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Abstract

This paper deals with the problem of approximating a convex polytope in any finite dimension by a collection
of (hyper)boxes. More exactly, given a polytopeby a system of linear inequalities, we look for two collections
7 and& of boxes with non-overlapping interiors such that the union of all boxé&sisicontained irnP and the
union of all boxes ir€ containsP. We propose and test several techniques to consfractd£ aimed at getting
a good balance between two contrasting objectives: minimize the volume error and minimize the total number of
generated boxes. We suggest how to modify the proposed techniques in order to approximate the projéction of
onto a given subspace without computing the projection explicitly.
0 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we formalize and solve the following problem in computational geometry. Given a full-
dimensional convex polytopE c R, find two collectionsZ and& of full-dimensional boxes such that:
() the intersection between any two boxes is not full-dimensional; (ii) the intersection between any box in
collection€ andP is full-dimensional; (iii) the union of all boxes ih is contained irP; (iv) the union of
all boxes in€ containsP. Under the above properties, we say that the collection of ibxeaninner ap-
proximationfor the polytopeP, whereas the collectiofi is anouter approximatiorof P, see Fig. 1. This
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Fig. 1. InnerZ = {5;}2_, and outet = {B;}?_; approximations of a polytop®.

formulation of the problem assumes thatavex polyhedrors the intersection of a finite set of closed
halfspaces of the Euclidean spaRé, and aconvex polytopés a bounded convex polyhedron. Con-

vex polytopes are important objects in applied sciences and computational techniques, and are often the
key tools to solve problems in mathematical programming, computational geometry, statistics or control
engineering [2,14,15,17]. Boxis a convex polytope where all the defining hyperplanes are axis parallel.

In order to asses the performance of the approximation, we consider two quality indicalaree
error, defined agvol(P) — vol(Z))/ vol(P) for an inner approximatiorn(vol(£) — vol(P))/ vol(P) for an
outer approximation, where the volume of a collection is the volume of the union of its itemsaatid
nality, defined as the number of boxes used in the inner and the outer approximation respectively. In prin-
ciple, both the above indicators should be minimized, although clearly the objectives of having both vol-
ume error and cardinality small are contrasting. Our aim is then to obtain a good balance between them.

The motivation of the present work comes from the problem of reachability analysis of hybrid
dynamical systems [15], namely dynamical processes of a heterogeneous continuous and discrete natur
that switch among many operating modes, where each mode is governed by its own characteristic
dynamical laws (difference or differential equations). Reachability analysis aims to answer questions like
“will ever a hybrid dynamical system enter a critical region of operation?” or “will its quantities always
be within a safe set?” by computing the set of configurations that the system can reach. The computation
of “reach sets” amounts to perform a sequence of Minkowsky sums, deformations, intersections and
projections of polyhedral sets. Although exact computation is possible [7,8], the complexity of the
reachability analysis is reduced by replacing the complex original polyhedron with an inner (outer)
approximation made of boxes. The fact that the approximation is strictly inner (outer) is of critical
importance to conservatively answer the questions that reachability analysis poses. A small volume error
keeps the conservativeness of the answer low, while the fact that the approximation has a small cardinality
is important for computation efficiency (see [15] for details).

Similar approximation problems have been faced in [4,16]. In [16] the author presents an algorithm
to approximate a convex polyhedron with one axis-parallel box, which is neither an inner nor an outer
approximation. In [4] the authors discuss the problem of computing a lower bound to the volume of
a polytope by adaptively filling the polytope with hypercubes. In this case the only objective is to
minimize the volume error, therefore the number of boxes is not minimized (for a survey on exact volume
computation of polytopes see [3]).

In our context, finding a single maximum volume box contained in a given polytope is a crucial
subproblem, that may be classified as a “containment problem”. The complexity of some general
containment problems related to polyhedra is studied in [5,6]. In particular, in [5] it is shown that the
problem of computing a maximum scaling of a polytdpsuch that its translation is contained in a given
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polytope Q is a linear program. The same problem can be seen as the computation of the “inradius” of
Q with respect to the polytopal norm induced By This and several related problems concerning inner
and outer radii of polytopes in finite-dimensional normed spaces were examined in detail in [10]. The
relation between our results and those presented in [10] will be pointed out later. A comprehensive survey
on containment problems can be found in [11].

In this paper, we aim at minimizing both the volume error introduced by the approximation and the
cardinality of the approximation (number of boxes). The key idea is to proceed recursively: first we
approximate the polytop@ with one boxB; (as depicted in Fig. 1), then we partition the part that
is not covered ® \ B;) into polytopes having non-overlapping interiors, and then proceed iteratively
in each obtained polytope. The advantage of this approach is to separate the two objectives: at eact
recursion we minimize the error, while the number of boxes (and therefore the complexity of the
approximation) is limited by the number of recursions. After providing the necessary preliminaries,
in Section 2 we detail different techniques to compute a single box inner and outer approximation. In
Section 3 the basic recursive scheme is presented and used to formulate the inner, outer and inner-oute
recursive approximation algorithms, and to analyze their behavior. Section 4 reports some computational
experiences for the different algorithms. In Section 5 we show how the algorithm can be used to compute
approximate projections of a polytope over an affine subspace. Section 6 concludes the paper stating
some directions for future research.

Before proceeding further, we give some notation and recall some general definitions [17]. We
represent a convex polyhedrdn e R? asP = {x € RY: Ax < b}, where A is a realm x d matrix
andb is a realm-vector. Aninterior point of P is a pointz € R? such thatAx < b. A polyhedronP
is full-dimensionalif P has an interior point; otherwise, if it is embedded in a lower dimensional affine
space P is calledflat.

Let P be a full-dimensional convex polytope R¢. The facesof P are the sets of forrP N {x e
R?: a’'x = b} for some valid inequality’x < b. We say the fac® N {x € R?: a’x = b} is determined
by the inequalitya’x < b. The faces of dimension 0, 1 and— 1 are calledvertices edgesandfacets
respectively. A valid inequality’x < b is said to be dacet inequalityif it determines a facet.

We represent a box asS(/, u) = {x € R?: I < x < u}, wherel andu are reald-vectors. Note that
B(l,u) is nonempty if and only iff <« and it is full-dimensional if and only if < u. Two full-
dimensional boxes areverlappingif their intersection is a full-dimensional box. Bypercubes a box
B(l,u) such that: = 4+ Ae, wherea is a scalar and denotes the/-vector of all ones. Let; € R4 be
the jth column of thed x d identity matrix,j =1,...,d.

Let C € R? be a bounded, compact and closed set. Thervtthemeof C, vol(C) = fc dx is the
Lebesgue measure 6f A polytopeP is full-dimensional if and only if it has a positive volume. Finally,
letD2£{1,2,...,d}andM £ (1,2, ..., m}.

Most of the methods proposed in this paper are based on the solution of auxiliary linear programs.
Since the time complexity of solving a linear program depends on the adopted solver (e.g., interior-point
methods, simplex methods, randomized methods [9, Chapter 39]), we consider a linear program to be
an oracle and evaluate the complexity of a given algorithm by the maximum number of linear programs
that must be solved. More precisely, we denotdfiy:, d) the time complexity for solving am x d
canonical linear program mafc"x: Ax < b} whereA e R"*4, ¢ e RY andb € R”. Since its dual linear
program is ad x m canonical linear program, we may assume fip&#/, m) is of the same order as
Ip(m, d).
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2. Single box approximation

Given a polyhedrorP = {x e R?: Ax < b} and a boxB(l, u), we say that3(l, u) is aninner box of
Pif B(,u) C P, B(,u) is anouterbox of P if B(l, u) 2 P. We address here the following problems:

(a) compute a maximum volume inner box7@f
(b) compute a minimum volume outer box Bt

We suggest an effective formulation for problem (a), which leads to a polynomial time solution.
However, we focus on two simpler problems, namely:

(a.1) compute a maximum volume inner boxPsuch that the ratios among the edge lengths are a priori
fixed;
(a.2) compute an inner box @f that is maximal with respect to inclusion.

