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Abstract: A methodology for synthesizing robust optimal input trajectories for
constrained linear hybrid systems subject to bounded additive disturbances is
presented. The computed control sequence optimizes nominal performance while
robustly guarantees that safety/performance constraints are respected. Specifi-
cally, for hybrid systems representable in the piecewise affine form, robustness
is achieved with an open-loop optimization strategy based on the mixed logical
dynamical modelling framework.
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1. INTRODUCTION

With the spread of dynamical systems integrated
with logical/discrete decision components and a
market competition pressure to achieve fast and
“optimal” designs, the study of dynamical pro-
cesses having continuous and discrete variables,
designated as hybrid systems, has gained increas-
ing attention, and their study has recently seen
a rapid development, thanks to the interaction
between the computer science and the control
engineering communities, motivated by the effect
on applications e.g. embedded systems, chemical
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and biotechnologic processes, aerospace, manu-
facturing, robotics, automotive applications, etc.
(Antsaklis, 2000). In the industrial context, the
synthesis of control schemes for hybrid systems
is usually approached with heuristic rules, mainly
driven by engineering insight and experience, with
a consequently long design and verification pro-
cess. Therefore, the development of new tools
to design control/supervisory schemes for hybrid
systems and to analyze their stability, safety and
performance is of great importance, and the grow-
ing interest of researchers and practioners on
hybrid systems led to the development of new
optimal control techniques suitable to this class
of dynamic systems. By thinking of a hybrid
system as one characterized by a set of operat-
ing modes, each one evolving according to time-
driven dynamics, and switching between modes



through discrete events which may be controlled
or uncontrolled, the control of the switching times
and the choice among several feasible modes,
gave rise to a new rich class of optimal control
problems. Several researchers presented new tech-
niques to obtain solutions for some subclasses
of this new class of optimal control problems,
e.g. (Bemporad and Morari, 1999; Branicky et
al., 1998; Cassandras et al., 2001; Hedlund and
Rantzer, 1999; Kerrigan and Mayne, 2002; Mayne
and Rakovic, 2003), just to mention a few. Some
of the presented techniques extend classical op-
timal control principles, others apply dynamic
programming techniques, while others also use
tools from computational geometry and optimiza-
tion such as, parametric programming, convex
and mixed integer optimization. The choice of a
suitable modelling framework, which is the fun-
damental infrastructure for the study of dynamic
systems, is a trade-off between two conflicting cri-
teria: the modelling power and the decisive power.
Unfortunately, analysis and control problems for
“simple” hybrid systems have an intrinsic high
computational load (Blondel and Tsitsiklis, 2000).
Specifically, for piecewise linear systems, a class
of hybrid systems proposed by Sontag (1981),
most analysis and control problems are undecid-
able or NP-hard. However, in spite of that in-
herent complexity, the progress of microproces-
sor technology, as well as of efficient software
tools, make possible to tackle low and medium-
size complex computational problems, when de-
cidable. The crescent interest on hybrid systems
can be shown by the variety of proposed modelling
frameworks e.g.: Generalized Hybrid Dynamical
Systems (Branicky et al., 1998), Petri Nets (David
and Alla, 1994), PieceWise Affine (PWA) sys-
tems (Sontag, 1981), Linear and Extended Lin-
ear Complementary (ELC) systems (Schutter and
Moor, 1999), Max-Min-Plus-Scaling (MMPS) sys-
tems (Schutter and van den Boom, 2001), Mixed
Logic Dynamical (MLD) systems (Bemporad and
Morari, 1999). Heemels et al. (2001) proved the
equivalence among PWA, ELC, MMPS, and MLD
systems, allowing to interchange analysis and syn-
thesis tools among them. Specifically, the MLD
framework allows to model systems described by
interdependent physical laws (with linear dynam-
ics), logic rules (if-then-else rules) and operating
constraints. In fact, the MLD framework is a
compromise between modelling power and com-
plexity. Another important characteristic of the
MLD model is its optimization-oriented structure,
allowing to “smoothly” extend existing optimal
control methodologies developed for continuous-
valued dynamics to the hybrid setting. More
recently, the important topic of uncertainty in
the system, which may occur due to paramet-
ric uncertainties and/or effect of disturbances,
present on the continuous linear dynamics of

