
Computational Optimization and Applications
https://doi.org/10.1007/s10589-023-00502-2

SCORE: approximating curvature information under
self-concordant regularization

Adeyemi D. Adeoye1 · Alberto Bemporad1

Received: 21 April 2022 / Accepted: 17 June 2023
© The Author(s) 2023

Abstract
Optimization problems that include regularization functions in their objectives are reg-
ularly solved in many applications. When one seeks second-order methods for such
problems, it may be desirable to exploit specific properties of some of these regulariza-
tion functions when accounting for curvature information in the solution steps to speed
up convergence. In this paper, we propose the SCORE (self-concordant regularization)
framework for unconstrainedminimization problemswhich incorporates second-order
information in theNewton-decrement framework for convex optimization.We propose
the generalized Gauss–Newton with Self-Concordant Regularization (GGN-SCORE)
algorithm that updates the minimization variables each time it receives a new input
batch. The proposed algorithm exploits the structure of the second-order informa-
tion in the Hessian matrix, thereby reducing computational overhead. GGN-SCORE
demonstrates how to speed up convergence while also improving model generaliza-
tion for problems that involve regularized minimization under the proposed SCORE
framework. Numerical experiments show the efficiency of our method and its fast
convergence, which compare favorably against baseline first-order and quasi-Newton
methods. Additional experiments involving non-convex (overparameterized) neural
network training problems show that the proposedmethod is promising for non-convex
optimization.

Keywords Self-concordant functions · Gauss–Newton methods · Convex
optimization · Overparameterized models

B Adeyemi D. Adeoye
adeyemi.adeoye@imtlucca.it

Alberto Bemporad
alberto.bemporad@imtlucca.it

1 IMT School for Advanced Studies, Piazza San Francesco 19, Lucca 55100, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-023-00502-2&domain=pdf
http://orcid.org/0000-0001-7048-0984


A. D. Adeoye, A. Bemporad

1 Introduction

The results presented in this paper apply to a pseudo-online optimization algorithm
based on solving a regularized unconstrainedminimization problemunder the assump-
tion of strong convexity and Lipschitz continuity. Unlike first-order methods such as
stochastic gradient descent (SGD) [1, 2] and its variants [3–6] that only make use
of first-order information through the function gradients, second-order methods [7–
13] attempt to incorporate, in some way, second-order information in their approach,
through the Hessian matrix or the Fisher information matrix (FIM). It is well known
that this generally provides second-order methods with better (quadratic) convergence
than a typical first-order method which only converges linearly in the neighbourhood
of the solution [14].

Despite their convergence advantage over first-order methods, second-order meth-
ods result into highly prohibitive computations, namely, inverting an nw × nw matrix
at each iteration, where nw is the number of optimization variables. In most commonly
used second-order methods, the natural gradient, Gauss–Newton, and the sub-sampled
Newton [15]—or its regularized version [16]—used for incorporating second-order
information while maintaining desirable convergence properties, compute the Hessian
matrix (or FIM) H by using the approximation H ≈ JT J , where J is the Jacobian
matrix. This approximation is still an nw × nw matrix and remains computationally
demanding for large problems. In recent works [17–20], second-order methods for
overparameterized neural network models are made to bypass this difficulty by apply-
ing a matrix identity, and instead only compute the matrix J JT which is a d ·N×d ·N
matrix, where d is the model output dimension and N is the number of data points.
This approach significantly reduces computational overhead in the case d · N is much
smaller than nw (overparameterized models) and helps to accelerate convergence [17].
Nevertheless, for an objective function with a differentiable (up to two times) convex
regularizer, this simplification requires a closer attention and special modifications for
a general problem with a large number of variables.

The idea of exploiting desirable regularization properties for improving the con-
vergence of the (Gauss–)Newton scheme has been around for decades and most of
the published works on the topic combine in different ways the idea of Levenberg–
Marquardt (LM) regularization, line-search, and trust-region methods [21]. For
example, the recent work [22] combines the idea of cubic regularization (originally
proposed by [21]) and a particular variant of the adaptive LM penalty that uses the
Euclidean gradient norm of the output-fit loss function (see [23] for a comprehensive
list and complexity bounds). Their proposed scheme achieves a global O(k−2) rate,
where k is the iteration number. A similar idea is considered in [24] using the Breg-
man distances, extending the idea to develop an accelerated variant of the scheme that
achieves a O(k−3) convergence rate.

