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Abstract

This paper deals with the problem of approximating a convex polytope in any finite dimension by a col
of (hyper)boxes. More exactly, given a polytopeP by a system of linear inequalities, we look for two collectio
I andE of boxes with non-overlapping interiors such that the union of all boxes inI is contained inP and the
union of all boxes inE containsP . We propose and test several techniques to constructI andE aimed at getting
a good balance between two contrasting objectives: minimize the volume error and minimize the total nu
generated boxes. We suggest how to modify the proposed techniques in order to approximate the projecP
onto a given subspace without computing the projection explicitly.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we formalize and solve the following problem in computational geometry. Given
dimensional convex polytopeP ⊂ R

d , find two collectionsI andE of full-dimensional boxes such tha
(i) the intersection between any two boxes is not full-dimensional; (ii) the intersection between any
collectionE andP is full-dimensional; (iii) the union of all boxes inI is contained inP ; (iv) the union of
all boxes inE containsP . Under the above properties, we say that the collection of boxesI is aninner ap-
proximationfor the polytopeP , whereas the collectionE is anouter approximationof P , see Fig. 1. This
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Fig. 1. InnerI = {Bi}2i=1 and outerE = {Bi}9i=1 approximations of a polytopeP .

formulation of the problem assumes that aconvex polyhedronis the intersection of a finite set of close
halfspaces of the Euclidean spaceR

d , and aconvex polytopeis a bounded convex polyhedron. Co
vex polytopes are important objects in applied sciences and computational techniques, and are
key tools to solve problems in mathematical programming, computational geometry, statistics or
engineering [2,14,15,17]. Abox is a convex polytope where all the defining hyperplanes are axis par

In order to asses the performance of the approximation, we consider two quality indicators:volume
error, defined as(vol(P)−vol(I))/vol(P) for an inner approximation,(vol(E)−vol(P))/vol(P) for an
outer approximation, where the volume of a collection is the volume of the union of its items, andcardi-
nality, defined as the number of boxes used in the inner and the outer approximation respectively.
ciple, both the above indicators should be minimized, although clearly the objectives of having bo
ume error and cardinality small are contrasting. Our aim is then to obtain a good balance betwee

The motivation of the present work comes from the problem of reachability analysis of h
dynamical systems [15], namely dynamical processes of a heterogeneous continuous and discre
that switch among many operating modes, where each mode is governed by its own chara
dynamical laws (difference or differential equations). Reachability analysis aims to answer questio
“will ever a hybrid dynamical system enter a critical region of operation?” or “will its quantities alw
be within a safe set?” by computing the set of configurations that the system can reach. The com
of “reach sets” amounts to perform a sequence of Minkowsky sums, deformations, intersectio
projections of polyhedral sets. Although exact computation is possible [7,8], the complexity
reachability analysis is reduced by replacing the complex original polyhedron with an inner (
approximation made of boxes. The fact that the approximation is strictly inner (outer) is of c
importance to conservatively answer the questions that reachability analysis poses. A small volum
keeps the conservativeness of the answer low, while the fact that the approximation has a small ca
is important for computation efficiency (see [15] for details).

Similar approximation problems have been faced in [4,16]. In [16] the author presents an alg
to approximate a convex polyhedron with one axis-parallel box, which is neither an inner nor an
approximation. In [4] the authors discuss the problem of computing a lower bound to the volu
a polytope by adaptively filling the polytope with hypercubes. In this case the only objective
minimize the volume error, therefore the number of boxes is not minimized (for a survey on exact v
computation of polytopes see [3]).

In our context, finding a single maximum volume box contained in a given polytope is a c
subproblem, that may be classified as a “containment problem”. The complexity of some g
containment problems related to polyhedra is studied in [5,6]. In particular, in [5] it is shown th
problem of computing a maximum scaling of a polytopeP such that its translation is contained in a giv
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polytopeQ is a linear program. The same problem can be seen as the computation of the “inradius” of
Q with respect to the polytopal norm induced byP . This and several related problems concerning inner
and outer radii of polytopes in finite-dimensional normed spaces were examined in detail in [10]. The
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relation between our results and those presented in [10] will be pointed out later. A comprehensive
on containment problems can be found in [11].

In this paper, we aim at minimizing both the volume error introduced by the approximation an
cardinality of the approximation (number of boxes). The key idea is to proceed recursively: fi
approximate the polytopeP with one boxB1 (as depicted in Fig. 1), then we partition the part t
is not covered (P \ B1) into polytopes having non-overlapping interiors, and then proceed itera
in each obtained polytope. The advantage of this approach is to separate the two objectives:
recursion we minimize the error, while the number of boxes (and therefore the complexity
approximation) is limited by the number of recursions. After providing the necessary prelimin
in Section 2 we detail different techniques to compute a single box inner and outer approxima
Section 3 the basic recursive scheme is presented and used to formulate the inner, outer and in
recursive approximation algorithms, and to analyze their behavior. Section 4 reports some compu
experiences for the different algorithms. In Section 5 we show how the algorithm can be used to c
approximate projections of a polytope over an affine subspace. Section 6 concludes the pape
some directions for future research.

Before proceeding further, we give some notation and recall some general definitions [1
represent a convex polyhedronP ∈ R

d asP = {x ∈ R
d : Ax � b}, whereA is a realm × d matrix

andb is a realm-vector. Aninterior point of P is a pointx̂ ∈ R
d such thatAx̂ < b. A polyhedronP

is full-dimensionalif P has an interior point; otherwise, if it is embedded in a lower dimensional a
space,P is calledflat.

Let P be a full-dimensional convex polytope inRd . The facesof P are the sets of formP ∩ {x ∈
R

d : a′x = b} for some valid inequalitya′x � b. We say the faceP ∩ {x ∈ R
d : a′x = b} is determined

by the inequalitya′x � b. The faces of dimension 0, 1 andd − 1 are calledvertices, edgesand facets,
respectively. A valid inequalitya′x � b is said to be afacet inequalityif it determines a facet.

We represent a box asB(l, u) = {x ∈ R
d : l � x � u}, wherel and u are reald-vectors. Note tha

B(l, u) is nonempty if and only ifl � u and it is full-dimensional if and only ifl < u. Two full-
dimensional boxes areoverlappingif their intersection is a full-dimensional box. Ahypercubeis a box
B(l, u) such thatu = l + λe, whereλ is a scalar ande denotes thed-vector of all ones. Letej ∈ R

d be
thej th column of thed × d identity matrix,j = 1, . . . , d.

Let C ⊆ R
d be a bounded, compact and closed set. Then thevolumeof C, vol(C) = ∫

C dx is the
Lebesgue measure ofC. A polytopeP is full-dimensional if and only if it has a positive volume. Final
let D � {1,2, . . . , d} andM � {1,2, . . . ,m}.

Most of the methods proposed in this paper are based on the solution of auxiliary linear pro
Since the time complexity of solving a linear program depends on the adopted solver (e.g., interio
methods, simplex methods, randomized methods [9, Chapter 39]), we consider a linear progra
an oracle and evaluate the complexity of a given algorithm by the maximum number of linear pro
that must be solved. More precisely, we denote bylp(m,d) the time complexity for solving anm × d

canonical linear program maxx{cTx: Ax � b} whereA ∈ R
m×d , c ∈ R

d andb ∈ R
m. Since its dual linea

program is ad × m canonical linear program, we may assume thatlp(d,m) is of the same order a
lp(m,d).
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2. Single box approximation

Given a polyhedronP = {x ∈ R
d : Ax � b} and a boxB(l, u), we say thatB(l, u) is an inner box of
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P if B(l, u) ⊆ P , B(l, u) is anouterbox ofP if B(l, u) ⊇P . We address here the following problems

(a) compute a maximum volume inner box ofP ;
(b) compute a minimum volume outer box ofP .

We suggest an effective formulation for problem (a), which leads to a polynomial time sol
However, we focus on two simpler problems, namely:

(a.1) compute a maximum volume inner box ofP such that the ratios among the edge lengths are a p
fixed;

(a.2) compute an inner box ofP that is maximal with respect to inclusion.

Note that problem (a.1) is equivalent to computing the “inradius” ofP with respect to the polytopa
norm induced by a box with fixed edge ratios, whereas problem (b) is similar to computin
“circumradius” ofP with respect to the maximum-norm. Both these general problems were stud
detail in [10], where solutions based on linear programming are suggested. In the sequel, we cha
the linear programs associated with (a.1), and propose an algorithm for solving problem (a.2) in s
polynomial time, provided a point ofP is known. Finally, we show how to solve problem (b) efficien
by linear programming.