the hybrid model, was also recently studied by
some authors. Backward reachability computa-
tions (Lin et al., 2002), as well as polytopic set
algebra (Kerrigan et al., 2002) are the tools pro-
posed to deal with the nonlinearity and non-
convexity properties of the hybrid/PWA system.
In (Kerrigan and Mayne, 2002) it is considered the
robust time-optimal, robust optimal and robust
receding horizon control problems, and tools from
computational geometry, dynamic and parametric
programming are used to obtain explicit state-
feedback control laws. However, as expected due
to the complexity of the tackled problems, the
algorithms might be too inefficient to be real-
izable for large or complex systems, as the au-
thors remark. In order to take advantage of the
optimization-oriented characteristic of the MLD
framework, the method presented in this paper
extends it to systems subject to bounded ad-
ditive disturbances, presenting a computational
procedure, based on mixed-integer programming,
to obtain open-loop control sequences that guar-
antee the fulfillment of dynamic and operating
constraints and optimize a nominal performance
criterion. The paper has the following structure.
In Section 2, the problem is formulated. The con-
trol synthesis algorithm is presented in Section 3.
Section 4 is devoted to an illustrative example,
and in Section 5 some conclusions are drawn.

2. PROBLEM DEFINITION

The goal of this paper is to propose a methodol-
ogy to solve a discrete-time finite-horizon optimal
control problem, using the MLD framework, of
an uncertain linear hybrid system. As the PWA
modelling framework is rather intuitive and de-
scriptive, we assume that the system is described
within this framework. Therefore, consider the
following discrete-time PWA system perturbed
by bounded additive disturbances, and subject
to performance / safety / operational constraints
C(.),

x(k + 1) = Aix(k) + Biu(k) + ei + Wiv(k) , if[
x(k)
u(k)

]
∈ Ωi � {

[
x(k)
u(k)

]
: Fix(k) + Giu(k) ≤ hi}

(1a)[
x(k)
u(k)

]
∈ C(k) � {

[
x(k)
u(k)

]
: K(k)x(k)+

+ L(k)u(k) ≤ m(k)},∀k ∈ {0, . . . , N} (1b)

where u(k) ∈ U ⊂ R
m, x(k) ∈ X ⊂ R

n and v(k) ∈
V ⊂ R

p denote the input, state and disturbance
vectors, respectively, at time k; the index i repre-
sents the current discrete mode (i ∈ {1, . . . , s});
the partitions Ωi are convex polytopes (i.e. closed
and bounded polyhedra) in the input+state space;

Ω =
s⋃
i=1 Ωi,

◦
Ωi

⋂ ◦
Ωj= ∅, ∀ i �= j, where

◦
Ωi denotes the interior of the polytope Ωi; U,



X are convex polytopes, as well as V, according
to the typical unknown-but-bounded characteri-
zation of disturbances, with 0 ∈ V; C(k) denotes
sets of (possibly time-varying) constraints on the
input+state space; Ai, Bi, Wi, Fi, Gi, K(k) and
L(k) are real matrices of appropriate dimensions,
hi and m(k) are real vectors, and ei is the affine
real vector, for all i = 1, . . . , s.

As shown by Bemporad and Morari (1999), the
PWA system can be expressed as an MLD system,
by transforming logical facts involving continuous
variables into linear inequalities involving integer
and continuous variables. The technique allows
to arrive at an equivalent MLD model of the
PWA dynamics, where the first inequality con-
cerns the continuous/discrete interface, the second
inequality concerns the discrete/continuous inter-
face, and the last inequality represents operational
constraints,

x(k + 1) = Bzx
zx(k) + Bzu

zu(k) + Bδδ(k)+
+ Bzv

zv(k) (2a)

E
c/d
δ δ(k) ≤ E c/d

x x(k) + E c/d
u u(k) + e c/d (2b)

Ed/c
zx

zx(k) + Ed/c
zu

zu(k) + E
d/c
δ δ(k) + Ed/c

zv
zv(k)

≤ Ed/c
x x(k) + Ed/c

u u(k) + Ed/c
v v(k) + ed/c (2c)