Note that problem (a.1) is equivalent to computing the “inradiusPokith respect to the polytopal
norm induced by a box with fixed edge ratios, whereas problem (b) is similar to computing the
“circumradius” of P with respect to the maximum-norm. Both these general problems were studied in
detail in [10], where solutions based on linear programming are suggested. In the sequel, we characterize
the linear programs associated with (a.1), and propose an algorithm for solving problem (a.2) in strongly
polynomial time, provided a point @ is known. Finally, we show how to solve problem (b) efficiently
by linear programming.

2.1. Maximum volume inner box

A box B(l, u) can be written ag(x, x 4+ y) by settingx =/ andy =u — [. Then, volB(x, x + y)) =
]_[jeD yj- Letv(S) € {0, 1}¢ be the incidence vector of the subset of coordinate indfcesD:
o |1 ifjes,
v;(8) = {0 otherwise @)
Let V(S) = diag(v(S)). The vertex set of3(x, x + y) may be expressed ds + V(S)y: S C D}. By
imposing that each vertex @&(x, x + y) is contained inP, we formulate the following optimization
problem:

max [y
jebD
subjecttoAx + AV(S)y<b (VST D) (2)
y=0
By construction, an optimal solutiofx*, y*) of problem (2) identifies a maximum volume inner box
B(x*, x* + y*). Note that this intuitive formulation has a strongly nonlinear objective function and

m2¢ linear constraints. Next Lemma 1 and Proposition 1 show that problem (2) is equivalent to the
maximization of a concave function subject#dinear constraints.

Lemma 1. The constraints irf2) are equivalent to the set of constraims + A"y < b, whereA™ is the
positive part ofA, namelya; =max_0, a;;).
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Proof. The constraints in (2) corresponding to any M can be written as

Zaijxj + Zaijyj <b (YSC D),

jeD jes

i.e.,
Dy <bi= Y ayx; (VSED). )
jes jeb

Let S; ={,: a;; > 0}. Then conditiony > 0 implies

Zaijyj < Z aijyj

j€es jesi

forall S C D. It follows that all constraints (3) wit # S;" are redundant and thus can be omitted. Using
this fact, and noting tha}_; ¢+ ai;y; = 3 ;. p 4;7y), the lemma is proved. O

Proposition 1. Let? = {x € R?: Ax < b} be a full-dimensional polytope, and let*, y*) be an optimal
solution of

max Y Iny;

X,y
jeb

subject toAx + ATy < b. (4)

ThenB(x*, x* 4+ y*) is a maximum volume inner box Bf

Proof. The result easily follows from Lemma 1, &sis full-dimensional, and thereforg" > 0, and as
the natural logarithm is a strictly monotonic function

According to Proposition 1, the maximum volume inner box can be computed as follows.
Algorithm 1.

function single-inner-nlp(P)
1 At =maxA,0);
2  solve (4);
3 return B(x*, x* + y*).

By following the lines proposed in [13, Chapters 3 and 5], a path-following interior point method able
to solve problem (4) within a polynomial number of Newton steps may be designed. Thus Algorithm 1
can be regarded as a polynomial time algorithm.

Since problem (4) will never be considered in the sequel, we omit here the (technical) formal proof of
the above statement. On the contrary, in order to solve the single box approximation by a widely available
and/or easily implementable code, we next consider two easier problems.
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2.2. Maximum volume-constrained inner box

Given a strictly positive vectar e R¢, we say that bo¥3(l, u) is r-constrainedf u = [ + Ar for some
scalarr > 0. We may interpret as the vector of fixed edge length ratios. We can find a maximum volume
r-constrained box contained A by solving a linear program with + 1 variables ana: constraints.

Proposition 2. LetP? = {x e R?: Ax < b} be anonempty polytope, and (et, A*) be an optimal solution
of

max A
X,
subject toAx + ATrx < b, (5)

wherer € R? is strictly positive and. is a scalar, andA* is the positive part ofi. ThenB(x*, x* + A*r)
is a maximum volume-constrained inner box dP = {x e RY: Ax < b}.

Proof. We prove that problem (2) with the additional constraint Ar is equivalent to problem (5). If
we sety = Ar, wherer € R? is a strictly positive fixed vector and is a scalar nonnegative variable,
then the objective function of problem (2) becorr(ﬂjeD rj)A¢ that, for nonnegative., is a strictly
monotonic function of.. Hence problem (2) witly = Ar is equivalent to

max{: Ax +AV(S)rA <b (VS S D), 2> 0}. (6)
The result follows by applying Lemma 1 with=rA. O

Note that an optimal solution of problem (5) with strictly positiveexists if and only ifP is full-
dimensional. Note further that problem (5) can have more than one optimal solution.

The choice of the edge length ratiess crucial for the quality of the generatedconstrained inner
box. Working with hypercubes (all edge length ratios equal to one) seems to be a reasonable choice
when we have no information about the shap@®obut may be very inefficient when the ratio between
the “width” of P (i.e., the smallest distance between pairs of parallel supporting hyperplafsaoti
the “diameter” ofP (i.e., the largest distance realized between two point8)dé comparatively small.
A possible choice for the edge length ratio veatds

ri=Xx;(P) forall jeD, (7)
where A ;(P) denotes the maximum length of a line segment parallel tojthecoordinate axis and
contained inp.

Proposition 3. Let P = {x € RY: Ax < b} be a nonempty polytope. Then(P) = max ;{r: Ax +
AJM < b}, whereAj denotes thg'th column of the positive part of.

Proof. A line segment parallel to th¢th coordinate axis may be written &= conv(x, x + ie;) for
somex € R, wheree; denotes thgth column of thed x d identity matrix and is the length ofE. As
a consequence,

1 (P) = mak\x{k: Ax <b, A(x + rej) < b, 1 >0}.
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The above linear program has two constraints for éaciM, namely

Zaikxk <b; and Zaikxk +aih < b;.

keD keD
Sincel > 0, if a;; < 0 then the latter constraint is redundantgif > O then the former constraint is
redundant. Hence both constraints may be replace} by, aixx + a;tA < b;. If P is not empty then
constraints > 0 is redundant and thus can be omitted. The statement follows.

The complexity of computing ;(P) for all j € D is then Qd Ip(m,d + 1)).

An alternative choice is to use the ratie= u — I of the outer box computed according to the following
Section 2.4. This choice is reasonable when both an inner and outer approximation of the same polytope
are sought. In fact, if we compute first the outer box then we get as a byproduct a good-viecttire
successive-constrained inner box computation.

Once anr vector is given, the--constrained inner box computation is formalized by the following
algorithm.

Algorithm 2.

function single-inner-IpP, r)
1 A" =max(,0);
2 solve (5);
3 return B(x*, x* + A*r).

The time complexity of Algorithm 2 is Qp(m, d + 1)).
2.3. Greedy inner box

Abox B C 73~is said to be agreedg inner boXf B is maximal with respect to inclusion, i.e., if it does
not exist a box3 # B such that3 € B C P. Let P* C R? be a polytope containing the origin @&f. We
first show that the maximum volume hypercube containeB'imnd centered in the origin can be found
by applying a simple formula. Then, we show how to apply the formula iteratively in order to obtain a
greedy inner box of.

Let Pk = {x e R?: Akx < bF} be a polytope containing the origin, so t&t> 0. Consider hypercubes
centered in the origin with edge length,2denoted ad3(—rte, +t1e). Finding the maximum volume
hypercube contained iR* and centered in the origin is equivalent to finding

t(P*)=max{t: B(—te, +1e) € P*}. (8)
The above maximization problem can be solved in closed form as follows.