In this paper, we propose a new self-concordant regularization (SCORE) scheme
for efficiently choosing optimal variables of the model involving smooth, strongly
convex optimization objectives, where one of the objective functions regularizes the
model’s variable vector and hence avoids overfitting, ultimately improving themodel’s
ability to generalize well. By an extra assumption that the regularization function is
self-concordant, we propose theGGN-SCORE algorithm (seeAlgorithm 4 below) that
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updates the minimization variables in the framework of the local norm ‖ · ‖x (a.k.a.,
Newton-decrement) of a self-concordant function f (x) such as seen in [25]. Our
proposed scheme does not require that the output-fit loss function is self-concordant,
which in many applications does not hold [22]. Instead, we exploit the greedy descent
provisionof self-concordant functions, via regularization, to achieve a fast convergence
rate while maintaining feasible assumptions on the combined objective function (from
an application point of view). Although this paper assumes a convex optimization
problem, we also provide experiments that show promising results for non-convex
problems that arisewhen training neural networks.Our experimental results provide an
interesting opportunity for future investigation and scaling of the proposed method for
large-scale machine learning problems, as one of the non-convex problems considered
in the experiments involves training an overparameterized neural network. We remark
that overparameterization is an interesting anddesirable property, and a topic of interest
in the machine learning community [26–29].

This paper is organized as follows: First, we introduce some notations, formulate
the optimization problem with basic assumptions, and present an initial motivation
for the optimization method in Sect. 2. In Sect. 3, we derive a new generalized method
for reducing the computational overhead associated with the mini-batch Newton-type
updates. The idea of SCORE is introduced inSect. 4 andourGGN-SCOREalgorithm is
presented thereafter. Experimental results that show the efficiency and fast convergence
of the proposed method are presented in Sect. 5.

2 Preliminaries

2.1 Notation and basic assumptions

Let {(xn, yn)}Nn=1 be a sequence of N input and output sample pairs, xn ∈ R
n p , yn ∈

R
d , where n p is the number of features and d is the number of targets. We assume a

model f (θ; xn), defined by f : Rnw × R
n p → Y and parameterized by the vector of

variables θ ∈ R
nw . We denote by ∂ab ≡ ∂b the gradient (or first derivative) of b (with

respect to a) and ∂2aab ≡ ∂2b the second derivative of bwith respect to a. Wewrite ‖·‖
to denote the 2-norm. The set {diag(v) : v ∈ R

n}, where diag : Rn → R
n×n , denotes

the set of all diagonal matrices inRn×n . Throughout the paper, bold-face letters denote
vectors and matrices.

Suppose that f (θ; xn) outputs the value ŷn ∈ R
d . The regularized minimization

problem we want to solve is

min
θ

L(θ) :=
N∑

n=1

�( yn, ŷn)

︸ ︷︷ ︸
g(θ)

+λ

nw∑

j=1

r j (θ j )

︸ ︷︷ ︸
h(θ)

, (1)

where � : Rd × R
d → R is a (strongly) convex twice-differentiable output-fit loss

function, r j : R → R, j = 1, . . . , nw, define a separable regularization term on
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θ , g(θ) : Rnw → R, h(θ) : Rnw → R. We assume that the regularization function
h(θ), scaled by the parameter λ > 0, is twice differentiable and strongly convex. The
following preliminary conditions define the regularity of the Hessian of L(θ) and are
assumed to hold only locally in this work:

Assumption 1 The functions g and h are twice-differentiable with respect to θ and
are respectively γl - and γa-strongly convex.

Assumption 2 ∃γu , γb with 0 ≤ γl ≤ γu < ∞, 0 < γa ≤ γb < ∞, such that the
gradient of L(θ) is (γu + λγb)-Lipschitz continuous ∀x ∈ R

n p , y ∈ R
d . That is,

∀x ∈ R
n p ,∀ y ∈ R

d , the gradient ∂θL(θ) = ∂θg(θ) + λ∂θh(θ) satisfies

‖∂θL( y, f (θ1; x)) − ∂θL( y, f (θ2; x))‖ ≤ (γu + λγb) ‖θ1 − θ2‖ , (2)

for any θ1, θ2 ∈ R
nw .