Ectr
x x(k) + Ectr

u u(t) ≤ ectr, (2d)

where inequalities should be understood component-
wise and ∀k ∈ {0, . . . , N}; δ(k) is an auxiliary
vector with binary (zero/one) entries that defines
the mode i (or equivalently partition i) of the
system (dim[δ] = (s × 1)), moreover if mode i is
active then δi(k) = 1 and δj(k) = 0, ∀j �= i, i, j ∈
{1, . . . , s} (these constraints are incorporated in
inequality (2b)); zxi(k) = δi(k)x(k) are auxiliary
continuous variable (dim[zxi] = dim[x] = (n×1));
using the Kronecker product to abbreviate nota-
tion, zx(k) = δ(k) ⊗ x(k), (dim[zx] = (s · n × 1));
zu(k) = δ(k) ⊗ u(k) (dim[zu] = (s · m × 1)) and
zv(k) = δ(k)⊗ v(k) (dim[zv] = (s · p× 1)). Notice
also, that Bzx

≡ [ A1 A2 ... As ], Bzu
≡ [ B1 B2 ... Bs ],

Bδ ≡ [ e1 e2 ... es ], and Bzv
≡ [ W1 W2 ... Ws ]. Al-

though well-poseness of (2) and knowledge of ini-
tial state, disturbances and control inputs allows
the simulation of system behavior, the computa-
tion of optimal control sequences based on the
prediction of future states, assuming that distur-
bances are unknown and the only information
about them are their bounds, is a much harder
task. In fact, the MLD framework was developed
to deal with deterministic systems and its exten-
sion to uncertain systems rises some problems,
since the predicted state x(k) is set-valued, and
owing to the nonlinearity of the system those sets
are non-convex and the effect of the disturbance
on the state is dependent on the trajectory of
the system. Therefore, the typical approach used
for linear systems, e.g. by Scokaert and Mayne
(1998), of using the extreme disturbance realiza-

tions can not be directly applied in this case. To
overcome the aforementioned problem, Silva et al.
(2003) proposed to restrict the admissible control
sequences such that, for every value of the distur-
bance, the mode of the system is unique at each
time step k. The main property of this robust mode
control sequence is to guarantee that the mode of
the system is “certain” and, for each admissible
control sequence, the uncertainty associated with
the state is defined by a convex set. This extra
structure on the dynamics of the controlled system
is advantageous from a computational point of
view, though it (may) lead to smaller domain of
feasible control sequences, which could be com-
pensated by extending the robust mode control
concept to a closed-loop prediction policy. Within
the MLD modelling framework, the robust mode
control restriction is expressed by the following
condition (Silva et al., 2003)

δ(k) =F(x(k), u(k)) , ∀v(.) ∈ V, (3)

Notice that if the input sequence uk
0 is such that

(3) is respected, then the mode of the system, i.e.
δ(j), is independent of the disturbance realization,
for all instants j ∈ {0, . . . , k}, and the state
at time step k + 1, which is set-valued, can be
decomposed as follows xu(k + 1) = x̄u(k + 1) +
x̃u(k + 1), where the first term represents the
nominal trajectory and the second term denotes
the convex uncertainty set associated with the
state, which depends on δk

0 and on V
k
0 .

By including the constraint (3) into (2b), we ob-
tain the MLD-based prediction/synthesis model.
To achieve a finite number of constraints, and by
noticing that the state-set generated by the dis-
turbance is convex, one considers the extreme dis-
turbance realizations vl �

{
vl(0), . . . , vl(N − 1)

}
,

indexed by l ∈ Lv, i.e. all disturbance sequences
that take values at the vertices of the polytope
V

N−1
0 . We consider also that xl denote the state

associated with the respective disturbance real-
ization, and we assume the same notation for the
other variables. Hence, we define the robust mode
optimal control problem as follows,

Problem 1. Given an initial state x0 and a final
time N , find (if it exists) the control sequence
u ≡ {u(0), u(1), . . . , u(N − 1)}, and the auxiliary
sequences δ, zu and zx, which (i) transfer the state
from x0 to a given final set C(N) that contains a
target state xf and (ii) minimize the performance
index