Proposition 4. Let A* = [afj] and for alli € M let

bt . ‘
T =1{ Lieplajl if > jep la;| >0, o
+00 otherwise

Thent (P*) = min{r;: i € M}.
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Proof. For anyi € M, consider the linear program

zi(t) = max{ Zafjxj: x € B(—rte, —I—re)},
jebD
which has the straightforward optimal solution

. -7 |if af‘j <0,
S ak >0
J = L)

with corresponding objectlve valug(t) =13 p |aU [

The inequality)_ ., a;x; < b} holds for all points inB(—te, +te) if and only if z;(z) <&}, i.e.,
if and only if ¢ < 7;, wheret; is defined as in (9). It follows thaB(—te, +1e) is contained inP
if and only if T < ; for all i € M. Since B(—te, +1e) C B(—1;e, +1ie) if and only if ¢ < 1; and
B(—te, +1e) = B(—t;e, +1;e) if and only if r = 7;, we conclude that (PY) is the minimumr;. O

The volume of the hypercube obtained by Proposition 4 greatly depends on the relative position of
the origin insideP* and in particular it is zero if the origin lies onto the boundaryRt Nevertheless,
Proposition 4 may be applied iteratively to obtain a greedy inner box. In order to do that, we start with a
few observations.

Let r; = (P¥) for somei € M. If x; has a negative coefficient in thth inequality ofA*x < b*, then
any boxB(l, u) such thatB(—t(P¥)e, T (P*)e) C B(l, u) € P* must have; = —7(P*). Moreover, for
all i € M such thaw}; < 0 we have

Y jep\i7) iy +af;x; < bi - Y iepv) @% < bi +af;T(P)
xj = —1(PY) x; > —1(P).

Symmetrically, ifx; has a positive coefficient in theh inequality ofA*x < b* then any box3(Z, u) such
that B(—t(P¥)e, T(PX)e) € B(l, u) € P* must have:; = t(PX), and for alli € M such tha‘ufj_ >0 we
have

ZJeD\{J} l/xJ —I—a xj < bi N ZjeD\{j} azijj <bi — aij(Pk)
x; < T(PF) x; < T(PH).

It follows that, once we fix the lower bound on one variable, this variable can be removed from all the
inequalities defining?* where it has negative coefficient. Symmetrically, once we fix the upper bound
on one variable, this variable can be removed from all the inequalities defitfinghere it has positive
coefficient. In this way, we may transform the systafix < b* in a new systemA**1x < »¥*+! where
the coefficient matrix has a strictly less number of nonzero coefficients. On this new system defining a
(possibly unbounded) polyhedrd?f+! we may compute (P**1) and repeat the transformation.

We formalize the above argument as follows.

Consider the quintupl®* = {P*, [¥, u*, L¥, U*} whereP* = {x e RY: Akx < bk}, with A% = [afj]
realm x d matrix andb* realm-vector;/*, u* are reaki-vectors; and.*, U* are index subsets, contained
in D. We assume the following holds:

jeL' implies af,>0forallieM, (10a)
jeU" implies af;, <OforallieM. (10b)
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Assume we are interested in finding a greedy inner boR ef {x € R?: Ax g b} and assume we have a
point x° in . By mappingx® onto the origin with the translation — x — x°, we translate?? to P =

{x e R%: A% < b9}, whereA® = A andb® = b — AxO, with »° > 0. We olefmeQO (PO, 1°,u° LO, UO)
where

PO={xeR: A%<, °=u’=0, L°=U"=w. (11)

Note that property (10) trivially holds fa@°.
Given a genericd*, computer (P*) by using Proposition 4 and defing* = {i € M: 7; = ©(P")}.
For alli € M define

Lf ={j e D: a; <0 anda;; < 0 for somei € M*}, (12a)

Uf ={j € D: a}; > 0 anday; > 0 for someh € M*}. (12b)

Clearly, L¥ N UF = ¢. Note that ifi € M* thenL¥ and U} are the index sets of respectively negative
and positive entries in thith inequality of systemt*x < b*. Note further that J;_,« Lf =, ,, LY and
Uieart Uik =Uien l_]ik' ] ] ]

Apply the following iterative transformations:

k+1 _
a;

s =of = (P et |+ Xlatl) . (130)

. eM,jeD), 13a
af, otherwise (€M, jeD) (13a)

{o if j e LKUUF,

jeL! jeuk
T(PY if j el LY
lk+l .lEM i . D 13
{l" otherwise (€D, (13c)
+ (P if jel..,, U
k+1 ieM .
; D), 13d
" {uﬁ otherwise (€D (130)
Lt =ky (U Lf), (13e)
ieM

Uttt =yku (UUk) (13f)

Now defineP*+! = {x e R?: A1y < bF+1) and QK+ = (Pr+L (k1 yk+1 [k+1 y*k+1) The properties
of the above iterative transformations are summarized by the following result.

Theorem 1. Starting from Q° defined by(11), apply the iterative transformation&l3) until L+ =
Ul = D. Then,B(x° + I¥+1, xO + u*+1) is a greedy inner box foP.
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Proof. We prove thaB3(I**1, u**1) is a greedy inner box foP°. We first prove tha3(1**1, u*+1) < PO,
Property (10) holds fo@° and the iterative transformations (13) preserve (10).iletV be fixed. By
applying repeatedly the iterative transformation (13b) we get

k
bt =00 = (P (Z]a E )
p=0 jeL? jeu?
By the iterative transformations (13c)—(13d), for aRyif j € L thenl”+l —t(P?), if j € U then
”*1 = +7(PP). Thus we get

piHt = (Z Z al’ z;’*l + Z Z alu j’“). (14)

p=0jeL? p=0 jeu?

Property (10), definitions (12), and the iterative transformation (13a) ibplyL? = ¢ andU” NU; =
for all ¢ # p. This fact has the following consequences: (i) in (14) every infleppears at most once
in each summation; (ii) by the iterative transformations (13c)—(13d)dfL! (respectively;j € U/”) for

some 0< p < k thenl”+l =+ (respectlvelyuerl u’*y; (i) by the iterative transformation (13a) if
jeLlorjeu’ thena”+l =0 buta/, = a;. Thus (14) is equivalent to

=0 (e Yt ). (19
JeL; jeU;

where L; = U" LY andU; = U’; o Ul. By definition (12) we haveL! N L{ = ¢ for all p,q and
henceL; N U; = @. By property (10), ifL**1 = U**! = D then necessarlly/t"+l 0 for all i and j;
forall j € L; U U;, the iterative transformation (13a) |mplleg+l = au and hencezl.oj = 0. Thus, for all
Xe B(lk+l, uk+l)1

Zaiojij = Za?jij + Z al-ojx] Z (JtulfJrl + Z ag I;H =p? — b, (16)

jebD JeL; jeU; JjeL; jeU;
Observe that ifi € M* thenb{™ = 0; if i ¢ M* thenb{™ > bf — c(P*) Y, ) laf;| > bf — b} = 0.
Hence (16) implies_ ., alx; <bY. Slnce this is true for all M thenB(*+1, "+1) C PO

Next suppose thaB(***, u*+1) is not greedy. Suppos(*+*, u**1) c B(l, i) < P° for somel and
it. Thenl < %1, it > u**1, and there must be an indéxe D such that (i), < [ or (i) i), > ut™.
Assume that (i) holds. Lelfrl be fixed during theth iteration, for some & g < k, and leti € M. Let

now L; = Z:O LY andU; = UZ:o U/, and letx = [x;] where
(L el
Xj= IZJ' if ] c Ui,

0 otherwise
Clearly, € B(l, it). By constructionp?™" = 0 and sab*** = 0. Hence we obtain