Assumption 3 ∃γg, γh with 0 < γg, γh < ∞ such that ∀x ∈ R
n p ,∀ y ∈ R

d , the
second derivatives of g(θ) and h(θ) respectively satisfy

∥∥∥∂2g( y, f (θ1; x)) − ∂2g( y, f (θ2; x))

∥∥∥ ≤ γg ‖θ1 − θ2‖ , (3a)
∥∥∥∂2h( y, f (θ1; x)) − ∂2h( y, f (θ2; x))

∥∥∥ ≤ γh ‖θ1 − θ2‖ , (3b)

for any θ1, θ2 ∈ R
nw .

Commonly used loss functions such as the squared loss, and the sigmoidal cross-
entropy loss are twice differentiable and (strongly) convex in the model variables.
Certain smoothed sparsity-inducing penalties such as the (pseudo-)Huber function –
presented later in this paper – constitute the class of functions that may be well-suited
for h(θ) defined above.

The assumptions of strong convexity and smoothness about the objective L(θ)

are standard conventions in many optimization problems as they help to characterize
the convergence properties of the underlying solution method [30, 31]. However, the
smoothness assumption about the objective L(θ) is sometimes not feasible for some
multi-objective (or regularized) problems where a non-smooth (penalty-inducing)
function h(θ) is used (see the recent work [32]). In such a case, and when the need
to incorporate second-order information arise, a well-known approach in the opti-
mization literature is generally either to approximate the non-smooth objectives by a
smooth quadratic function (when such an approximation is available) or use a “proxi-
mal splitting” method and replace the 2-norm in this setting with the Q-norm, where
Q is the Hessian matrix or its approximation [33]. In [33], the authors propose two
techniques that help to avoid the complexity that is often introduced in subproblems
when the latter approach is used. While proposing new approaches, [34] highlights
some popular techniques to handle non-differentiability. Each of these works highlight
the importance of incorporating second-order information in the solution techniques of
optimization problems. By conveniently solving the optimization problem (1) where
the assumptions made above are satisfied, our method ensures the full curvature infor-
mation is captured while reducing computational overhead.
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2.2 Approximate Newton scheme

Given the current value of θ , the (Gauss–)Newton method computes an update to θ

via

θ ← θ − ρG, (4)

where ρ is the step size, G = H−1∂L(θ) and H is the Hessian of L or its approxima-
tion. In this work, we consider the generalized Gauss–Newton (GGN) approximation
of H which we now define in terms of the function g(θ). This approximation and its
detailed expression motivates the modified version introduced in the next section to
include the regularization function h(θ).

Definition 1 (Generalized Gauss–Newton Hessian) Let diag(qn) ∈ R
d×d be the

second derivative of the loss function �( yn, ŷn) with respect to the predictor ŷn ,
qn = ∂2ŷn ŷn

�( yn, ŷn) for n = 1, 2, . . . , N , and let Qg ∈ R
dN×dN be a block diagonal

matrix with qn being the n-th diagonal block. Let Jn ∈ R
d×nw denote the Jacobian of

ŷn with respect to θ for n = 1, 2, . . . , N , and let J g ∈ R
dN×nw be the vertical con-

catenation of all Jn’s. Then, the generalized Gauss–Newton (GGN) approximation of
the Hessian matrix Hg ∈ R

nw×nw associated with the fit loss �( yn, ŷn) with respect
to θ is defined by

Hg ≈ JT
g Qg J g =

N∑

n=1

JT
n diag(qn)Jn . (5)

Let en ∈ R
d be the Jacobian of the fit loss defined by en = ∂ ŷn�( yn, ŷn) for

n = 1, 2, . . . , N . For example, in case of squared loss �( yn, ŷn) = 1
2 ( yn − ŷn)

2 we
get that en is the residual en = ŷn − yn . Let eg ∈ R

dN be the vertical concatenation
of all en’s. Then, using the chain rule, we write

JT
n e

T
n =

⎡

⎢⎢⎢⎣

∂θ1 ŷ
(1) ∂θ1 ŷ

(2)) · · · ∂θ1 ŷ
(d)

∂θ2 ŷ
(1) ∂θ2 ŷ

(2) · · · ∂θ2 ŷ
(d)

...
...