2.1. Maximum volume inner box

A box B(l, u) can be written asB(x, x + y) by settingx = l andy = u− l. Then, vol(B(x, x + y)) =∏
j∈D yj . Let v(S) ∈ {0,1}d be the incidence vector of the subset of coordinate indicesS ⊆ D:

vj (S) =
{

1 if j ∈ S,

0 otherwise.
(1)

Let V (S) = diag(v(S)). The vertex set ofB(x, x + y) may be expressed as{x + V (S)y: S ⊆ D}. By
imposing that each vertex ofB(x, x + y) is contained inP , we formulate the following optimization
problem:

max
x,y

∏
j∈D

yj

subject toAx + AV (S)y � b (∀S ⊆ D) (2)

y � 0

By construction, an optimal solution(x∗, y∗) of problem (2) identifies a maximum volume inner b
B(x∗, x∗ + y∗). Note that this intuitive formulation has a strongly nonlinear objective function
m2d linear constraints. Next Lemma 1 and Proposition 1 show that problem (2) is equivalent
maximization of a concave function subject tom linear constraints.

Lemma 1. The constraints in(2) are equivalent to the set of constraintsAx +A+y � b, whereA+ is the
positive part ofA, namelya+

ij = max(0, aij ).
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Proof. The constraints in (2) corresponding to anyi ∈ M can be written as∑
aij xj +

∑
aij yj � bi (∀S ⊆ D),

ing

able
ithm 1

roof of
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j∈D j∈S

i.e., ∑
j∈S

aij yj � bi −
∑
j∈D

aij xj (∀S ⊆ D). (3)

Let S+
i = {j : aij > 0}. Then conditiony > 0 implies∑
j∈S

aij yj �
∑
j∈S+

i

aij yj

for all S ⊆ D. It follows that all constraints (3) withS �= S+
i are redundant and thus can be omitted. Us

this fact, and noting that
∑

j∈S+
i

aij yj =∑
j∈D a+

ij yj , the lemma is proved. ✷
Proposition 1. LetP = {x ∈ R

d : Ax � b} be a full-dimensional polytope, and let(x∗, y∗) be an optimal
solution of

max
x,y

∑
j∈D

lnyj

subject toAx + A+y � b. (4)

ThenB(x∗, x∗ + y∗) is a maximum volume inner box ofP .

Proof. The result easily follows from Lemma 1, asP is full-dimensional, and thereforey∗ > 0, and as
the natural logarithm is a strictly monotonic function.✷

According to Proposition 1, the maximum volume inner box can be computed as follows.

Algorithm 1.

function single-inner-nlp(P)

1 A+ = max(A,0);
2 solve (4);
3 return B(x∗, x∗ + y∗).

By following the lines proposed in [13, Chapters 3 and 5], a path-following interior point method
to solve problem (4) within a polynomial number of Newton steps may be designed. Thus Algor
can be regarded as a polynomial time algorithm.

Since problem (4) will never be considered in the sequel, we omit here the (technical) formal p
the above statement. On the contrary, in order to solve the single box approximation by a widely a
and/or easily implementable code, we next consider two easier problems.
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2.2. Maximum volumer-constrained inner box

Given a strictly positive vectorr ∈ R
d , we say that boxB(l, u) is r-constrainedif u = l + λr for some
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scalarλ � 0. We may interpretr as the vector of fixed edge length ratios. We can find a maximum vo
r-constrained box contained inP by solving a linear program withd + 1 variables andm constraints.

Proposition 2. LetP = {x ∈ R
d : Ax � b} be a nonempty polytope, and let(x∗, λ∗) be an optimal solution

of

max
x,λ

λ

subject toAx + A+rλ � b, (5)

wherer ∈ R
d is strictly positive andλ is a scalar, andA+ is the positive part ofA. ThenB(x∗, x∗ + λ∗r)

is a maximum volumer-constrained inner box ofP = {x ∈ R
d : Ax � b}.

Proof. We prove that problem (2) with the additional constrainty = λr is equivalent to problem (5). I
we sety = λr , wherer ∈ R

d is a strictly positive fixed vector andλ is a scalar nonnegative variab
then the objective function of problem (2) becomes(

∏
j∈D rj )λ

d that, for nonnegativeλ, is a strictly
monotonic function ofλ. Hence problem (2) withy = λr is equivalent to

max
x,λ

{
λ: Ax + AV (S)rλ � b (∀S ⊆ D), λ � 0

}
. (6)

The result follows by applying Lemma 1 withy = rλ. ✷
Note that an optimal solution of problem (5) with strictly positiveλ exists if and only ifP is full-

dimensional. Note further that problem (5) can have more than one optimal solution.
The choice of the edge length ratiosr is crucial for the quality of the generatedr-constrained inne

box. Working with hypercubes (all edge length ratios equal to one) seems to be a reasonable
when we have no information about the shape ofP , but may be very inefficient when the ratio betwe
the “width” of P (i.e., the smallest distance between pairs of parallel supporting hyperplanes ofP) and
the “diameter” ofP (i.e., the largest distance realized between two points ofP) is comparatively small
A possible choice for the edge length ratio vectorr is

rj = λj (P) for all j ∈ D, (7)

whereλj (P) denotes the maximum length of a line segment parallel to thej th coordinate axis an
contained inP .

Proposition 3. Let P = {x ∈ R
d : Ax � b} be a nonempty polytope. Thenλj (P) = maxx,λ{λ: Ax +

A+
j λ � b}, whereA+

j denotes thej th column of the positive part ofA.

Proof. A line segment parallel to thej th coordinate axis may be written asE = conv(x, x + λej ) for
somex ∈ R

d , whereej denotes thej th column of thed × d identity matrix andλ is the length ofE. As
a consequence,

λj (P) = max
x,λ

{
λ: Ax � b,A(x + λej ) � b,λ � 0

}
.
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The above linear program has two constraints for eachi ∈ M , namely∑
aikxk � bi and

∑
aikxk + aikλ � bi.

is

ng
polytope

ing
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s

k∈D k∈D

Sinceλ � 0, if aik � 0 then the latter constraint is redundant; ifaik > 0 then the former constraint
redundant. Hence both constraints may be replaced by

∑
k∈D aikxk + a+

ikλ � bi . If P is not empty then
constraintλ � 0 is redundant and thus can be omitted. The statement follows.✷

The complexity of computingλj (P) for all j ∈ D is then O(d lp(m,d + 1)).
An alternative choice is to use the ratior = u− l of the outer box computed according to the followi

Section 2.4. This choice is reasonable when both an inner and outer approximation of the same
are sought. In fact, if we compute first the outer box then we get as a byproduct a good vectorr for the
successiver-constrained inner box computation.

Once anr vector is given, ther-constrained inner box computation is formalized by the follow
algorithm.

Algorithm 2.

function single-inner-lp(P , r)
1 A+ = max(A,0);
2 solve (5);
3 return B(x∗, x∗ + λ∗r).

The time complexity of Algorithm 2 is O(lp(m,d + 1)).

2.3. Greedy inner box

A box B ⊆ P is said to be agreedy inner boxif B is maximal with respect to inclusion, i.e., if it doe
not exist a box̃B �= B such thatB⊆ B̃⊆ P . LetPk ⊆ R

d be a polytope containing the origin onRd . We
first show that the maximum volume hypercube contained inPk and centered in the origin can be fou
by applying a simple formula. Then, we show how to apply the formula iteratively in order to ob
greedy inner box ofP .

LetPk = {x ∈ R
d : Akx � bk} be a polytope containing the origin, so thatbk � 0. Consider hypercube

centered in the origin with edge length 2τ , denoted asB(−τe,+τe). Finding the maximum volume
hypercube contained inPk and centered in the origin is equivalent to finding

τ(Pk) = max
{
τ : B(−τe,+τe) ⊆ Pk

}
. (8)

The above maximization problem can be solved in closed form as follows.

Proposition 4. Let Ak = [ak
ij ] and for all i ∈ M let

τi =
{

bk
i∑

j∈D |ak
ij |

if
∑

j∈D |ak
ij | > 0,

+∞ otherwise.
(9)

Thenτ(Pk) = min{τi: i ∈ M}.
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Proof. For anyi ∈ M , consider the linear program

zi(τ ) = max

{∑
ak

ij xj : x ∈ B(−τe,+τe)

}
,

ition of
,
with a

all the
ound

fining a

d

j∈D

which has the straightforward optimal solution

x∗
j =

{−τ if ak
ij < 0,

+τ if ak
ij � 0,

with corresponding objective valuezi(τ ) = τ
∑

j∈D |ak
ij |.