0= _ KLy 40 k1 0
Zaijxf_ l +Z“u”1>2"zﬂ] a;ju =b;.

jeD JeL; jeU; JeL; jeu;
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2 < ul / 2]
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P ﬁQ
(a) (b) (c)

Fig. 2. Recursive application of (13) to produce a greedy inner box in a 2-dimensional example. The pdRftamesthe
shaded part of the plane. (a) SinagP?) = 3 andagj <0for j = 1,2, we fix/} =13 = —7(P?). We then remove all negative

coefficients in matrixA®, getting A1, and we update?, gettingb!. Note that the first row oA have positive entries, so
that the corresponding inequality does not change. (b) Si(Eg) = 14 andag 5> 0, we fix u% = 7(PL). Now, the second

inequality remains unchanged. (c) Polyhedffis simply a halfplane. Since(P?) =tz anda3 ; > 0, we fixu3 = (P?).
Now all variables have both a lower and an upper bound and the procedure stops returning the bold inner box, which is greedy
for the original pontope?DO

This implies thatc ¢ 7P°, making a contradiction. If (i) holds then we can proceed analogously to get a
contradiction. O

Theorem 1 guarantees that the recursive application of (13) produces a greedy inner box. The idea is
depicted in Fig. 2, and is formally summarized by the following algorithm.

Algorithm 3.

function single-inner-greedy?, xo)
1 k=0;
2 A= A; b =b— Axg; ¥ =0;ut =0; L = 0; U* = ;
3  whileL¥# D or U*¥ # D,
4 computer (P*) by using Proposition 4;
5 apply the iterative transformations (13);
6 k=k+1,
7 returnB(k, u").

Proposition 5. Algorithm 3 runs inO(md?) time.

Proof. At the end of each while loop at least one new index is addedftor U*. Hence, at most2
while loops are performed. Each while loop consists of the computatio7f) and the application of
the iterative transformations (13). Both these operations requieitime. O

Note that Algorithm 3 is strongly polynomial provided that a poigt P is given.
2.4. Minimum volume outer box

The problem of finding the minimum volume outer box containfAigamounts to solve @ linear
programs withd/ variables andn constraints. Let



162 A. Bemporad et al. / Computational Geometry 27 (2004) 151-178

l; =min{x;: Ax <b}, (17a)
uj=maxx;: Ax < b}, (17b)

forall j € D. By construction53(, u) is contained in every box containirfgs Then,B(l, ) is the unique
minimum volume outer box dP.

Algorithm 4.

function single-outerpP)
1 forj=1...4d,
2 lj:min{x]': Ax < b};
3  uj=maxx;: Ax <b};
4  return B(,u).

Clearly, the time complexity of Algorithm 4 is @Ip(m, d)).

3. Multiple box approximation

Let us summarize the results obtained so far: the problem of finding the largest hyper-rectangular
inner approximation of a polytopB = {x € R: Ax < b} was cast as the convex nonlinear program (4).
We also proposed two simpler suboptimal methods: Algorithm 2, basedcomstrained boxes, and
Algorithm 3, based on greedy inner boxes. The algorithms exhibit a polynomial respectively a strongly
polynomial complexity (provided a point @ in known). We suggested three different ways to determine
vectorr in Algorithm 2. The problem of finding an outer approximation was solved straightforwardly by
Algorithm 4 in polynomial time.

The single-box inner approximation algorithms developed in the previous section can be applied
recursively to obtain an inner approximation Bfas the union of full-dimensional, non-overlapping
boxes. The key idea is the following (cf. Fig. 1): LBf be an inner approximation dP. Partition
(the closure of)P \ By into convex polytopesP, (h = 1,2,...), and recursively compute an inner
approximationB,,,, for each’P,. This approximation technique is associated with a tree. Each inner
approximation induces a partition of the remaining polytope and a branching. The polyZppe
further inner approximated until some termination condition is met. We will also consider a recursive
approximation algorithm that directly computes an outer approximation.

The termination conditions are related to the accuracy of the approximation. Ideally, one would like
to stop the recursive algorithm when the volume error induced by the approximation is smaller than a
given tolerance: (vol(P) — vol(Z) < ¢ - vol(P)). This however is not practical as determining the exact
volume of a polytope is computationally expensive [3].

An alternative is to stop the recursion when the volume of the outer approximation and the volume
of the inner one are within a given interval (¢6) — vol(Z) < ¢ - vol(£)). However, such a criterion is
applicable only when we are interested in both an inner and an outer approximation.

A better stopping condition is to prune a branch of the approximation tree if the generated inner box
B is smaller than a given tolerance (WB) < ¢). Note that this stopping criterion does not guarantee a
direct bound on the volume error, although it is very simple to apply and it is justified by the asymptotic
results given below (Theorems 2 and 3) and by the numerical results of Section 4.
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3.1. PartitioningP \ B(, u)

Given a boxB(l, u) C R4, for all k € D define the following pair of polyhedra:
HZk—1={XG]Rdi [ <xj<u;y A< j<k—1),x <k}, (18)
Hoy={xeR" [; <x; <uy A< j<k—1), x> u}. (19)

Proposition 6. We haveB(/, u) U (., H,) = R“.

Proof. Letx e RY. If X € B(l, u), the claim is trivially true. Otherwise, léte D be the first index such
thatx, ¢ [li, uil. If X < I, thenx € Hy_q, otherwisex € Hy,. O

Proposition 7. Let P be a full-dimensional polytope and IB{(/, «) be a full-dimensional box contained
in P. The following claims hold

Q) dm(H,) =dforallh=1,...,2d,
(2) dm(H, NH,) <d forall h,s=1,...,2d withh #s.

Proof. Recall thatB(l, u) is full-dimensional if and only if < u.
(1) The vector®~! = [£% 1] and£* = [£%] defined as

" Tuj+1) if j<k, o Tuj+1y) if j<k,
T =1L-1 if j =k, Xr=qu+1 if j =k, (20)
0 otherwise 0 otherwise

are interior points of{,,_; andHy, respectively.

(2) Assumeh < s. If h =2k — 1 for somek € D then the description dff;, contains the inequality
x; < Iy, whereas the description @f, contains either the inequality, > u;(> ;) or the inequality
X = Ii. In the former caseH,, N H, = ¥; in the latter caseH, N H, C {x € R?: x; =I;}. If h = 2k for
somek € D then the description df{; contains the inequality, > u,, whereas the description &,
contains the inequality, < uy, so thatH, NH, C {x e R: xy =ux}. O

DefineP, =PNH, forallh=1,...,2d and note thaJUiil P, equals the closure P\ B(l, u). Let
xj. = (u; +1;)/2 be the coordinates of the center®, u), j € D. For allk € D let

bi — ) . .paijxs —1
AZk_l=max{ 2. jen % o ieM,aik<0}+uk2 k.
aik
. v (21)
.| bi — 2_jep GijX; —1
AZk:mln{ jeD7H ]: ieM,a,-k>0}—uk k.
ik 2

Proposition 8. For all k£ € D the following holds

(1) Po_y is full-dimensional if and only ify_1 < 0,
(2) Py is full-dimensional if and only if > O,
(3) dm(P,NP,) <dforall h,s=1,...,2d withh #£s.
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Proof. (1) Let£ = {x € RY: x; =1} and consider the following inclusions:
B, u)yNL) C (Pa-1NL) S Py1. (22)

The set on the left of (22) has dimensidn- 1 and the set in the middle is a face®f,_;. Thus, the
dimension ofP,,_; is eitherd or d — 1 andPy._1 N L is either a facet ofPy,_1 or Py_q itself. Let
ek e R be thekth column of the identity matrix. Poirite* lies on the relative interior gPy._; N £ and
the directione* is orthogonal tol. Thus,Px._; is full-dimensional if and only if it is possible to move
from I e* along the directiore®, i.e., if and only ifAy_1 < [;. The proof of item (2) is similar. Item (3)
follows from dim(P, N P;) < dim(H;, NH,) and item (2) of Proposition 7.0

3.2. Arecursive algorithm for inner approximation

The following Algorithm 5 computes an inner approximation of a full-dimensional polytope as the
union of non-overlapping full-dimensional boxes.