JN (x0,u, δ, zu, zx) �
N−1∑
k=0

‖x̄(k) − xf‖2
Q,2+

+‖u(k) − uf‖2
R,2 + ‖x̄(N) − xf‖2

P,2 (4)

subject, ∀l ∈ Lv ,∀k, to:



xl(k + 1) = Bzx
zl
x(k) + Bzu

zu(k) + Bδδ(k)+

+ Bzv
zl
v(k)xl(0) = x0 (5a)

E
c/d
δ δ(k) ≤ Ec/d

x xl(k) + Ec/d
u u(k) + ec/d (5b)

Ed/c
zx

zl
x(k) + Ed/c

zu
zu(k) + E

d/c
δ δ(k) + Ed/c

zv
zl
v(k)

≤ Ed/c
x xl(k) + Ed/c

u u(k) + Ed/c
v vl(k) + ed/c

(5c)

Ectr
x xl(k) + Ectr

u u(t) ≤ ectr (5d)

where ‖x‖2
Q,2 � x′Qx; x̄(k) represents the nom-

inal trajectory; zx � {z1
x, . . . , zq

x}, where q is
the number of indices in Lv; Q, R and P are
symmetric positive definite matrices; and xf and
uf are given desired target vectors.

3. SYNTHESIS ALGORITHM

Due to the presence of integer variables δ, Prob-
lem P1 defines a Mixed Integer Quadratic Pro-
gramming (MIQP) problem, which can be effi-
ciently solved by branch and bound based meth-
ods. Branch-and-bound is a strategy for solving
optimization problems with a combinatorial char-
acteristic. It proceeds by traversing a tree in which
each node is a simpler (relaxed) “subproblem” of
the original problem, such that the optimal so-
lution of these subproblems defines lower bounds
on the cost of the original problem. The algorithm
presented nextly is based on this strategy, and can
be seen as extension of the procedure proposed by
Bemporad and Morari (1999), though the latter
did not consider uncertainty on system dynamics.
Before starting the description of the algorithm,
consider the following notation. The optimal cost
of problem P1 is generically denoted by VN (P )
and its optimal solution by arg∗ (P ). Problem
P (∆j

0)) corresponds to problem P though fixing
the first j + 1 components of the sequence δ to
the values defined by ∆j

0, and relaxing the others
N − j − 1 binary variables to the [0, 1] real inter-
val. The problem at the root node is denoted by
P (root) (or by P (∆−1

0 )), and is obtained relaxing
all binary variables which compose δ. The opti-
mal cost of each subproblem P (∆j

0) is denoted
by VN (P (∆j

0)) and its solution by arg∗(P (∆j
0)).

Next, the pseudo code that define the main steps
of the algorithm to solve problem P1 is presented.

Algorithm 1.
Initialize all data structures: S = ∅ (empty stack),
j = −1, VN (P ) = ∞, arg∗(P ) = “infeasible”,
(note: P (∆−1

0 ) ≡ P (root));
Push P (∆j

0) onto the top of stack S;
While S �= ∅ do

Pop P (∆j
0) off the top of the stack S and solve

P (∆j
0);

If arg∗(P (∆j
0)) is feasible (i.e. δN−1

j+1 is binary
and the solution respects all constraints) and

VN (P (∆j
0)) < VN (P ) then assign

VN (P ) = VN (P (∆j
0)), arg∗ (P ) = arg∗(P (∆j

0));
Else

If VN (P (∆j
0)) < VN (P ) then Subdivide

P (∆j
0) into s subproblems, by generating the

branches corresponding to all possible s vectors
(modes) of δ(j + 1|t) (fix the i component to one
and the others to zero); sort the problems by
decreasing value of VN (P (∆j+1

0 )) and index the
sorted problems at each node by the l variable,
i.e. by P l(∆j+1

0 );
For l = 1 to s

If VN (P l(∆j+1
0 )) < VN (P ) then Push

P l(∆j+1
0 ) onto the top of S;

Endif ; Endfor; Endif ; Endifelse; Endwhile;
Return “Optimal cost and optimal argument of
problem P :” VN (P ), arg∗(P ).