...

∂θnw
ŷ(1) ∂θnw

ŷ(2) · · · ∂θnw
ŷ(d)

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

∂ŷ�
(1)

∂ŷ�
(2)

...

∂ŷ�
(d)

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

∂θ1�
(1) + ∂θ1�

(2) + · · · + ∂θ1�
(d)

∂θ2�
(1) + ∂θ2�

(2) + · · · + ∂θ2�
(d)

...

∂θnw
�(1) + ∂θnw

�(2) + · · · + ∂θnw
�(d)

⎤

⎥⎥⎥⎦

=
[

d∑

i=1

∂θ1�
(i)

d∑

i=1

∂θ2�
(i) · · ·

d∑

i=1

∂θnw
�(i)

]T
, (6)
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and

gg(θ) = JT
g eg =

N∑

n=1

JT
n en . (7)

As noted in [35], the GGN approximation has the advantage of capturing the cur-
vature information of � in g(θ) through the term Qg as opposed to the FIM, for
example, which ignores the full second-order interactions. While it may become obvi-
ous, saywhen training a deep neural networkwith certain loss functions, how theGGN
approximation can be exploited to simplify expressions for Hg (see e.g. in [36]), a
modification is required to take account of a twice-differentiable convex regularization
function to achieve some degree of simplicity and elegance. We derive a modification
to the above for the mini-batch scheme presented in the next section that includes the
derivatives of h(θ) in the GGN approximation of Hg . This modification leads to our
GGN-SCORE algorithm in Sect. 4.

3 Second-order (pseudo-online) optimization

Suppose that at each mini-batch step k we uniformly select a random index set Ik ⊆
{1, 2, . . . , N }, |Ik | = m ≤ N (usually m  N ) to access a mini-batch of m samples
from the training set. The loss derivatives used for the recursive update of the variables
θ in this way is computed at each step k, and are estimated as running averages over
the batch-wise computations. This leads to a stochastic approximation of the true
derivatives at each iteration for which we assume unbiased estimations.

The problem of finding the optimal adjustment δθmk := θk+1 − θk that solves
(1) results in solving either an overdetermined or an underdetermined linear system
depending on whether dm ≥ nw or dm < nw, respectively. Consider, for example, the
squared fit loss and the penalty-inducing square norm as the scalar-valued functions
g(θ) and h(θ), respectively in (1). Then, Qg will be the identity matrix, and the LM
solution δθ [37, 38] is estimated at each iteration k according to the rule1:

δθ = −(Hg + λI)−1gg = −(JT
g J g + λI)−1 JT

g eg. (8)

If dm < nw (possibly dm  nw), then by using the Searle identity (AB + λI)A =
A(BA + λI) [39], we can conveniently update the adjustment δθ by

δθ = −JT
g (J g JT

g + λI)−1eg. (9)

Clearly, this provides a more computationally efficient way of solving for δθ . In what
follows, we formulate a generalized solution method for the regularized problem (1)

1 For simplicity of notation, and unless where the full notations are explicitly required, we shall subse-
quently drop the subscripts m and k, and assume that each expression represents stochastic approximations
performed at step k using randomly selected data batches each of size m.
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which similarly exploits the Hessian matrix structure when solving the given opti-
mization problem, thereby conveniently and efficiently computing the adjustment δθ .

Taking the second-order approximation of L(θ), we have

L(θ + δθ) ≈ L(θ) + gT δθ + 1

2
δθT Hδθ , (10)

where H ∈ R
nw×nw is the Hessian of L(θ) and g ∈ R

nw is its gradient. Let M =
dm + 1 and define the Jacobian J ∈ R

M×nw :

JT =

⎡

⎢⎢⎢⎣

∂θ1 ŷ1 ∂θ1 ŷ2 · · · ∂θ1 ŷm λ∂θ1r1
∂θ2 ŷ1 ∂θ2 ŷ2 · · · ∂θ2 ŷm λ∂θ2r2

...
...