Algorithm 5.

function Z = multi-inner(P)
1 B =single-inne(P);

2 ifvol(B) > ¢,
3 Zodd=9; Leven=19;
4 fork=1...d,
5 computery, 1 andiy by using (21);
6 if )»2](_1 < lk,
7 defineHz_1 as in (18);
8 Pox—1="P NHo_1;
9 Todd = ZoggU multi-innenPy_1);
10 if lop > uy,
11 defineHy as in (19);
12 Pop =P N Ho;
13 Zeven= TevenU multi-innenPyy);

14 return ZogqU ZevenU {B};
15 €sereturn @.

Here, the function single-inner() computes the inner box according to any one of the methods proposed
in Section 2. Note that Step 1 requiredefore calling Algorithm 2, oxg before calling Algorithm 3.
In the first case, either is computed at each iteration by solving the linear programs (7) or (17), or is
computed only once (at the first step) and kept constant. In the latter case, getting Rralso requires
the solution of a linear program only at the very first call. Indeed, forfaeyl, 2, ..., n, if Py_1is
full-dimensional, an interior point is%~1 = [xf"‘l] defined as

(21 Iy + %)»2/{—1 if j =k,

= 23
! T(u;j+1;) otherwise (3)
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Analogously, for any = 1,2, ..., n, if Py is full-dimensional, an interior point is? = [sz."] defined
as
L + %)»Zk if j =k,

= 24
! Z(u;+1;) otherwise (e4)

It should be noted that the representatiorPpl(s = 1, 2, . . ., 2d) differs from the given representation
of P only for tighter bounds on some variables. Hence, if Algorithm 5 is used to compute a single inner
box approximation ofP;, then the application of a dual simplex method to optimize (7) or (17) starting
from the already available basic solution/fseems the best choice.

Proposition 9. The total number of recursive calls of AlgorittBris bounded byd |vol(P)/e].

Proof. If a node in the recursive tree is not a leaf, then it corresponds to a box contaifeaf Wolume
greater tham. There cannot be more thawol (P) /¢ | of such boxes with non-overlapping interiors. Since
each node of the recursive tree may generate no more thandes, the preposition easily followso

The overall complexity of Algorithm 5 depends on the type of approximation computed at each call
(cf. Section 2).
The following asymptotic property will be proved in Appendix A.

Theorem 2. Let P c R’ be a polytope and lef, = {53,}>) be its inner approximation generated
by Algorithm5 for a givene > 0 when Algorithm2 with » = ¢ is used for computing single inner
approximations. Then

limZ, = P,

e—~>0 ae
i.e., the Lebesgue measure of the differeRceZ, tends to zero as — 0, where
S(e)

.=JB cP. (25)

=1

3.3. Arecursive algorithm for outer approximation

In order to refine the outer approximation, given the minimum volume outer box of a full-dimensional
polytope, we want to find a set of non-overlapping full-dimensional boxes whose union contains the
polytope, each box having volume not greater than

The following simple recursive Algorithm 6 performs such a task. As long as the current outer box
has volume greater than the box is divided into two equal parts by an hyperplane perpendicular to the
longest edge (see Fig. 3). Then an outer box is computed for both the intersections of the polytope with
the two parts.

Algorithm 6.

function & = multi-outerP)
1 B, u) =single-oute(P);
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B,

; A . A

v = (ue —1)/2

(@ (b)

Fig. 3. Recursive outer approximation of a polytopevia Algorithm 6. (a) Approximation after the first recursion of
Algorithm 6. (b) Result after two recursions.

T

P - |

Fig. 4. Fragmentation of the outer approximation.

2 if ((vol(B) > ¢),

3 let k =argmaXu; —I;}, y = (ux — lx)/2;
4 Q1 =PnNi{xeR%: x <y

5 Q=PN{xeR": x>y}

6 return multi-outer Q,) U multi-outer Q5,);
7 dsereturn {B(l, u)}.

The following observation allows to efficiently compute the outer boxesBlktu) be the minimum
volume outer box ofP, and for eachj € D let x™™/ andx™®/ be the optimal solutions of (17a) and
(17b) respectively. AssumB(l, i) is divided in two equal parts along tti¢h coordinate. Accordingly,
P is divided in two parts,0; =P N{x e R x; <y} and Q, =P N {x € RY: x; > y}, where
Y = (up — ) /2. Let B(I", u") be the minimum volume outer box @, (k = 1, 2). Then the following
statements are straightforward to prove forjadl D:

min, j 1 max, j 1

X <y = L=l X Sy = uj=uj,
min, j 2 _ max j 2 _
X >y = =l X >y = uj=uj.

Whenever one of the above condition applies, a linear program can be avoided for the computation of the
outer box. As the conditions are mutually exclusive and collectively exhaustive, we need to solve only
2d new linear programs at each recursion.

Algorithm 6 may divide some boxes without reducing the volume error, therefore causing the
fragmentation of the outer approximation, as depicted in Fig. 4. Such a fragmentation could be simply
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avoided by checking that the generated box is not contained in the initial poljdgefore recursively
calling Algorithm 6. Clearly this check would prevent the computation of the bfxemnd3; in Fig. 4.
The number of regions could be further reduced by backtracking if some box is contaifigdaird
dividing along the second longest direction: in this case the bBxasadB; as well as3; ands,, would
not be divided.

Proposition 10. Let V denote the volume of the minimum volume outer boR.ofhe total number of
nodes in the recursive tree of Algorithfris bounded by4V /1.

Proof. At each recursive call, the current outer box is halved. Hence, the volume of the next outer box is
no more than half the volume of the current one. It follows that when we are atdexahe recursion

tree, the volume of the current outer box is no more thahi’2 This quantity is not greater thanif and

only if n > log,(V /¢). It follows that the depth of the recursive tree is boundedlbg,(V/e)]. Since

the recursive tree is binary, the total number of its nodes is bounded by

2flogy(V/e)1+1 < 210G, (V/e)+2 _ 4_V
€

The following asymptotic result, analogous to Theorem 2, will be proved in Appendix B.
Theorem 3. Let P c R? be a polytope. LeE, = {B,}" be the outer approximation generated by
Algorithm6 for a givene > 0. Then

lim &, = P,
e—>0 ae

where&, = J 9 B,.

t

3.4. Arecursive algorithm for inner and outer approximations

In this section we show how the results presented so far can be efficiently used to solve the problem
stated in the introduction.