The algorithm executes the following steps. At
the root node, all binary variables of δ are re-
laxed. Therefore, P (root) is solved, meaning to
solve a Quadratic Programming (QP) problem.
The cost VN (P (root)) is a lower bound on the
optimal cost of the original problem P because
P (root) is less constrained since the binary vari-
ables are relaxed. The next level of the tree is
composed with the nodes generated by imposing
to each branch one of the possible s modes of
δ0

t = {δ(0|t)}. At each node, the problem P (∆0
0)

is solved, i.e. δ(0|t) is fixed equal to ∆0
0 and se-

quence {δ(1|t), . . . , δ(N − 1|t)} is relaxed. These
problems define again QP problems. The optimal
cost of each one of the s P (∆j

0) problems, i.e.
VN (P (∆j

0)), is computed and compared with the
cost of the best existing feasible solution (which is
an upper bound of the optimal cost of the original
problem). If no solution is found or the computed
cost is higher or equal to the existing feasible one,
then the associated subtree is discarded, since the
obtained optimal cost is a lower bound of VN (P )
on that path. If the computed optimal cost is
lower than the cost of the best existing feasible
solution then another set of s branches are gener-
ated from that node. If the optimal solution of an
intermediate node is binary, the node is labelled
as “fathomed”, and no more nodes are generated
from this one, and if adequate its solution substi-
tutes the current upper bound of the optimal cost
of the original problem. The algorithm proceeds
choosing the node with lower cost, until all nodes
have been investigated/discarded.

The presented algorithm is based on a problem
formulation that explicitly considers the state tra-
jectories associated with all possible disturbance
vertices. Therefore, this formulation substantially
increases the number of constraints and variables
of the associated optimal control problem compar-
ing to the nominal problem. In fact, the cardinal-



ity of Lv is exponential on the prediction horizon
N , specifically if q is the number of vertices of
V then the number of constraints and variables
increase by qN . To circumvent this problem a
different methodology is presented in (Silva et
al., 2003), which main idea is to compute the max-
imum effect of the disturbance for each component
of the constraints by using linear programming.

4. ILLUSTRATIVE EXAMPLE

We will now apply the presented methodology
to the two tank system depicted in Figure 1,
which is based on a benchmark problem for hybrid
systems (see e.g. (Bemporad et al., 1999)). The
variables have the following meaning: hi is the
liquid level in tank Ti and Q{1,2,3} represents the
volumetric flow across valve V{1,2,3}. Valve V1 is
unidirectional, allowing flow from tank T1 to tank
T2; valve V2 is bidirectional and on/off, controlled
by an electric signal C2 with the following char-
acteristic: C2 ∈ [0, 0.5[ – Off, C2 ∈ [0.5, 1] – On;
valve V3 is also bidirectional but not controlled.
The control objective is to regulate the flow Q3,
which in practice is equivalent to regulate the
level h2, by using signal C2 and also controlling
flow Q4, which is limited between [0, Q4M ]. The
system is perturbed by a bounded disturbance
flow Q5 ∈ [Q5m, Q5M ]. System nonlinearities are
due to the constitutive nonlinear characteristic of
the valves, to the position of valve V1 above the
“ground” level that enforces a change of dynamics
dependent on the levels of liquid on both tanks,
unidirectionality of valve V1, and on/off charac-
teristic of valve V2. The PWA model is obtained
by first considering the partition of the state-space
(h1, h2) into four different regions, which have dif-
ferent dynamics dependent on the height of h1, h2,
and hv (see Figure 2, where (h1, h2) = (x1, x2)).
The inherent nonlinearity in the flow across valve
l, from tank i to tank j, when the levels (measured
from the valve) are hi and hj respectively, will
be linearized, for each partition, using the same
procedure as in (Bemporad et al., 1999): Ql(i→j) =
Cl klsign(hi − hj)

√|hi − hj | ≈ Cl
1

Rl
(hi − hj),

where Cl is the On/Off control of the valve (if
valve Vl is not controlled then Cl = 1), kl is a
coefficient of resistance for the valve and Rl is
the inverse of the coefficient resulting from the
linearization. Each one of the four state depen-
dent partitions has different dynamics depending
if valve V2 is on or off, so the system is charac-
terized by eight modes. At modes 1–4 valve V2

is fully open, while at modes 5–8 it is completely
closed (see Figure 2). To obtain a discrete-time
PWA model, continuous dynamic equations are
approximated by the forward Euler integration
method, i.e. ẏ(k) ≈

y(k+1)−y(k)
Ts

. Table 1 presents
the numerical values of system parameters, and

Fig. 1. Two tank system

Table 1. System parameters. Height is
measured in meters and flow in cubic

meters by second.