The inequality
∑

j∈D ak
ij xj � bk

i holds for all points inB(−τe,+τe) if and only if zi(τ ) � bk
i , i.e.,

if and only if τ � τi , whereτi is defined as in (9). It follows thatB(−τe,+τe) is contained inP
if and only if τ � τi for all i ∈ M . SinceB(−τe,+τe) ⊆ B(−τie,+τie) if and only if τ � τi and
B(−τe,+τe) = B(−τie,+τie) if and only if τ = τi , we conclude thatτ(Pk) is the minimumτi . ✷

The volume of the hypercube obtained by Proposition 4 greatly depends on the relative pos
the origin insidePk and in particular it is zero if the origin lies onto the boundary ofPk . Nevertheless
Proposition 4 may be applied iteratively to obtain a greedy inner box. In order to do that, we start
few observations.

Let τı̄ = τ(Pk) for someı̄ ∈ M . If x̄ has a negative coefficient in theı̄th inequality ofAkx � bk , then
any boxB(l, u) such thatB(−τ(Pk)e, τ (Pk)e) ⊆ B(l, u) ⊆ Pk must havel̄ = −τ(Pk). Moreover, for
all i ∈ M such thatak

ī < 0 we have{∑
j∈D\{̄} a

k
ij xj + ak

ī x̄ � bi

x̄ � −τ(Pk)
⇔

{∑
j∈D\{̄} a

k
ij xj � bi + ak

ī τ (Pk)

x̄ � −τ(Pk).

Symmetrically, ifx̄ has a positive coefficient in thēıth inequality ofAkx � bk then any boxB(l, u) such
thatB(−τ(Pk)e, τ (Pk)e) ⊆ B(l, u) ⊆ Pk must haveū = τ(Pk), and for alli ∈ M such thatak

ī > 0 we
have{∑

j∈D\{̄} a
k
ij xj + ak

ī x̄ � bi

x̄ � τ(Pk)
⇔

{∑
j∈D\{̄} a

k
ij xj � bi − ak

ī τ (Pk)

x̄ � τ(Pk).

It follows that, once we fix the lower bound on one variable, this variable can be removed from
inequalities definingPk where it has negative coefficient. Symmetrically, once we fix the upper b
on one variable, this variable can be removed from all the inequalities definingPk where it has positive
coefficient. In this way, we may transform the systemAkx � bk in a new systemAk+1x � bk+1 where
the coefficient matrix has a strictly less number of nonzero coefficients. On this new system de
(possibly unbounded) polyhedronPk+1 we may computeτ(Pk+1) and repeat the transformation.

We formalize the above argument as follows.
Consider the quintupleQk = {Pk, lk, uk,Lk,Uk} wherePk = {x ∈ R

d : Akx � bk}, with Ak = [ak
ij ]

realm× d matrix andbk realm-vector;lk, uk are reald-vectors; andLk,Uk are index subsets, containe
in D. We assume the following holds:

j ∈ Lk implies ak
ij � 0 for all i ∈ M, (10a)

j ∈ Uk implies ak
ij � 0 for all i ∈ M. (10b)
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Assume we are interested in finding a greedy inner box ofP = {x ∈Rd : Ax � b} and assume we have a
point x0 in P . By mappingx0 onto the origin with the translationx → x − x0, we translateP to P0 =
{x ∈ R

d : A0x � b0}, whereA0 = A andb0 = b −Ax0, with b0 � 0. We defineQ0 = (P0, l0, u0,L0,U0)

ive
where

P0 = {
x ∈ R

d : A0x � b0}, l0 = u0 = 0, L0 = U0 = ∅. (11)

Note that property (10) trivially holds forQ0.
Given a genericQk , computeτ(Pk) by using Proposition 4 and defineMk = {i ∈ M: τi = τ(Pk)}.

For all i ∈ M define

Lk
i =

{
j ∈ D: ak

ij < 0 andak
hj < 0 for someh ∈ Mk

}
, (12a)

Uk
i = {

j ∈ D: ak
ij > 0 andak

hj > 0 for someh ∈ Mk
}
. (12b)

Clearly, Lk
i ∩ Uk

i = ∅. Note that if i ∈ Mk thenLk
i andUk

i are the index sets of respectively negat
and positive entries in theith inequality of systemAkx � bk . Note further that

⋃
i∈Mk Lk

i =
⋃

i∈M Lk
i and⋃

i∈Mk Uk
i =⋃

i∈M Uk
i .

Apply the following iterative transformations:

ak+1
ij =

{
0 if j ∈ Lk

i ∪ Uk
i ,

ak
ij otherwise,

(i ∈ M,j ∈ D), (13a)

bk+1
i = bk

i − τ
(
Pk
)(∑

j∈Lk
i

∣∣ak
ij

∣∣+ ∑
j∈Uk

i

∣∣ak
ij

∣∣) (i ∈ M), (13b)

lk+1
j =

{
−τ(Pk) if j ∈⋃i∈M Lk

i ,

lkj otherwise,
(j ∈ D), (13c)

uk+1
j =

{
+τ(Pk) if j ∈⋃i∈M Uk

i ,

uk
j otherwise,

(j ∈ D), (13d)

Lk+1 = Lk ∪
(⋃

i∈M

Lk
i

)
, (13e)

Uk+1 = Uk ∪
(⋃

i∈M

Uk
i

)
. (13f)

Now definePk+1 = {x ∈ R
d : Ak+1x � bk+1} andQk+1 = {Pk+1, lk+1, uk+1,Lk+1,Uk+1}. The properties

of the above iterative transformations are summarized by the following result.

Theorem 1. Starting fromQ0 defined by(11), apply the iterative transformations(13) until Lk+1 =
Uk+1 = D. Then,B(x0 + lk+1, x0 + uk+1) is a greedy inner box forP .
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Proof. We prove thatB(lk+1, uk+1) is a greedy inner box forP0. We first prove thatB(lk+1, uk+1) ⊆ P0.
Property (10) holds forQ0 and the iterative transformations (13) preserve (10). Leti ∈ M be fixed. By
applying repeatedly the iterative transformation (13b) we get

e

if
bk+1
i = b0

i −
k∑

p=0

τ
(
Pp
)(∑

j∈L
p
i

∣∣ap

ij

∣∣+ ∑
j∈U

p
i

∣∣ap

ij

∣∣).

By the iterative transformations (13c)–(13d), for anyP if j ∈ L
p

i then l
p+1
j = −τ(Pp), if j ∈ U

p

i then

u
p+1
j =+τ(Pp). Thus we get

bk+1
i = b0

i −
(

k∑
p=0

∑
j∈L

p
i

a
p

ij l
p+1
j +

k∑
p=0

∑
j∈U

p
i

a
p

ij u
p+1
j

)
. (14)

Property (10), definitions (12), and the iterative transformation (13a) implyL
p

i ∩L
q

i =∅ andU
p

i ∩U
q

i = ∅
for all q �= p. This fact has the following consequences: (i) in (14) every indexj appears at most onc
in each summation; (ii) by the iterative transformations (13c)–(13d) ifj ∈ L

p

i (respectivelyj ∈ U
p

i ) for
some 0� p � k thenl

p+1
j = lk+1

j (respectivelyup+1
j = uk+1

j ); (iii) by the iterative transformation (13a)

j ∈ L
p

i or j ∈ U
p

i thena
p+1
ij = 0 butap

ij = a0
ij . Thus (14) is equivalent to

bk+1
i = b0

i −
(∑

j∈Li

a0
ij lk+1

j +
∑
j∈Ui

a0
ij uk+1

j

)
, (15)

whereLi = ⋃k
p=0 L

p

i and Ui =⋃k
p=0 U

p

i . By definition (12) we haveLp

i ∩ L
q

i = ∅ for all p,q and

henceLi ∩ Ui = ∅. By property (10), ifLk+1 = Uk+1 = D then necessarilyak+1
ij = 0 for all i and j ;

for all j ∈ Li ∪ Ui , the iterative transformation (13a) impliesak+1
ij = a0

ij and hencea0
ij = 0. Thus, for all

x̄ ∈ B(lk+1, uk+1),∑
j∈D

a0
ij x̄j =

∑
j∈Li

a0
ij x̄j +

∑
j∈Ui

a0
ij x̄j �

∑
j∈Li

a0
ij l

k+1
j +

∑
j∈Ui

a0
ij u

k+1
j = b0

i − bk+1
i . (16)

Observe that ifi ∈ Mk then bk+1
i = 0; if i /∈ Mk then bk+1

i � bk
i − τ(Pk)

∑
j∈D |ak

ij | > bk
i − bk

i = 0.
Hence (16) implies

∑
j∈D a0

ij x̄j � b0
i . Since this is true for alli ∈ M , thenB(lk+1, uk+1) ⊆ P0.