Given a polytopeP, consider the recursion tree generated by Algorithm 5. Each node corresponds to
a polytope, which is generated either in step 7 or in step 11 of the algorithm, except for the root node,
corresponding to the origin&. The leaves of the tree correspond to polytopes where the computed single
inner box has volume not greater tha(cf. step 2). LetP!, with £ =1, 2, ..., L(¢), denote the polytopes
corresponding to the leaves of the recursion tree, for any fixeshd note thatZ,) U (Uﬁfl) PH =P,
where Z, is defined in (25). Clearly, we can easily compute an outer approximation by applying
Algorithm 4 to each polyhedro®‘. However, as Fig. 5(a) shows, the volume of the outer boxesg)g.
can be considerably larger than the tolerancsed for the inner approximation. Algorithm 6 solves this
problem by further approximating the outer boxes if their volume exceeds the thresHAdld following
inner-outer approximation algorithm summarizes the ideas discussed above and returns two collections
of polyhedraZ, M such thatZ is an inner approximation anfl=7 U M is an outer approximation
of P.
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B,
5 P, P, B,
B /| B 2B,
{ & B, B, B, B,
o A
P
@ (b)

Fig. 5. Recursive inner and outer approximation of a polytdhea) Inner and outer approximation using Algorithm 4 to
approximate the rests;. (b) Inner and outer approximation using Algorithm 6 to approximate the 7&sts

Algorithm 7.

function [Z, M] = multi-inner-oute(P)
1 B =single-inne(P);

2 ifvol(B) > &,
3 Iodd=®;zeven= Q; Modd=®; Meven=®;
4 fork=1...d,
5 computery,_; andiy by using (21);
6 if )\.2](_1 < lk,
7 defineHy._1 asin (18);
8 Pox—1="P NHo_1;
9 [Zodds Modd = [Zodd, Moddl U multi-inner-oute(Py_1);
10 if Xop > uy,
11 defineHy as in (19);
12 Po =P NHy;
13 [Zeven Mevenl = [Zeven Mevenl U multi-inner-oute(Pz);

14 return [Iodd U Ieven ModdU Meverﬂ;
15 €dsereturn [@, oute(P)].

All the different inner and outer approximation algorithms presented earlier can be combined in several
ways by replacing the opportune functions in step 1 (single-inner-nlp, single-inner-lp, single-inner-
greedy) and in step 15 (single-outer, multi-outer). In practice, many optimization problems (17) may
be avoided since their optimal value is implicit in the definition/f_, andP,,. Indeed, by recalling
that Py_1 = P N {x € R%: l; <xj<uj (0<j<k—1,x <k}, we see that when Algorithm 7 is
called with inputPy_1, we already know; forall j =1,...,k —1andu; forall j =1,... k. Thus,
it is sufficient to solve (17a) for alf =k, ...,d and (17b) for allj =k + 1, ..., d. Analogously, when
Algorithm 7 is called with inputPy, it suffices to solve (17a) forall =k +1,...,d and (17b) for all
j=k,....d.
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P ~ P P
B B, > B,
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N P P
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Fig. 6. Inner approximations. (a) Approximation &f using Algorithm 5 and performing the inner approximations with
Algorithm 2 with » = [1 1]’. (b) Approximation of P using Algorithm 5 and performing the inner approximations with
Algorithm 2 with » computed using (7) at each iteration. (c) Approximationfolsing Algorithm 5+ Algorithm 2 with

r =uy — I, whereB(ly,, up) is the outer box ofP;,, and wherd_J P}, equals the closure dP \ B1. (d) Approximation ofP

using Algorithm 5 and performing the inner approximations with Algorithm 3. (e) ApproximatigR oing Algorithm 2
presented in [4]. (f) Comparison of the approaches (cumulative volume against number of boxes), (a)—(e) as in Figs. 6(a)—(e).

4. Computational experience

This section presents a computational experience using the proposed algorithms. We first present &
2-dimensional polyhedron and its inner and outer approximations, then we present a statistical study of
the inner and outer approximation algorithms on higher-dimensional objects.

4.1. Approximation of a 2-dimensional polytope

This section shows the same 2-polytope approximated using the presented algorithms. Fig. 6 reports
the inner approximations. Note that the results depicted in Fig. 6(b) and in Fig. 6(c) are almost identical.
Fig. 6(f) shows the cumulative sum of the first 30 boxes produced by each approximation, the constant
line is the volume of the polytope computed using the package VINCI [3]. Fig. 7 shows the outer
approximations ofP. Figs. 7(a) and 7(c) show that fragmentation happens only when Algorithm 6 is
applied alone. Fig. 7(d) is computed by interpolation on 20 runs of the algorithms (termination wolume
between 1 and.0%).

4.2. Higher dimensional approximations

In this section we consider the results obtained by running the algorithms on 100 random polytopes.
Each input polytope is centered in the origin and is generated by uniformly distributing the normals of the
facets of P and by randomly stretching and rotating the polytope. The polytopes have a unitary volume
and the stopping criterion is set4e= 0.1¢, whered is the dimension of the space embeddigrable 1
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Fig. 7. Outer approximations. (a) Approximation &f using Algorithm 6. (b) Approximation ofP using Algorithm 7
(Algorithm 2 withr =u — 1, £, u) 2 P and Algorithm 4). (c) Approximation of? using Algorithm 7 (Algorithm 2 with
r=u—1,E(,u) 2P and Algorithm 6). (d) Comparison of the approaches (cumulative volume against number of boxes)
(a)—(c) as in Figs. 7(a)—(c).

Table 1

Average [variance] computational times (s) on a test pool of 100 polytope el 1, m = 24, ¢ = 0.14

Algorithm PeR? PeR3 PeR?
542(r=1) 0.07 [0.02] 1.24[0.14] 14.70 [1.70]
542 (r using (7)) 0.25[0.05] 5.51[0.37] 104.50 [15.80]
542(r=u-1I) 0.18[0.03] 3.18 [0.26] 56.54 [13.69]
543 0.03[0.01] 1.17[0.15] 18.98 [29.50]
2in[4] 0.03[0.01] 1.17 [0.15] 18.98 [29.50]
6 1.05[0.08] 18.41 [0.98] 294.14 [15.67]
7+24+4 0.17 [0.03] 3.21[0.28] 56.87 [13.69]
7+2+6 0.29 [0.04] 11.26 [2.27] 766.95 [389.60]

reports the computational times obtained by running a Matlab implementation of the approximation
algorithms on a SUN workstation with a 950 MHz processor, using the LP solver EO4MBF of the
NAG Foundation Toolbox [12], while Table 2 and Table 3 report respectively the number of boxes
and the volume of the approximation. Note that for higher dimensihreven decreasing the tolerance

e = 0.1¢ the number of boxes remains constant, and the approximation error increases. This is a general
conseqguence of approximating polytopes using simple shaped objects like boxes.

Note further that the performance of the algorithms rapidly deteriorates as the dimension grows. This
fact is unavoidable, since the considered problem is inherently difficult. To support this point we observe
that, though volume computation is not our primary concern, our inner-outer approximation algorithms
return a lower and an upper bound of the volumé&Pofin [1] it is proved that every polynomial time



A. Bemporad et al. / Computational Geometry 27 (2004) 151-178 171

Table 2

Average [variance] number of generated boxes on a test pool of 100 polytop@®) wol, m = 2d, ¢ = 0.14

Algorithm PeR2 PeR3 PeR?
542(r=1) 11.07 [1.70] 96.43 [8.77] 631.97 [66.03]
54 2 (r using (7)) 11.04 [1.58] 95.46 [4.24] 573.45 [54.10]
542 =u-1) 11.14 [1.64] 94.66 [5.03] 538.24 [69.64]
543 11.11 [1.45] 70.35[5.23] 415.88 [31.98]
2in[4] 11.97 [1.98] 226.32 [49.14] 843.01 [248.86]
6 159.35[9.14] 1797.65 [79.17] 21728.56 [886.44]
7+2+4 30.99 [3.83] 362.46 [20.96] 2824.52 [333.51]
7+2+6 52.76 [5.28] 1061.10 [128.01] 18965.68 [1692.87]
Table 3

Average [variance] volume of the approximation on a test pool of 100 polytopeg®vel 1, m = 2d, ¢ = 0.1¢

Algorithm PeR? PeR3 PeR?
542(r=1) 0.82[0.02] 0.59 [0.04] 0.35[0.03]
54 2 (r using (7)) 0.84[0.02] 0.61 [0.05] 0.32 [0.05]
5420 =u-1) 0.85[0.02] 0.61 [0.05] 0.31[0.05]
543 0.84[0.02] 0.14 [0.20] 0.23[0.03]
2in[4] 0.54[0.04] 0.51 [0.05] 0.28 [0.04]
6 1.07 [0.01] 1.21 [0.03] 1.43 [0.04]
7+2+4 1.16 [0.02] 1.56 [0.21] 3.38[1.04]
7+2+6 1.08 [0.01] 1.21[0.03] 1.48 [0.06]

Fig. 8. Number of generated inner boxes againstverage for 10 runs, v@P) = 1, line-styles are associated to Algorithms as
in Fig. 6. ()P € R3. (b) P € R*. (c) P € R®.

algorithm computing a lower and an upper bound on the volume of a convex set commits a relative error
which grows exponentially with the dimension.