Symbol Meaning Value

hv Height of V1 5
h1M Max. liquid level in T1 10
h2M Max. liquid level in T2 10

A1 Cross-sectional area of T1 20
A2 Cross-sectional area of T2 10

Q4M Max. input flow into T1 0.05
Q5m Min. disturbance flow into T1 −0.001
Q5M Max. disturbance flow out of T1 0.001
R1 V1 linearized resistance coef. 200

R2a
V2 linearized resistance coef.

(Used in modes {1,2,3}) 350

R2b
V2 linearized resistance coef.

(Used in mode {4}) 500

R3a
V3 linearized resistance coef.

(Used in modes {2,6}) 700

R3b
V3 linearized resistance coef.
(Used in modes {1,3,4,5,7,8}) 1000

Ts Sampling interval 1

Table 2. Numerical parameters of the
PWA system model.

mode Ai Bi ei Wi

1
[

0.6071 0.3929
0.7857 0.1143

] [
50 0
0 0

] [
0
0

] [
50
0

]
2

[
0.6071 0.1429
0.7857 0.5714

] [
50 0
0 0

] [
1.25
−2.5

] [
50
0

]
3

[
0.8571 0.1429
0.2857 0.6143

] [
50 0
0 0

] [
0
0

] [
50
0

]
4

[
0.9000 0.1000
0.2000 0.7000

] [
50 0
0 0

] [
0
0

] [
50
0

]
5

[
0.7500 0.2500
0.5000 0.4000

] [
50 0
0 0

] [
0
0

] [
50
0

]
6

[
0.7500 0.0000
0.5000 0.8571

] [
50 0
0 0

] [
1.25
−2.5

] [
50
0

]
7

[
1.0000 0.0000
0.0000 0.9000

] [
50 0
0 0

] [
0
0

] [
50
0

]
8

[
1.0000 0.0000
0.0000 0.9000

] [
50 0
0 0

] [
0
0

] [
50
0

]

Table 2 presents the numerical values of the PWA
model, where [ x1

x2 ] =
[

h1
h2

]
and [ u1

u2 ] =
[

Q4
C2

]
. The

optimal control problem to be solved is defined
by the following parameters: N = 4, Q = [ 1 0

0 5 ],
R = [ 2 0

0 1 ], P = [ 1 0
0 10 ], x0 = [ 2.5

2.5 ], xf = [ 7.1733
5.9777 ],

uf = [ 0.0060
0.0000 ], where (xf , uf ) is an equilibrium

pair “near” to a desired steady-state xd = [ 7
6 ]. In

addition to constraints related with tanks dimen-
sions, a terminal constraint C(4) on state variables
must be also satisfied (see Figure 2). The robust
mode optimal input trajectory was computed by
Algorithm 1 and the optimal state trajectory ob-
tained is presented in Figure 2. Associated with



each computed x(k), it is presented the associated
uncertainty set. Notice that all constraints are
respected, as well as the robust mode restriction.
The optimal solution took 895 sec., while the

0 2 4 6 8 10

0

2

4

6

8

10

States evolution

x
1
 (h

1
)

x 2 (
h 2)

modes 4 and 8 modes 3 and 7 

 modes  
1 and 5 

Terminal
    Set h

f
 

h
0
 

modes 2 and 6 

Fig. 2. State partition and optimal trajectory

first feasible solution was found after 241 sec.,
using interpreted MATLAB� code on a 1.6 GHz
PENTIUM� 4. A more efficient code implemen-
tation, as well as adequate search heuristics, could
improve these results.

5. CONCLUSIONS

An illustrative example shows the applicability
of solving robust finite-horizon optimal control
problems, within the MLD framework, for con-
strained PWA systems subject to bounded addi-
tive disturbances. The presented approach com-
putes a control sequence that minimizes a nominal
quadratic performance index, and guarantees that
the mode of the dynamics, at each time instant,
is independent of the disturbances and that all
safety/performance constraints are verified.
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