...
...

∂θnw
ŷ1 ∂θnw

ŷ2 · · · ∂θnw
ŷm λ∂θnw

rnw

⎤

⎥⎥⎥⎦ . (11)

Let eM = 1 and denote by e ∈ R
M the vertical concatenation of all en’s, en ∈ R

d ,
n = 1, 2, . . . ,m + 1. Then by using the chain rule as in (6) and (7), we obtain

g(θ) = ∂θL(θ) = JT e. (12)

Let qn = ∂2ŷn ŷn
�( yn, ŷn), qn ∈ R

d for n = 1, 2, . . . ,m (clearly qn = 1 in case

of squared fit loss terms) and let qm+1 = 0. Define Q ∈ R
M×M as the diagonal

matrix with diagonal elements qn for n = 1, 2, . . . ,m + 1, where Q = QT � 0 by
convexity of �. Consider the following slightly modified GGN approximation of the
Hessian H ∈ R

nw×nw associated with L(θ):

H ≈ JT QJ + λHh, (13)

where Hh is the Hessian of the regularization term h(θ), Hh ∈ R
nw×nw , and is a

diagonal matrix whose diagonal terms are

Hh j j = d2r j (θ j )

dθ2j
, j = 1, . . . , nw.

We hold on to the notation H to represent the modified GGN approximation of the
full Hessian matrix ∂2L. By differentiating (10) with respect to δθ and equating to
zero, we obtain the optimal adjustment

δθ = −(JT QJ + λHh)
−1 JT e. (14)

Remark 1 The inverse matrix in (14) exists due to the strong convexity assumption on
the regularization function h which makes Hr � (min j Hh j j )I and therefore matrix
JT QJ + λHh is symmetric positive definite and hence invertible.
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Let U = JT Q. Using the identity [40, 41]

(D − V A−1B)−1V A−1 = D−1V (A − BD−1V )−1 (15)

with D = λHr , V = −JT , A = IM , and B = UT , and recalling that Q is symmetric,
from (14) we get

δθ =
(
λHh − (−JT )IMUT

)−1
(−JT )I−1

M e

= −1

λ
H−1

h JT
(
IM + UT 1

λ
H−1

h JT
)−1

e

= −H−1
h JT

(
λIM + QJH−1

h JT
)−1

e. (16)

Remark 2 When combined with a second identity, namely V A−1(A − BD−1V ) =
(D − V A−1B)D−1V , one can directly derive from (15) Woodbury identity defined
as [42] (A+UBV )−1 = A−1− A−1U(B+V A−1U)−1V A−1, or in the special case
B = −D−1, as (A − UD−1V )−1 = A−1 + A−1U(D − V A−1U)−1V A−1. Using
Woodbury identity would, in fact, structurally not result into the closed-form update
step (16) in an exact sense. Our construction involves a more general regularization
function than the commonly used square norm, where the Woodbury identity can be
equally useful, as its Hessian yields a multiple of the identity matrix.

Compared to (14), the clear advantage of the form (16) is that it requires the factoriza-
tion of an M × M matrix rather than an nw × nw matrix, where the term H−1

h can be
conveniently obtained by exploiting its diagonal structure. Given these modifications,
we proceed by making an assumption that defines the residual e and the Jacobian J in
the region of convergence where we assume the starting point θ0 of the process (16)
lies.

Let θ∗ be a nondegenerate minimizer ofL, and defineBε(θ
∗) := {θk ∈ R

nw : ‖θk−
θ∗‖ ≤ ε}, a closed ball of a sufficiently small radius ε ≥ 0 about θ∗. We denote by
Nε(θ

∗) an open neighbourhood of the sublevel set 
(L) := {θk : L(θk) ≤ L(θ0)}, so
that Bε(θ

∗) = cl(Nε(θ
∗)). We then have Nε(θ

∗) := {θk ∈ R
nw : ‖θk − θ∗‖ < ε}.