The relation between the volume tolerarcand the number of generated inner boxes is illustrated in
Fig. 8, where the plots suggest an exponential relation among the two quantities.
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Fig. 9. Approximated projection ofR? of a polytope P using modified versions of Algorithm 5 (Algorithm 2 with
r=u—1,E(,u) 2 P) for the inner approximation and Algorithm 4 for the outer. (a) Approximate projection of a polytope
P € R3. (b) Elapsed time (s) against dimension Bf average for 10 runss(= (0.5)2 dashed,c = (0.1)2 dash-dotted,

¢ = (0.05)2 dotted, exact computation via [8] solid).

5. Extension to approximate projections

Consider the problem of projecting a polytofpec R? onto the linear subspade generated by the
first d vectors of the canonical basisThen, projectingP onto L amounts to find a representation of
{x eRY: Iy e R, [}’j] € P} in terms of linear inequalities. IP is given by a set of linear inequalities,
then the projection problem is a difficult one, which can be solved for instance by using the Fourier-
Motzkin elimination method [17]. On the other hand, the algorithms proposed in this paper can be
extended to directly compute the approximation of the projectio® afs the union ot/-dimensional
boxes, short of computing the projection itself or the projection of the inner approximati@h a$
Fig. 9(a) shows for the projection on the first two coordinate axes of a 3-dimensional polytope.

Let Ap be the firstd columns ofA, and Ay such thatA = [Ap Ay]. The maximum volume--
constrained inner box contained in the projection (cf. problem (F§(ig, x* + A*r), wherex*, A* solve
the LP

max A
X,V8,A
subject toAp (x + v(S)rk) + Ayys <b (YSC D),
xeRY, AeR,
ys €R7™? (VS C D), (26)

wherev(S) € {0, 1}¢ is the incidence vector of the subset of coordinate indicesD, as defined in (1).
Note that (26) containg + (o — d)2? + 1 variables andn2¢ constraints. Fig. 9(b) summarizes the
following computational experience: GiveR € R?, defined as the intersection of Zhyperplanes,
compute the projection on the first two coordinate ax#s=(2). The tests were run with different

1 In caseL is a generic affine subspace, it is enough to perform a standard linear coordinate transformation.
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tolerances for the inner and outer approximation and compared with the computational times needed
for the exact projection using the package CDD [8]. While for small dimensiotige two approaches
have comparable timings, they scale differently when the dimenrsiocreases.

On the other hand, because of the exponential explosion of variables and constraintgm(gt),
wheno ~ d problem (26) may be not convenient, compared to Fourier—Motzkin elimination. In this case,
we propose to replace (26) with the LP

max A
X, VA
subject toApx + Ajri + Ayy <b
xeRY reR, yeR, (27)

where A} is the positive part ofA 5, which returns the largestconstrained inner box of dimensieh
contained inP. Problem (27) has + 1 variables and: constraints, however it returns a box which, in
general, has a smaller volume than the one provided by (26).

We conclude by assessing the impact of the technique proposed here on the problem that originally
motivated our interest. As recalled in the introduction, the reach set computation determines the set of
configurations (ostate$ that a system can reach. Let us restrict our attention to a piecewise linear system
x(k+1) = A;x(k) + Bju(k), wherex(k) € R" is thestatg u(k) € R" is theinputto the systerfy A;, B;
are matrices of suitable dimensions, ghd {1, ..., s} is the current “mode”. Assuming that the initial
statex(0) € X, and thau (k) € U for k > 0, whereX’ andi{ are polytopes, then it is possible to compute
the set of states Reaghi, U/, K) that are reachable ik steps from any initial condition i and subject
to any input in{ as

ReactiX, U, K) = {y: y = A¥x(0) + AX7'B;u(0) + AX?Bju()) + - + Bju(K — 1),

x0) eX, ui)eU, i=0,...,K —1}. (28)
Clearly (28) defines the projection of a polytope of dimengi&im + n) onto the subspace of dimension
n spanned by the rows of the matl[ixf, Af‘lBj, Af‘sz, ..., Bj]. The advantages that the proposed

technique brings in the reach set computations are a consequence of the good performance of the
approximate computation of the projection, and are more evident Wiweincreases. Note that, during

the reachability analysis of hybrid systems the projection (28) is performed several times for different
setsX, modes; € {1, ..., s} and horizonsK . In particular, the value oK is related to the time the

hybrid system remains in a certain mode, and may vary considerably depending on the system dynamics
under analysis [15].

6. Conclusions

This paper presents a collection of algorithms to compute an inner and an outer approximation of a
given polytope. Such algorithms face the multiple objective problem of minimizing both the volume error

2 The absolute times reported are relative to a SUN workstation with a 950 MHz processor running a Matlab implementation
of the approximation algorithms and the C implementation of CDD.

3 Here we prefer to follow the standard control engineering notation even if it may conflict with the notation adopted in the
rest of the paper, the context should disambiguate the symbols.
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Fig. 10. Approximation of a polytope by using generic polytopic shapes.

and the number of boxes needed for the approximation. The algorithms with minor modifications are a
computational attractive alternative to the exact computation of the projection.

Although our techniques were conceived and used to improve the performance of the reachability
analysis algorithm [15], they could be used successfully in other applicative domains. The performance
are good as the computational experiences suggest.

Extensions of the approach include the approximation of generic convex sets by hyper-boxes, and
the generalization of the inner approximation algorithm to generic polytopal shapes (see the experiment
shown in Fig. 10, where a pentagonal shape is used as approximating shape, and recursiveness is bas
on the partition of polytopé® by means of linear cuts generated by the facet inequalities of the largest
approximating inner polytope). In both cases, we expect almost-everywhere convergénad the
resulting inner and outer approximationseas- 0.

Moreover, it is a research topic under investigation how to determine the projectidoré subspace
L (or a polyhedral approximation of such a projection related)tby efficiently using the information
provided by the inner and outer multi-rectangular approximation of the projection itself.

Appendix A. Proof of Theorem 2

If P is not full dimensional, 0= vol(P) = vol(Z,) for all ¢ > 0. Hence, assum& is a full
dimensional set. Clearly, the function ¥®}) is nonnegative and monotonically increasingsas- 0,
and 0< lim,_,qvol(Z,) = m < vol(P). By contradiction, assuma < vol(P). Then, there exist a point
x € P and a scalas > 0 such that the hypercub& = B(x — oe, X + oe) is strictly contained inP and

ZNT. =, (A1)

forall ¢ > 0.

Consider the recursion tree generated by Algorithm 5. Each node corresponds to a polytope, which
is generated either in step 8 or in step 12 of the algorithm, except for the root node, corresponding to
the originalP. The leaves of the tree correspond to polytopes where the computed single inner box has
volume less thamr (cf. step 2). LetP!, withr =1, 2,..., t(¢), denote the polytopes corresponding to
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the leaves of the recursion tree, for any fixeoBinceUffl) P! equals the closure @P \ Z., we have
ZcUl) P LetD,=2nP, forallt =1,2,...,7(e). SinceZ is contained in the interior P, all
the setsD, with a nonempty interior are boxes, as their hyperplane representation can only contain facet
inequalities ofZ and hyperplanes generated according by Algorithm 5. To simplify the notation, in the
following we denote byR the genericP. and byD the corresponding baR;, and only consider sef,
having a nonempty interior. Furthermore we set

D={ax<xx<ax+ o k=1,...,d)},

J = {k: bothay < x; andx; < oy + py are facet inequalities R (k=1,...,d)},

p=min{p: k=1,...,d},

p=min{p;: k e J}.
Note thatJ might be empty, in that case we set= co. Finally, let > denote the edge length of a
maximum volume inner hypercube &f.