Next suppose thatB(lk+1, uk+1) is not greedy. SupposeB(lk+1, uk+1) ⊂ B(l̄, ū) ⊆ P0 for somel̄ and
ū. Then l̄ � lk+1, ū � uk+1, and there must be an indexh ∈ D such that (i)l̄h < lk+1

h or (ii) ūh > uk+1
h .

Assume that (i) holds. Letlk+1
h be fixed during theqth iteration, for some 0� q � k, and leti ∈ Mq . Let

now Li =⋃q

p=0 L
p

i andUi =⋃q

p=0 U
p

i , and letx̄ = [x̄j ] where

x̄j =
{

l̄j if j ∈ Li,

ūj if j ∈ Ui,

0 otherwise.

Clearly, x̄ ∈ B(l̄, ū). By construction,bq+1
i = 0 and sobk+1

i = 0. Hence we obtain∑
j∈D

a0
ij x̄j =

∑
j∈Li

a0
ij l̄j +

∑
j∈Ui

a0
ij ūj >

∑
j∈Li

a0
ij l

k+1
j +

∑
j∈Ui

a0
ij u

k+1
j = b0
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Fig. 2. Recursive application of (13) to produce a greedy inner box in a 2-dimensional example. The polytopesPk are the
shaded part of the plane. (a) Sinceτ(P0) = τ3 anda0

3j
< 0 for j = 1,2, we fix l11 = l12 =−τ(P0). We then remove all negativ

coefficients in matrixA0, gettingA1, and we updateb0, gettingb1. Note that the first row ofA0 have positive entries, s
that the corresponding inequality does not change. (b) Sinceτ(P1) = τ4 anda0

4,2 > 0, we fix u2
2 = τ(P1). Now, the second

inequality remains unchanged. (c) PolyhedronP2 is simply a halfplane. Sinceτ(P2) = τ2 anda2
2,1 > 0, we fix u3

1 = τ(P2).
Now all variables have both a lower and an upper bound and the procedure stops returning the bold inner box, which
for the original polytopeP0.

This implies thatx̄ /∈ P0, making a contradiction. If (ii) holds then we can proceed analogously to
contradiction. ✷

Theorem 1 guarantees that the recursive application of (13) produces a greedy inner box. Th
depicted in Fig. 2, and is formally summarized by the following algorithm.

Algorithm 3.

function single-inner-greedy(P , x0)
1 k = 0;
2 Ak = A; bk = b − Ax0; lk = 0; uk = 0; Lk = ∅; Uk =∅;
3 while Lk �= D or Uk �= D,
4 computeτ(Pk) by using Proposition 4;
5 apply the iterative transformations (13);
6 k = k + 1;
7 returnB(lk, uk).

Proposition 5. Algorithm3 runs inO(md2) time.

Proof. At the end of each while loop at least one new index is added toLk or Uk. Hence, at most 2d
while loops are performed. Each while loop consists of the computation ofτ(Pk) and the application o
the iterative transformations (13). Both these operations require O(md) time. ✷

Note that Algorithm 3 is strongly polynomial provided that a pointx0 ∈P is given.

2.4. Minimum volume outer box

The problem of finding the minimum volume outer box containingP amounts to solve 2d linear
programs withd variables andm constraints. Let
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lj = min{xj : Ax � b}, (17a)

uj = max{xj : Ax � b}, (17b)
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for all j ∈ D. By construction,B(l, u) is contained in every box containingP . Then,B(l, u) is the unique
minimum volume outer box ofP .

Algorithm 4.

function single-outer(P)
1 for j = 1. . . d,
2 lj = min{xj : Ax � b};
3 uj = max{xj : Ax � b};
4 return B(l, u).

Clearly, the time complexity of Algorithm 4 is O(dlp(m,d)).

3. Multiple box approximation

Let us summarize the results obtained so far: the problem of finding the largest hyper-recta
inner approximation of a polytopeP = {x ∈ R

d : Ax � b} was cast as the convex nonlinear program
We also proposed two simpler suboptimal methods: Algorithm 2, based onr-constrained boxes, an
Algorithm 3, based on greedy inner boxes. The algorithms exhibit a polynomial respectively a st
polynomial complexity (provided a point ofP in known). We suggested three different ways to determ
vectorr in Algorithm 2. The problem of finding an outer approximation was solved straightforward
Algorithm 4 in polynomial time.

The single-box inner approximation algorithms developed in the previous section can be a
recursively to obtain an inner approximation ofP as the union of full-dimensional, non-overlappi
boxes. The key idea is the following (cf. Fig. 1): LetB1 be an inner approximation ofP . Partition
(the closure of)P \ B1 into convex polytopesPh (h = 1,2, . . .), and recursively compute an inn
approximationBh+1 for eachPh. This approximation technique is associated with a tree. Each
approximation induces a partition of the remaining polytope and a branching. The polytopesPh are
further inner approximated until some termination condition is met. We will also consider a rec
approximation algorithm that directly computes an outer approximation.

The termination conditions are related to the accuracy of the approximation. Ideally, one wou
to stop the recursive algorithm when the volume error induced by the approximation is smaller
given toleranceε (vol(P) − vol(I) < ε · vol(P)). This however is not practical as determining the ex
volume of a polytope is computationally expensive [3].

An alternative is to stop the recursion when the volume of the outer approximation and the v
of the inner one are within a given interval (vol(E) − vol(I) < ε · vol(E)). However, such a criterion i
applicable only when we are interested in both an inner and an outer approximation.

A better stopping condition is to prune a branch of the approximation tree if the generated inn
B is smaller than a given tolerance (vol(B) < ε). Note that this stopping criterion does not guarante
direct bound on the volume error, although it is very simple to apply and it is justified by the asym
results given below (Theorems 2 and 3) and by the numerical results of Section 4.
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3.1. PartitioningP \B(l, u)

Given a boxB(l, u) ⊂Rd , for all k ∈ D define the following pair of polyhedra:

d

H2k−1 =
{
x ∈ R

d : lj � xj � uj (1� j � k − 1), xk � lk
}
, (18)

H2k =
{
x ∈ R

d : lj � xj � uj (1� j � k − 1), xk � uk

}
. (19)

Proposition 6. We haveB(l, u)∪ (
⋃2d

r=1Hr ) = R
d .

Proof. Let x̂ ∈ R
d . If x̂ ∈ B(l, u), the claim is trivially true. Otherwise, letk ∈ D be the first index such

that x̂k /∈ [lk, uk]. If x̂k < lk , thenx̂ ∈H2k−1, otherwisex̂ ∈H2k. ✷
Proposition 7. LetP be a full-dimensional polytope and letB(l, u) be a full-dimensional box containe
in P . The following claims hold:

(1) dim(Hh) = d for all h = 1, . . . ,2d,
(2) dim(Hh ∩Hs) < d for all h, s = 1, . . . ,2d with h �= s.

Proof. Recall thatB(l, u) is full-dimensional if and only ifl < u.
(1) The vectorŝx2k−1 = [x̂2k−1

j ] andx̂2k = [x̂2k
j ] defined as

x̂2k−1
j =


1
2(uj + lj ) if j < k,

lk − 1 if j = k,

0 otherwise,

x̂2k
j =


1
2(uj + lj ) if j < k,

uk + 1 if j = k,

0 otherwise

(20)

are interior points ofH2k−1 andH2k, respectively.
(2) Assumeh < s. If h = 2k − 1 for somek ∈ D then the description ofHh contains the inequality

xk � lk , whereas the description ofHs contains either the inequalityxk � uk(> lk) or the inequality
xk � lk . In the former case,Hh ∩Hs = ∅; in the latter case,Hh ∩Hs ⊆ {x ∈ R

d : xk = lk}. If h = 2k for
somek ∈ D then the description ofHh contains the inequalityxk � uk , whereas the description ofHs

contains the inequalityxk � uk , so thatHh ∩Hs ⊆ {x ∈ R
d : xk = uk}. ✷

DefinePh = P ∩Hh for all h = 1, . . . ,2d and note that
⋃2d

h=1Ph equals the closure ofP\B(l, u). Let
xc

j = (uj + lj )/2 be the coordinates of the center ofB(l, u), j ∈ D. For allk ∈ D let

λ2k−1 = max

{
bi −∑j∈D aij x

c
j

aik

: i ∈ M,aik < 0

}
+ uk − lk

2
,

λ2k = min

{
bi −∑j∈D aij x

c
j

aik

: i ∈ M,aik > 0

}
− uk − lk

2
.