Assumption 4 (i) Each en(θk) and each qn(θk) is Lipschitz smooth, and ∀θk ∈
Nε(θ

∗) there exists ν > 0 such that ‖J(θk)z‖ ≥ ν‖z‖.
(ii) limk→∞

∥∥Em[H(θk)] − ∂2L(θk)
∥∥ = 0 almost surely whenever limk→∞

‖gL(θk)‖ = 0, ∀θk ∈ Nε(θ
∗), where Em[·] denotes2 expectation with respect

to m.

Remark 3 Assumption 4(i) implies that the singular values of J are uniformly bounded
away from zero and ∃β, β̃ > 0 such that ‖e‖ ≤ β, ‖J‖ = ‖JT ‖ ≤ β̃, then as Q � 0,
we have∃K1 such that Q ≤ K1 I , and hence ‖λI+QJH−1

h JT ‖ ≤ λ+(K/γa), where
K = K1β̃

2. Note that although we use limits in Assumption 4(ii), the assumption

2 Subsequently, we shall omit the notation for the Hessian and gradient estimates as we assume unbiased-
ness.
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similarly holds in expectation by unbiasedness. Also, a sufficient sample size m may
be required for Assumption 4(ii) to hold, by law of large numbers, see e.g. [43, Lemma
1, Lemma 2].

Remark 4 Hg(θ) and Hh(θ) satisfy

γl Inw � Hg(θk) � γu Inw ,
∥∥Hg( y, f (θ1; x)) − Hg( y, f (θ2; x))

∥∥ ≤ γg ‖θ1 − θ2‖ ,

γa Inw � Hh(θk) � γb Inw , ‖Hh( y, f (θ1; x)) − Hh( y, f (θ2; x))‖ ≤ γh ‖θ1 − θ2‖ ,

at any point θk ∈ R
nw , for any x ∈ R

n p , y ∈ R
d , and for any θ1, θ2 ∈ Nε(θ

∗) where
Assumption 4 holds.

We now state a convergence result for the update type (14) (and hence (16)). First,
we define the second-order optimality condition and state two useful lemmas.

Definition 2 (Second-order sufficiency condition (SOSC)) Let θ∗ be a local minimum
of a twice-differentiable functionL(·). The second-order sufficiency condition (SOSC)
holds if

∂L(θ∗) = 0, ∂2L(θ∗) � 0. (SOSC)

Lemma 1 ( [14, Theorem 1.2.3]) Suppose that Assumption 3 holds. LetW ⊆ R
nw be a

closed and convex set on which L(θ) is twice-continuously differentiable. Let S ⊂ W

be an open set containing some θ∗, and suppose that L(θ∗) satisfies (SOSC). Then,
there exists L∗ = L(θ∗) satisfying

L(θk) > L∗ ∀θk ∈ S. (18)

Lemma 2 The adjustment δθ given by (14) (and hence, (16)) provides a descent direc-
tion for the total loss L(θk) in (1) at the kth oracle call.

Remark 5 Lemma 1, Lemma 2 and the first part of (SOSC) ensure that the second part
of Assumption 4(ii) always holds. In essence, it holds at every point θk of the sequence
{θk} generated by the process (16) as long as we choose a starting point θ0 ∈ Bε(θ

∗).

Theorem 3 Suppose that Assumptions 1, 2, 3 and 4 hold, and that θ∗ is a local mini-
mizer of L(θ) for which the assumptions in Lemma 1 hold. Let {θk} be the sequence
generated by the process (16). Then starting from a point θ0 ∈ Nε(θ

∗), {θk} converges
at a Q-quadratic rate. Namely:

∥∥θk+1 − θ∗∥∥ ≤ ξk
∥∥θk − θ∗∥∥2 ,

where

ξk = 1

2

γg + bγh(
γl + aγa − (γg + bγh)

∥∥θk − θ∗∥∥) .

The proofs of these results are reported in “Appendix A” and “Appendix B”.
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4 Self-concordant regularization (SCORE)

In the case dm < nw, one could deduce by mere visual inspection that the matrix
H−1

h in (16) plays an important role in the perturbation of θ within the region of
convergence due to its “dominating” structure in the equation. This may be true as it
appears. But beyond this “naive” view, let us derive a more technical intuition about
the update step (16) by using a similar analogy as that given in [14, Chapter 5]. We
have

θk+1 = θk − H−1
h JT

(
λI + QJH−1

h JT
)−1

e, (19)

where I is the identity matrix of suitable dimension. By some simple algebra (see
e.g., [14, Lemma 5.1.1]), one can show that indeed the update method (19) is affine-
invariant. In other words, the region of convergence Nε(θ

∗) does not depend on the
problem scaling but on the local topological structure of the minimization functions
g(θ) and h(θ) [14].