Note thato < A < p, and that ifo = p then the edge length of the maximum volume hypercube is equal
to the common value. The following claim is a consequence of the partition procedure of Algorithm 5.

Claim A.1. If p = p thenD is not cut orthogonally to théth coordinate axis, for alk € J in further
recursions of the algorithm.

Claim A.2. If (A.1) holds for somes > 0 then everyD corresponding tce is subdivided in further
recursions of the algorithm far sufficiently small, witlg > ¢ > 0.

Proof of Claim A.2. When Algorithm 5 is applied t& with ¢ < p, a hypercubé3 C R is found with
vol(B) > Bd . Exactly one of the following three cases can occur:

(1) Dis cut;

(2) BND #9;

(3) in the next recursive call) is contained in a regio®’ such that:
(i) vol(R") < vol(R) — vol(B) < vol(R) — p?;
(i) R’ contains a hypercub8’ with vol(B') > p“.

SinceB C Z,, case (2) contradicts (A.1), and thus must be excluded. Case (3) can happen only a finite
number of times. Hence, fer< o, Algorithm 5 recursively cut® in smaller boxes. O

Note that at least one facet inequality of edelmust be a facet inequality o, since otherwise the
corresponding rest polytopR is contained inZ.

Claim A.3. For ¢ > 0 sufficiently small, there exists & and a correspondind® = R N Z for which
there isarnr € {1, ..., d} such that

() px=pforall k#r;
(ii) forall k #r, botha; < x; andx; < oy + p are facet inequalities oR;

(i) o, > p.
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bl B

z 2 ;
@ (b)
Fig. A.1. Proof of Theorem 2. (a) Exemplification of subcase 2.1 by a sectiif.ifb) Exemplification inR? of the situation
considered in Claim 4.

Proof of Claim A.3. Assume that, for somé > 0, there is no boxD satisfying the conditions of
Claim A.3. By Claim A.2, fore < ¢ sufficiently small, the sam® is cut by one or more hyperplanes.
LetB={yi <xy <y +A(k=1,...,d)} be the current maximum volume inner hypercube. Then the
cutting hyperplanes are of the form =y, andx;, =y, + A.

We distinguish between two cases:

Casel There is a cutting hyperplang, = 8 such that at least one of, < x;, andx, < ay + p; IS
a facet inequality ofZ. Then at least one piec®’ of D has one more facet inequality of the
corresponding resk’.

Case2 If x, = B is a cutting hyperplane then both, < x, andx, < «, + p, are facet inequalities
of R. Then for any pait;, =y, andx, = y, + A of cutting hyperplanes we havg, <y, and
vi + A < ay, + pp. We have to distinguish between two further subcases:

Subcase.l: p < p. Note that if we fix two points with distanck > 0 on a line segment of
length p, > A then the segment is divided in three or two parts, and at least one of
them has length not greater thayy2. As a consequence, we can find a full dimensional
piece D’ of D with at least one edge corresponding to opposite facet inequalities of
R’ C R having length at most one half of the length of the corresponding edfe sd#e
Fig. A.1(a).

Subcase@.2: p = p. In this caser = p. If we take asD’ the full dimensional piece oD
contained between every pair of cutting hyperplanes then we have at least one more
pair of facet inequalities R’ whose distance ig; furthermore,o’ = p.

Since at most2 — 1 facet inequalities oD’ can be facet inequalities &', case 1 can happen a finite
number of times. Since > 0, subcase 2.1 can happen consecutively a finite number of times before
we getp = p. (More precisely, one can argue that the number of consecutive repetitions of subcase 2.1
is bounded by)", ., llog, px — log, p1.) When subcase 2.2 is entered, it can be repeated atdnedt
consecutive times before all pairs of facet inequalitieRdfave distance. When this happens, either
all pairs of facet inequalities db but one are pairs of facet inequalities7for not. In the former case,

D satisfies the conditions of the claim and we are done. In the latter case by Claiff» Ag to be cut
further, and by Claim A.1 this must necessarily occur orthogonally to a direction such that at least one
facet inequality ofD is not a facet inequality oR, hence falling in case 1.0



A. Bemporad et al. / Computational Geometry 27 (2004) 151-178 177

Claim A.4. Let R and D satisfy the conditions of ClairA.3, and lete be such thaD < ¢ < p- Then
Algorithm5 finds a hypercubd such thatB3 N D + @.

Proof of Claim A.4. When Algorithm 5 is run ok with ¢ = p then a hypercub8 with edge lengttp
is found. - -
If BN D ¢ then by setting3 = B we prove the claim.
If BND =@ thenR is divided in three partsk' =R N{x, < B}, B={B <xx < B+ p (k=
1,....d)}, K" =RnN{x. > B, + p}. Assume without loss of generality th& < K’ (see Fig. A.1(b)),
and note thak’’ is a box which may be written as

K:/:{ar <xr<ﬂrvak gxkgak"i‘ﬁ(k#r)}’

whereg, —a, > p, > p. When Algorithm 5 is applied t&" with ¢ < p, a hypercube3 C K’ is found
with vol(B) = Bd . Exactly one of the following two cases occurs:

Q) BND #0,

(2) in the next recursive call) is contained in a regiofC”” such that
(i) vol (K" < vol(K") — vol(B) = vol(K) — p%;
(i) K" contains a hypercubB8” with vol(B"") = p?.

Since case (2) can happen only a finite number of times, case (1) must be met. When this happens, by
setting3 = B we prove the claim. O

As a consequence of the above claims, if Algorithm 5 is rurPofor ¢ > 0 sufficiently small, in a
finite number of steps a hyperculBecontained irZ, with positive measure is met, such tian Z # ¢,
contradicting (A.1). O

Appendix B. Proof of Theorem 3
Lemma B.1. Let P c R? be a polytope. Let, = {B,}f:(i) be the outer approximation generated by
Algorithm 6 for a givene > 0. Then

lim max u, — 1 =0.
e—0re(l,... T(a)}{|' (oo

Proof. The limit exists becausg(e) = maxc1, 7@ {lu: — L1} IS the length of the longest edge of the
T(¢)

outer approximatior3;},_; and¢ (¢) is monotonically non-increasing fer— 0. The limitis 0 because

if by contradiction it were not, then it would exist an edge lengtbuch thatu, — /;|o, > A, V¢, &, and
vol(B,) < ¢, therefore the volume reduction would be achieved by preserving the length of the longest
edge, and this would contradict the formulation of Algorithm &1

.....

Proof of Theorem 3. We directly apply the definition of limit, therefore we want to show that for
every z, existsé such that ifs < & then the following holdsz € P « z € |J' B,. Clearly, if z € P,

thenz € | J/ B, because by construction the getc | '’ B,. In order to findé such that ifs < ,
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thenz € P <z € U9 B,, we assume by contradiction thag P. Let us define the distance betwegen

and the seP as

A=min|x —z|, Subjecttax € P, (B.1)

where clearlyr > 0 becausez ¢ P. By Lemma B.1, giveni it exists ¢ such that ife < &, then

lu, — ;|0 < A for all B;(l,,u,). By settinge = £, we get thaty ¢ Uf:(i) B, because otherwise the box

containingz would not intersecP. O
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