(21)

Proposition 8. For all k ∈ D the following holds:

(1) P2k−1 is full-dimensional if and only ifλ2k−1 < 0,
(2) P2k is full-dimensional if and only ifλ2k > 0,
(3) dim(Ph ∩Ps) < d for all h, s = 1, . . . ,2d with h �= s.
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Proof. (1) LetL= {x ∈ R
d : xk = lk} and consider the following inclusions:

(B(l, u)∩L) ⊆ (P2k−1 ∩L) ⊆ P2k−1. (22)

e
)

s the

oposed

or is
The set on the left of (22) has dimensiond − 1 and the set in the middle is a face ofP2k−1. Thus, the
dimension ofP2k−1 is eitherd or d − 1 andP2k−1 ∩ L is either a facet ofP2k−1 or P2k−1 itself. Let
ek ∈ R

d be thekth column of the identity matrix. Pointlkek lies on the relative interior ofP2k−1 ∩L and
the directionek is orthogonal toL. Thus,P2k−1 is full-dimensional if and only if it is possible to mov
from lke

k along the directionek , i.e., if and only ifλ2k−1 < lk . The proof of item (2) is similar. Item (3
follows from dim(Ph ∩Ps) � dim(Hh ∩Hs) and item (2) of Proposition 7.✷
3.2. A recursive algorithm for inner approximation

The following Algorithm 5 computes an inner approximation of a full-dimensional polytope a
union of non-overlapping full-dimensional boxes.

Algorithm 5.

function I = multi-inner(P)

1 B= single-inner(P);
2 if vol(B) > ε,
3 Iodd= ∅; Ieven= ∅;
4 for k = 1. . . d,
5 computeλ2k−1 andλ2k by using (21);
6 if λ2k−1 < lk ,
7 defineH2k−1 as in (18);
8 P2k−1 = P ∩H2k−1;
9 Iodd= Iodd∪ multi-inner(P2k−1);

10 if λ2k > uk ,
11 defineH2k as in (19);
12 P2k = P ∩H2k;
13 Ieven= Ieven∪ multi-inner(P2k);
14 return Iodd∪ Ieven∪ {B};
15 else return ∅.

Here, the function single-inner() computes the inner box according to any one of the methods pr
in Section 2. Note that Step 1 requiresr before calling Algorithm 2, orx0 before calling Algorithm 3.
In the first case, eitherr is computed at each iteration by solving the linear programs (7) or (17),
computed only once (at the first step) and kept constant. In the latter case, getting anx0 ∈ P also requires
the solution of a linear program only at the very first call. Indeed, for anyk = 1,2, . . . , n, if P2k−1 is
full-dimensional, an interior point isx2k−1 = [x2k−1

j ] defined as

x2k−1
j =

{
lk + 1

2λ2k−1 if j = k,

1
2(uj + lj ) otherwise.

(23)
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Analogously, for anyk = 1,2, . . . , n, if P2k is full-dimensional, an interior point isx2k = [x2k
j ] defined

as {
u + 1λ if j = k,

n
inner

rting

ce

h call

d
r

ional
ns the

r box
o the
pe with
x2k
j = k 2 2k

1
2(uj + lj ) otherwise.

(24)

It should be noted that the representation ofPs (s = 1,2, . . . ,2d) differs from the given representatio
of P only for tighter bounds on some variables. Hence, if Algorithm 5 is used to compute a single
box approximation ofPs , then the application of a dual simplex method to optimize (7) or (17) sta
from the already available basic solution ofP seems the best choice.

Proposition 9. The total number of recursive calls of Algorithm5 is bounded by2d�vol(P)/ε�.
Proof. If a node in the recursive tree is not a leaf, then it corresponds to a box contained inP of volume
greater thanε. There cannot be more than�vol(P)/ε� of such boxes with non-overlapping interiors. Sin
each node of the recursive tree may generate no more than 2d nodes, the preposition easily follows.✷

The overall complexity of Algorithm 5 depends on the type of approximation computed at eac
(cf. Section 2).

The following asymptotic property will be proved in Appendix A.

Theorem 2. Let P ⊂ R
d be a polytope and letIε = {Bt}S(ε)

t=1 be its inner approximation generate
by Algorithm 5 for a given ε > 0 when Algorithm2 with r = e is used for computing single inne
approximations. Then

lim
ε→0

Iε =
a.e.

P,

i.e., the Lebesgue measure of the differenceP \ Iε tends to zero asε → 0, where

Iε =
S(ε)⋃
t=1

Bt ⊆ P. (25)

3.3. A recursive algorithm for outer approximation

In order to refine the outer approximation, given the minimum volume outer box of a full-dimens
polytope, we want to find a set of non-overlapping full-dimensional boxes whose union contai
polytope, each box having volume not greater thanε.

The following simple recursive Algorithm 6 performs such a task. As long as the current oute
has volume greater thanε, the box is divided into two equal parts by an hyperplane perpendicular t
longest edge (see Fig. 3). Then an outer box is computed for both the intersections of the polyto
the two parts.

Algorithm 6.

function E = multi-outer(P)

1 B(l, u) = single-outer(P);
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Fig. 3. Recursive outer approximation of a polytopeP via Algorithm 6. (a) Approximation after the first recursion
Algorithm 6. (b) Result after two recursions.

Fig. 4. Fragmentation of the outer approximation.

2 if ((vol(B) > ε),
3 let k = arg max{uj − lj }, γ = (uk − lk)/2;
4 Q1 =P ∩ {x ∈ R

d : xk � γ };
5 Q2 =P ∩ {x ∈ R

d : xk � γ };
6 return multi-outer(Q1)∪ multi-outer(Q2);
7 else return {B(l, u)}.

The following observation allows to efficiently compute the outer boxes. LetB(l, u) be the minimum
volume outer box ofP , and for eachj ∈ D let xmin,j andxmax,j be the optimal solutions of (17a) an
(17b) respectively. AssumeB(l, u) is divided in two equal parts along thekth coordinate. Accordingly
P is divided in two parts,Q1 = P ∩ {x ∈ R

d : xk � γ } and Q2 = P ∩ {x ∈ R
d : xk � γ }, where

γ = (uk − lk)/2. LetB(lh, uh) be the minimum volume outer box ofQh (h = 1,2). Then the following
statements are straightforward to prove for allj ∈ D:

x
min,j

k � γ ⇒ l1
j = lj , x

max,j
k � γ ⇒ u1

j = uj ,

x
min,j

k > γ ⇒ l2
j = lj , x

max,j
k > γ ⇒ u2

j = uj .

Whenever one of the above condition applies, a linear program can be avoided for the computatio
outer box. As the conditions are mutually exclusive and collectively exhaustive, we need to solv
2d new linear programs at each recursion.

Algorithm 6 may divide some boxes without reducing the volume error, therefore causin
fragmentation of the outer approximation, as depicted in Fig. 4. Such a fragmentation could be
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avoided by checking that the generated box is not contained in the initial polytopeP before recursively
calling Algorithm 6. Clearly this check would prevent the computation of the boxesBj andBi in Fig. 4.
The number of regions could be further reduced by backtracking if some box is contained inP , and

f

box is

by

roblem

nds to
t node,
single
s

lying
.
his

llections
n

dividing along the second longest direction: in this case the boxesBi andBk as well asBj andBm would
not be divided.

Proposition 10. Let V denote the volume of the minimum volume outer box ofP . The total number o
nodes in the recursive tree of Algorithm6 is bounded by�4V /ε .

Proof. At each recursive call, the current outer box is halved. Hence, the volume of the next outer
no more than half the volume of the current one. It follows that when we are at leveln of the recursion
tree, the volume of the current outer box is no more than 2−nV . This quantity is not greater thanε if and
only if n � log2(V /ε). It follows that the depth of the recursive tree is bounded by�log2(V /ε) . Since
the recursive tree is binary, the total number of its nodes is bounded by

2�log2(V /ε) +1 � 2log2(V /ε)+2 = 4V

ε
. ✷

The following asymptotic result, analogous to Theorem 2, will be proved in Appendix B.

Theorem 3. Let P ⊂ R
d be a polytope. LetEε = {Bt}T (ε)

t=1 be the outer approximation generated
Algorithm6 for a givenε > 0. Then

lim
ε→0

Eε =
a.e.

P,

whereEε =⋃T (ε)
t=1 Bt .

3.4. A recursive algorithm for inner and outer approximations

In this section we show how the results presented so far can be efficiently used to solve the p
stated in the introduction.

