr Power Energy Syst 2015;73(0):97–106. doi: 10.1016/j.

ijepes.2015.04.009 . 

[36] Miksik O , Vineet V , Pérez P , Torr P . Distributed non-convex ADMM-based in-
ference in large-scale random fields. Proceedings of the British machine vision

conference. BMVA Press; 2014 . 
[37] The service level agreement. 2015. http://www.sla-zone.co.uk . 

[38] Grant M, Boyd S. Graph implementations for nonsmooth convex programs. In:
Blondel V, Boyd S, Kimura H, editors. Recent advances in learning and con-

trol. Lecture Notes in Control and Information Sciences. Springer-Verlag Lim-

ited; 2008. p. 95–110 . http://stanford.edu/ ∼boyd/graph _ dcp.html 
[39] Karp RM. Reducibility among combinatorial problems. In: Miller R, Thatcher J,

Bohlinger J, editors. Complexity of computer computations. The IBM Research
Symposia Series. US: Springer; 1972. p. 85–103. ISBN 978-1-4684-2003-6.

doi: 10.1007/978- 1- 4684- 2001- 2 _ 9 . 
[40] Nocedal J , Wright SJ . Numerical optimization. 2nd. New York: Springer; 2006 . 

[41] Cormen TH , Leiserson CE , Rivest RL , Stein C . Introduction to algorithms. 3rd.

The MIT Press; 2009 . 
[42] Mishra AK , Hellerstein JL , Cirne W , Das CR . Towards characterizing cloud back-

end workloads: insights from google compute clusters. ACM SIGMETRICS Per-
form Eval Rev 2010;37(4):34–41 . 

[43] Hellerstein J.L.. Google cluster data, Google research blog, 2010. Posted at http:
//googleresearch.blogspot.com/2010/01/google- cluster- data.html . 

44] Trivedi KS . Probability and statistics with reliability, queuing and computer
science applications. 2nd ed. Chichester, UK: John Wiley and Sons Ltd.; 2002.

ISBN 0-471-33341-7 . 

[45] Sebastio S., Gnecco G.. A green policy to schedule tasks in a distributed cloud.
Submitted for publication 2016. 

[46] Ehrgott M. Multicriteria optimization. 2nd ed. Springer; 2005. ISBN 978-3-540-
21398-7. doi: 10.1007/3- 540- 27659- 9 . 

http://dx.doi.org/10.1109/CIC.2015.27
http://dx.doi.org/10.1145/2245276.2245357
http://dx.doi.org/10.1109/SEAMS.2009.5069075
http://dx.doi.org/10.1109/PDP.2013.47
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0014
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0015
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0015
http://dx.doi.org/10.1145/2593929.2593943
http://dx.doi.org/10.1016/j.cor.2013.06.012
http://dx.doi.org/10.1007/978-3-662-43813-8_15
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0019
http://cvxr.com/cvx
http://www.gurobi.com
http://dx.doi.org/10.1109/P2P.2014.6934313
http://dx.doi.org/10.1016/j.future.2013.01.004
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0022
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0022
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0022
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0022
http://dx.doi.org/10.1155/2015/680271
http://dx.doi.org/10.1145/1851275.1851211
http://dx.doi.org/10.1109/INFCOM.2013.6566873
http://dx.doi.org/10.1109/CLUSTER.2013.6702674
http://dx.doi.org/10.1109/TAC.2010.2041686
http://dx.doi.org/10.1145/2362336.2362352
http://ceur-ws.org/Vol-741/INV02_Talia.pdf
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0029
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0029
http://dx.doi.org/10.1109/TAC.2014.2354892
http://dx.doi.org/10.1016/j.ijepes.2015.04.009
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0032
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0032
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0032
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0032
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0032
http://www.sla-zone.co.uk
http://stanford.edu/~boyd/graph_dcp.html
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0035
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0035
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0035
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0036
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0036
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0036
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0036
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0036
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0037
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0037
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0037
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0037
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0037
http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0038
http://refhub.elsevier.com/S0305-0548(16)30266-0/sbref0038
http://dx.doi.org/10.1007/3-540-27659-9

	Optimal distributed task scheduling in volunteer clouds
	1 Introduction
	2 Related work
	2.1 The ADMM: alternating direction method of multipliers

	3 The volunteer cloud computing model
	3.1 Tasks
	3.2 Virtual resources

	4 The optimization problem
	4.1 Data structures
	4.2 Allocation policies

	5 Maximization of the number of executed tasks
	 Note on the Optimization Problem
	5.1 ADMM: unscaled form and augmented Lagrangian
	5.2 ADMM: scaled form and augmented Lagrangian
	5.3 Distributed ADMM using global consensus
	5.4 Distributed ADMM using global consensus, scaled form
	5.5 A more distributed ADMM using global consensus
	5.6 About distributing the optimization problem with ADMM

	6 Implementation and numerical results
	6.1 Scenario
	6.2 Results

	7 The optimization framework
	7.1 Minimization of the termination time for the task set
	7.2 Minimization of the response time
	7.3 Maximization of nodes fairness
	7.4 Maximization of nodes greenness

	8 Conclusions and future work
	 Acknowledgment
	 References