Given a polytopeP , consider the recursion tree generated by Algorithm 5. Each node correspo
a polytope, which is generated either in step 7 or in step 11 of the algorithm, except for the roo
corresponding to the originalP . The leaves of the tree correspond to polytopes where the computed
inner box has volume not greater thanε (cf. step 2). LetP-

ε , with - = 1,2, . . . ,L(ε), denote the polytope
corresponding to the leaves of the recursion tree, for any fixedε, and note that(Iε) ∪ (

⋃L(ε)

-=1 P-
ε ) = P ,

where Iε is defined in (25). Clearly, we can easily compute an outer approximation by app
Algorithm 4 to each polyhedronP-

ε . However, as Fig. 5(a) shows, the volume of the outer boxes (e.gB3)
can be considerably larger than the toleranceε used for the inner approximation. Algorithm 6 solves t
problem by further approximating the outer boxes if their volume exceeds the thresholdε. The following
inner-outer approximation algorithm summarizes the ideas discussed above and returns two co
of polyhedraI , M such thatI is an inner approximation andE = I ∪ M is an outer approximatio
of P .
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Fig. 5. Recursive inner and outer approximation of a polytopeP . (a) Inner and outer approximation using Algorithm 4
approximate the restsPi . (b) Inner and outer approximation using Algorithm 6 to approximate the restsPi .

Algorithm 7.

function [I,M] = multi-inner-outer(P)

1 B = single-inner(P);
2 if vol(B) > ε,
3 Iodd= ∅; Ieven= ∅; Modd= ∅; Meven= ∅;
4 for k = 1. . . d,
5 computeλ2k−1 andλ2k by using (21);
6 if λ2k−1 < lk ,
7 defineH2k−1 as in (18);
8 P2k−1 = P ∩H2k−1;
9 [Iodd,Modd] = [Iodd,Modd] ∪ multi-inner-outer(P2k−1);

10 if λ2k > uk ,
11 defineH2k as in (19);
12 P2k = P ∩H2k;
13 [Ieven,Meven] = [Ieven,Meven] ∪ multi-inner-outer(P2k);
14 return [Iodd∪ Ieven,Modd∪Meven];
15 else return [∅,outer(P)].

All the different inner and outer approximation algorithms presented earlier can be combined in
ways by replacing the opportune functions in step 1 (single-inner-nlp, single-inner-lp, single-
greedy) and in step 15 (single-outer, multi-outer). In practice, many optimization problems (17
be avoided since their optimal value is implicit in the definition ofP2k−1 andP2k . Indeed, by recalling
that P2k−1 = P ∩ {x ∈ R

d : lj � xj � uj (0 � j � k − 1), xk � lk}, we see that when Algorithm 7 i
called with inputP2k−1, we already knowlj for all j = 1, . . . , k − 1 anduj for all j = 1, . . . , k. Thus,
it is sufficient to solve (17a) for allj = k, . . . , d and (17b) for allj = k + 1, . . . , d. Analogously, when
Algorithm 7 is called with inputP2k, it suffices to solve (17a) for allj = k + 1, . . . , d and (17b) for all
j = k, . . . , d.
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Fig. 6. Inner approximations. (a) Approximation ofP using Algorithm 5 and performing the inner approximations w
Algorithm 2 with r = [1 1]′. (b) Approximation ofP using Algorithm 5 and performing the inner approximations w
Algorithm 2 with r computed using (7) at each iteration. (c) Approximation ofP using Algorithm 5+ Algorithm 2 with
r = uh − lh whereB(lh,uh) is the outer box ofPh, and where

⋃
Ph equals the closure ofP \ B1. (d) Approximation ofP

using Algorithm 5 and performing the inner approximations with Algorithm 3. (e) Approximation ofP using Algorithm 2
presented in [4]. (f) Comparison of the approaches (cumulative volume against number of boxes), (a)–(e) as in Figs. 6

4. Computational experience

This section presents a computational experience using the proposed algorithms. We first p
2-dimensional polyhedron and its inner and outer approximations, then we present a statistical
the inner and outer approximation algorithms on higher-dimensional objects.

4.1. Approximation of a 2-dimensional polytope

This section shows the same 2-polytope approximated using the presented algorithms. Fig. 6
the inner approximations. Note that the results depicted in Fig. 6(b) and in Fig. 6(c) are almost id
Fig. 6(f) shows the cumulative sum of the first 30 boxes produced by each approximation, the c
line is the volume of the polytope computed using the package VINCI [3]. Fig. 7 shows the
approximations ofP . Figs. 7(a) and 7(c) show that fragmentation happens only when Algorithm
applied alone. Fig. 7(d) is computed by interpolation on 20 runs of the algorithms (termination volε

between 1 and 0.052).

4.2. Higher dimensional approximations

In this section we consider the results obtained by running the algorithms on 100 random pol
Each input polytope is centered in the origin and is generated by uniformly distributing the normals
facets ofP and by randomly stretching and rotating the polytope. The polytopes have a unitary v
and the stopping criterion is set toε = 0.1d , whered is the dimension of the space embeddingP . Table 1
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Fig. 7. Outer approximations. (a) Approximation ofP using Algorithm 6. (b) Approximation ofP using Algorithm 7
(Algorithm 2 with r = u − l,E(l, u) ⊇ P and Algorithm 4). (c) Approximation ofP using Algorithm 7 (Algorithm 2 with
r = u − l,E(l, u) ⊇ P and Algorithm 6). (d) Comparison of the approaches (cumulative volume against number of
(a)–(c) as in Figs. 7(a)–(c).

Table 1
Average [variance] computational times (s) on a test pool of 100 polytopes, vol(P) = 1, m = 2d, ε = 0.1d

Algorithm P ∈ R
2 P ∈ R

3 P ∈ R
4

5+ 2 (r = 1) 0.07 [0.02] 1.24 [0.14] 14.70 [1.70]
5+ 2 (r using (7)) 0.25 [0.05] 5.51 [0.37] 104.50 [15.80]
5+ 2 (r = u − l) 0.18 [0.03] 3.18 [0.26] 56.54 [13.69]
5+ 3 0.03 [0.01] 1.17 [0.15] 18.98 [29.50]
2 in [4] 0.03 [0.01] 1.17 [0.15] 18.98 [29.50]

6 1.05 [0.08] 18.41 [0.98] 294.14 [15.67]
7+ 2+ 4 0.17 [0.03] 3.21 [0.28] 56.87 [13.69]
7+ 2+ 6 0.29 [0.04] 11.26 [2.27] 766.95 [389.60]

reports the computational times obtained by running a Matlab implementation of the approxim
algorithms on a SUN workstation with a 950 MHz processor, using the LP solver E04MBF o
NAG Foundation Toolbox [12], while Table 2 and Table 3 report respectively the number of
and the volume of the approximation. Note that for higher dimensionsd, even decreasing the toleran
ε = 0.1d the number of boxes remains constant, and the approximation error increases. This is a
consequence of approximating polytopes using simple shaped objects like boxes.

Note further that the performance of the algorithms rapidly deteriorates as the dimension grow
fact is unavoidable, since the considered problem is inherently difficult. To support this point we o
that, though volume computation is not our primary concern, our inner-outer approximation algo
return a lower and an upper bound of the volume ofP . In [1] it is proved that every polynomial tim
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Table 2
Average [variance] number of generated boxes on a test pool of 100 polytopes, vol(P) = 1, m = 2d, ε = 0.1d

Algorithm P ∈ R
2 P ∈ R

3 P ∈ R
4

]

]
]
]

as

e error

d in
5+ 2 (r = 1) 11.07 [1.70] 96.43 [8.77] 631.97 [66.03]
5+ 2 (r using (7)) 11.04 [1.58] 95.46 [4.24] 573.45 [54.10
5+ 2 (r = u − l) 11.14 [1.64] 94.66 [5.03] 538.24 [69.64]
5+ 3 11.11 [1.45] 70.35 [5.23] 415.88 [31.98]
2 in [4] 11.97 [1.98] 226.32 [49.14] 843.01 [248.86]

6 159.35 [9.14] 1797.65 [79.17] 21728.56 [886.44
7+ 2+ 4 30.99 [3.83] 362.46 [20.96] 2824.52 [333.51
7+ 2+ 6 52.76 [5.28] 1061.10 [128.01] 18965.68 [1692.87

Table 3
Average [variance] volume of the approximation on a test pool of 100 polytopes, vol(P) = 1, m = 2d, ε = 0.1d

Algorithm P ∈ R
2 P ∈ R

3 P ∈ R
4

5+ 2 (r = 1) 0.82 [0.02] 0.59 [0.04] 0.35 [0.03]
5+ 2 (r using (7)) 0.84 [0.02] 0.61 [0.05] 0.32 [0.05]
5+ 2 (r = u − l) 0.85 [0.02] 0.61 [0.05] 0.31 [0.05]
5+ 3 0.84 [0.02] 0.14 [0.20] 0.23 [0.03]
2 in [4] 0.54 [0.04] 0.51 [0.05] 0.28 [0.04]

6 1.07 [0.01] 1.21 [0.03] 1.43 [0.04]
7+ 2+ 4 1.16 [0.02] 1.56 [0.21] 3.38 [1.04]
7+ 2+ 6 1.08 [0.01] 1.21 [0.03] 1.48 [0.06]

(a) (b) (c)

Fig. 8. Number of generated inner boxes againstε, average for 10 runs, vol(P) = 1, line-styles are associated to Algorithms
in Fig. 6. (a)P ∈ R

3. (b)P ∈ R
4. (c)P ∈ R

5.

algorithm computing a lower and an upper bound on the volume of a convex set commits a relativ
which grows exponentially with the dimension.

The relation between the volume toleranceε and the number of generated inner boxes is illustrate
Fig. 8, where the plots suggest an exponential relation among the two quantities.
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Fig. 9. Approximated projection onR2 of a polytopeP using modified versions of Algorithm 5 (Algorithm 2 wit
r = u − l,E(l, u) ⊇ P) for the inner approximation and Algorithm 4 for the outer. (a) Approximate projection of a poly
P ∈ R

3. (b) Elapsed time (s) against dimension ofP , average for 10 runs (ε = (0.5)2 dashed,ε = (0.1)2 dash-dotted,
ε = (0.05)2 dotted, exact computation via [8] solid).

5. Extension to approximate projections

Consider the problem of projecting a polytopeP ⊂ R
σ onto the linear subspaceL generated by the

first d vectors of the canonical basis.1 Then, projectingP onto L amounts to find a representation
{x ∈ R

d : ∃γ ∈ R
σ−d, [ x

γ
] ∈P} in terms of linear inequalities. IfP is given by a set of linear inequalitie

then the projection problem is a difficult one, which can be solved for instance by using the F
Motzkin elimination method [17]. On the other hand, the algorithms proposed in this paper c
extended to directly compute the approximation of the projection ofP as the union ofd-dimensional
boxes, short of computing the projection itself or the projection of the inner approximation ofP , as
Fig. 9(a) shows for the projection on the first two coordinate axes of a 3-dimensional polytope.

Let AD be the firstd columns ofA, and AN such thatA = [AD AN ]. The maximum volumer-
constrained inner box contained in the projection (cf. problem (5)) isB(x∗, x∗ +λ∗r), wherex∗, λ∗ solve
the LP

max
x,γS,λ

λ

subject toAD

(
x + v(S)rλ

)+ ANγS � b (∀S ⊆ D),

x ∈ R
d, λ ∈ R,

γS ∈ R
σ−d (∀S ⊆ D), (26)

wherev(S) ∈ {0,1}d is the incidence vector of the subset of coordinate indicesS ⊆ D, as defined in (1)
Note that (26) containsd + (σ − d)2d + 1 variables andm2d constraints. Fig. 9(b) summarizes t
following computational experience: GivenP ∈ R

σ , defined as the intersection of 2σ hyperplanes
compute the projection on the first two coordinate axes (d = 2). The tests were run with differen

1 In caseL is a generic affine subspace, it is enough to perform a standard linear coordinate transformation.
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tolerancesε for the inner and outer approximation and compared with the computational times needed
for the exact projection using the package CDD [8]. While for small dimensionsσ the two approaches
have comparable timings, they scale differently when the dimensionσ increases.2
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On the other hand, because of the exponential explosion of variables and constraints withd in (26),
whenσ ≈ d problem (26) may be not convenient, compared to Fourier–Motzkin elimination. In this
we propose to replace (26) with the LP

max
x,γ,λ

λ

subject toADx + A+
Drλ +ANγ � b

x ∈ R
d, λ ∈ R, γ ∈ R

σ−d, (27)

whereA+
D is the positive part ofAD, which returns the largestr-constrained inner box of dimensiond

contained inP . Problem (27) hasσ + 1 variables andm constraints, however it returns a box which,
general, has a smaller volume than the one provided by (26).

We conclude by assessing the impact of the technique proposed here on the problem that o
motivated our interest. As recalled in the introduction, the reach set computation determines th
configurations (orstates) that a system can reach. Let us restrict our attention to a piecewise linear s
x(k +1) = Aj x(k)+Bju(k), wherex(k) ∈ R

n is thestate, u(k) ∈ R
m is theinput to the system3, Aj , Bj

are matrices of suitable dimensions, andj ∈ {1, . . . , s} is the current “mode”. Assuming that the initi
statex(0) ∈X , and thatu(k) ∈ U for k � 0, whereX andU are polytopes, then it is possible to comp
the set of states Reach(X ,U ,K) that are reachable inK steps from any initial condition inX and subject
to any input inU as

Reach(X ,U ,K) = {
y: y = AK

j x(0) +AK−1
j Bju(0) +AK−2

j Bju(1) + · · · + Bju(K − 1),

x(0) ∈X , u(i) ∈ U , i = 0, . . . ,K − 1
}
. (28)

Clearly (28) defines the projection of a polytope of dimension(Km+ n) onto the subspace of dimensio
n spanned by the rows of the matrix[AK

j ,AK−1
j Bj ,AK−2

j Bj , . . . ,Bj ]. The advantages that the propos
technique brings in the reach set computations are a consequence of the good performanc
approximate computation of the projection, and are more evident whenKm increases. Note that, durin
the reachability analysis of hybrid systems the projection (28) is performed several times for di
setsX , modesj ∈ {1, . . . , s} and horizonsK . In particular, the value ofK is related to the time th
hybrid system remains in a certain mode, and may vary considerably depending on the system d
under analysis [15].

6. Conclusions

This paper presents a collection of algorithms to compute an inner and an outer approximati
given polytope. Such algorithms face the multiple objective problem of minimizing both the volume

2 The absolute times reported are relative to a SUN workstation with a 950 MHz processor running a Matlab implem
of the approximation algorithms and the C implementation of CDD.

3 Here we prefer to follow the standard control engineering notation even if it may conflict with the notation adopte
rest of the paper, the context should disambiguate the symbols.
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Fig. 10. Approximation of a polytope by using generic polytopic shapes.

and the number of boxes needed for the approximation. The algorithms with minor modification
computational attractive alternative to the exact computation of the projection.

Although our techniques were conceived and used to improve the performance of the reac
analysis algorithm [15], they could be used successfully in other applicative domains. The perfo
are good as the computational experiences suggest.

Extensions of the approach include the approximation of generic convex sets by hyper-box
the generalization of the inner approximation algorithm to generic polytopal shapes (see the exp
shown in Fig. 10, where a pentagonal shape is used as approximating shape, and recursivenes
on the partition of polytopeP by means of linear cuts generated by the facet inequalities of the la
approximating inner polytope). In both cases, we expect almost-everywhere convergence toP of the
resulting inner and outer approximations asε → 0.

Moreover, it is a research topic under investigation how to determine the projection ofP on a subspac
L (or a polyhedral approximation of such a projection related toε) by efficiently using the information
provided by the inner and outer multi-rectangular approximation of the projection itself.

Appendix A. Proof of Theorem 2

If P is not full dimensional, 0= vol(P) = vol(Iε) for all ε > 0. Hence, assumeP is a full
dimensional set. Clearly, the function vol(Iε) is nonnegative and monotonically increasing asε → 0,
and 0� limε→0 vol(Iε) = m � vol(P). By contradiction, assumem < vol(P). Then, there exist a poin
x̄ ∈P and a scalarσ > 0 such that the hypercubeZ = B(x̄ − σe, x̄ + σe) is strictly contained inP and

Z ∩ Iε = ∅, (A.1)

for all ε > 0.
Consider the recursion tree generated by Algorithm 5. Each node corresponds to a polytope

is generated either in step 8 or in step 12 of the algorithm, except for the root node, correspon
the originalP . The leaves of the tree correspond to polytopes where the computed single inner b
volume less thanε (cf. step 2). LetP t

ε, with t = 1,2, . . . , τ (ε), denote the polytopes corresponding
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the leaves of the recursion tree, for any fixedε. Since
⋃τ (ε)

t=1 P t
ε equals the closure ofP \ Iε, we have

Z ⊆⋃τ (ε)

t=1 P t
ε. Let Dt = Z ∩ P t

ε, for all t = 1,2, . . . , τ (ε). SinceZ is contained in the interior ofP , all
the setsDt with a nonempty interior are boxes, as their hyperplane representation can only contain facet

in the

a

qual
m 5.

a finite

e

inequalities ofZ and hyperplanes generated according by Algorithm 5. To simplify the notation,
following we denote byR the genericP t

ε and byD the corresponding boxDt , and only consider setsDt

having a nonempty interior. Furthermore we set

D= {
αk � xk � αk + ρk (k = 1, . . . , d)

}
,

J = {
k: bothαk � xk andxk � αk + ρk are facet inequalities ofR (k = 1, . . . , d)

}
,

ρ = min{ρk: k = 1, . . . , d},
ρ = min{ρk: k ∈ J }.

Note thatJ might be empty, in that case we setρ = ∞. Finally, let λ denote the edge length of
maximum volume inner hypercube ofR.

Note thatρ � λ � ρ, and that ifρ = ρ then the edge length of the maximum volume hypercube is e
to the common value. The following claim is a consequence of the partition procedure of Algorith

Claim A.1. If ρ = ρ thenD is not cut orthogonally to thekth coordinate axis, for allk ∈ J in further
recursions of the algorithm.

Claim A.2. If (A.1) holds for someε > 0 then everyD corresponding toε is subdivided in further
recursions of the algorithm forε sufficiently small, withε > ε > 0.

Proof of Claim A.2. When Algorithm 5 is applied toR with ε � ρ, a hypercubeB ⊆R is found with
vol(B) � ρd . Exactly one of the following three cases can occur:

(1) D is cut;
(2) B ∩D �= ∅;
(3) in the next recursive call,D is contained in a regionR′ such that:

(i) vol(R′) � vol(R) − vol(B) � vol(R) − ρd ;
(ii) R′ contains a hypercubeB′ with vol(B′) � ρd .

SinceB ⊆ Iε, case (2) contradicts (A.1), and thus must be excluded. Case (3) can happen only
number of times. Hence, forε � ρ, Algorithm 5 recursively cutsD in smaller boxes. ✷

Note that at least one facet inequality of eachD must be a facet inequality ofZ , since otherwise th
corresponding rest polytopeR is contained inZ .

Claim A.3. For ε > 0 sufficiently small, there exists anR and a correspondingD = R ∩ Z for which
there is anr ∈ {1, . . . , d} such that

(i) ρk = ρ for all k �= r ;
(ii) for all k �= r , bothαk � xk andxk � αk + ρ are facet inequalities ofR;

(iii) ρr > ρ.
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Fig. A.1. Proof of Theorem 2. (a) Exemplification of subcase 2.1 by a section inR
2. (b) Exemplification inR2 of the situation

considered in Claim 4.

Proof of Claim A.3. Assume that, for somēε > 0, there is no boxD satisfying the conditions o
Claim A.3. By Claim A.2, forε � ε̄ sufficiently small, the sameD is cut by one or more hyperplane
Let B = {γk � xk � γk + λ (k = 1, . . . , d)} be the current maximum volume inner hypercube. Then
cutting hyperplanes are of the formxh = γh andxh = γh + λ.

We distinguish between two cases:

Case1 There is a cutting hyperplanexh = β such that at least one ofαh � xh and xh � αh + ρh is
a facet inequality ofZ . Then at least one pieceD′ of D has one more facet inequality of th
corresponding restR′.

Case2 If xh = β is a cutting hyperplane then bothαh � xh and xh � αh + ρh are facet inequalitie
of R. Then for any pairxh = γh andxh = γh + λ of cutting hyperplanes we haveαh � γh and
γh + λ � αh + ρh. We have to distinguish between two further subcases:

Subcase2.1: ρ < ρ. Note that if we fix two points with distanceλ > 0 on a line segment o
length ρh > λ then the segment is divided in three or two parts, and at least o
them has length not greater thanρh/2. As a consequence, we can find a full dimensio
pieceD′ of D with at least one edge corresponding to opposite facet inequaliti
R′ ⊂R having length at most one half of the length of the corresponding edge ofD, see
Fig. A.1(a).

Subcase2.2: ρ = ρ. In this caseλ = ρ. If we take asD′ the full dimensional piece ofD
contained between every pair of cutting hyperplanes then we have at least one
pair of facet inequalities ofR′ whose distance isρ; furthermore,ρ ′ = ρ.

Since at most 2d −1 facet inequalities ofD′ can be facet inequalities ofR′, case 1 can happen a fini
number of times. Sinceρ > 0, subcase 2.1 can happen consecutively a finite number of times b
we getρ = ρ. (More precisely, one can argue that the number of consecutive repetitions of subc
is bounded by

∑
k∈J �log2 ρk − log2 ρ .) When subcase 2.2 is entered, it can be repeated at mostd − 1

consecutive times before all pairs of facet inequalities ofR have distanceρ. When this happens, eithe
all pairs of facet inequalities ofD but one are pairs of facet inequalities ofR or not. In the former case
D satisfies the conditions of the claim and we are done. In the latter case by Claim A.2,D has to be cu
further, and by Claim A.1 this must necessarily occur orthogonally to a direction such that at lea
facet inequality ofD is not a facet inequality ofR, hence falling in case 1.✷
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Claim A.4. Let R andD satisfy the conditions of ClaimA.3, and letε be such that0 < ε � ρ. Then

Algorithm5 finds a hypercube#B such that#B ∩D �= ∅.

pens, by

by

he

ngest

for
Proof of Claim A.4. When Algorithm 5 is run onR with ε = ρ then a hypercubeB with edge lengthρ
is found.

If B ∩D �= ∅ then by setting#B = B we prove the claim.
If B ∩ D = ∅ thenR is divided in three parts:K′ = R ∩ {xr � βr}, B = {βk � xk � βk + ρ (k =

1, . . . , d)}, K′′ = R ∩ {xr � βr + ρ}. Assume without loss of generality thatD ⊆ K′ (see Fig. A.1(b)),
and note thatK′ is a box which may be written as

K′ = {
αr � xr � βr, αk � xk � αk + ρ (k �= r)

}
,

whereβr − αr � ρr > ρ. When Algorithm 5 is applied toK′ with ε � ρ, a hypercubeB ⊆ K′ is found
with vol(B) = ρd . Exactly one of the following two cases occurs:

(1) B ∩D �= ∅;
(2) in the next recursive call,D is contained in a regionK′′′ such that

(i) vol(K′′′) � vol(K′)− vol(B) = vol(K′)− ρd ;
(ii) K′′′ contains a hypercubeB′′′ with vol(B′′′) = ρd .

Since case (2) can happen only a finite number of times, case (1) must be met. When this hap
setting#B = B we prove the claim. ✷

As a consequence of the above claims, if Algorithm 5 is run onP for ε > 0 sufficiently small, in a
finite number of steps a hypercube#B contained inIε with positive measure is met, such that#B ∩Z �= ∅,
contradicting (A.1). ✷

Appendix B. Proof of Theorem 3

Lemma B.1. Let P ⊂ R
d be a polytope. LetEε = {Bt}T (ε)

t=1 be the outer approximation generated
Algorithm6 for a givenε > 0. Then

lim
ε→0

max
t∈{1,...,T (ε)}

{|ut − lt |∞
}= 0.

Proof. The limit exists becauseφ(ε) = maxt∈{1,...,T (ε)}{|ut − lt |∞} is the length of the longest edge of t
outer approximation{Bt}T (ε)

t=1 andφ(ε) is monotonically non-increasing forε → 0. The limit is 0 because
if by contradiction it were not, then it would exist an edge lengthλ such that|ut − lt |∞ � λ, ∀t, ε, and
vol(Bt ) � ε, therefore the volume reduction would be achieved by preserving the length of the lo
edge, and this would contradict the formulation of Algorithm 6.✷
Proof of Theorem 3. We directly apply the definition of limit, therefore we want to show that
everyz, existsε̄ such that ifε < ε̄ then the following holds:z ∈ P ⇔ z ∈⋃T (ε)

t=1 Bt . Clearly, if z ∈ P ,
thenz ∈⋃T (ε)

t=1 Bt , because by construction the setP ⊆⋃T (ε)
t=1 Bt . In order to findε̄ such that ifε � ε̄,
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thenz ∈ P ⇐ z ∈⋃T (ε)
t=1 Bt , we assume by contradiction thatz /∈P . Let us define the distance betweenz

and the setP as
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λ = min
x

|x − z|∞ subject tox ∈P, (B.1)

where clearlyλ > 0 becausez /∈ P . By Lemma B.1, givenλ it exists ε̃ such that ifε < ε̃, then
|ut − lt |∞ < λ for all Bt (lt , ut ). By settingε̄ = ε̃, we get thatz /∈⋃T (ε)

t=1 Bt because otherwise the bo
containingz would not intersectP . ✷
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