Consider the non-augmented form of (19): θk+1 = θk − Qg J
T
g G

−1
g eg , where

Gg = J g JT
g is the so-called Gram matrix. It has been shown that indeed when

learning an overparameterized model (sample size smaller than number of variables),
and as long aswe start from an initial point θ0 close enough to theminimizer θ∗ ofL(θ)

(assuming that such a minimizer exists), both J g and Gg remain stable throughout
the learning process (see e.g., [17, 44, 45]). The term Qg may have little to no effect
on this notion, for example, in case of the squared fit loss, Qg is just an identity
term. However, the original Equation (19) involves the Hessian matrix Hh which,
together with its bounds (namely, γa , γb characterizing the region of convergence),
changes rapidly when we scale the problem [14]. It therefore suffices to impose an
additional assumption on the function h(θ) that will help to control the rate at which its
second-derivative Hh changes, thereby enabling us to characterize an affine-invariant
structure for the region of convergence. Namely:

Assumption 5 (SCORE) The scaled regularization function λh(θ) has a third deriva-
tive and is Mh-self-concordant. That is, the inequality

∣∣∣
〈
u,
(
∂3h(θ)[u]

)
u
〉∣∣∣ ≤ 2Mh

〈
u, ∂2h(θ)u

〉3/2
, (20)

where Mh ≥ 0, holds for any θ in the closed convex set W ⊆ R
nw and u ∈ R

nw .

Here, ∂3h(θ)[u] ∈ R
nw×nw denotes the limit

∂3h(θ)[u] := lim
t→0

1

t

(
∂2(θ + tu) − ∂2(θ)

)
, t ∈ R.

For a detailed analysis of self-concordant functions, we refer the interested reader to
[14, 25].
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Given this extra assumption, and following the idea of Newton-decrement in [25],
we propose to update θ by

δθ = − α

1 + Mhηk
H−1

h JT
(
λI + QJH−1

h JT
)−1

e, (21)

where α > 0, ηk =
〈
gh, H

−1
h gh

〉1/2
and gh is the gradient of h(θ). The proposed

methodwhichwecallGGN-SCORE is summarized, for oneoracle call, inAlgorithm4.

Algorithm 1 GGN-SCORE
1: Input: variables vector θk , data {(xn , yn)}mn=1, Hh (see (13)), Q (see (13)), J (see (13)), e (see (12)),

parameters α, Mh , λ

2: Output: variables vector θk+1
3: Compute gh = ∂θk

h(θk )

4: Choose ηk =
〈
gh , H−1

h gh
〉1/2

5: Set ρk = α
1+Mhηk

6: Solve
(
λI + QJH−1

h JT
)
b = e for b

7: Set G = H−1
h JT b

8: Compute θk+1 = θk − ρkG

There is a wide class of self-concordant functions that meet practical requirements,
either in their scaled form [14, Corollary 5.1.3] or in their original form (see e.g., in
[46] for a comprehensive list). Two of them are used in our experiments in Sect. 5.

In the following, we state a local convergence result for the process (21). We intro-
duce the notation ‖�‖θ to represent the local norm of a direction� taken with respect

to the local Hessian of a self-concordant function h, ‖�‖θ := 〈
�, ∂2θθ h(θ)�

〉1/2 =∥∥∥
[
∂2θθ h(θ)

]1/2
�

∥∥∥. Hence, without loss of generality, a ball Bε(θ
∗) of radius ε about

θ∗ is taken with respect to the local norm for the function h in the result that follows.

Theorem 4 Let Assumptions 1, 2, 3, 4 and 5 hold, and let θ∗ be a local minimizer of
L(θ) for which the assumptions in Lemma 1 hold. Let {θk} be the sequence generated
by Algorithm 4 with α =

√
γa

β1
(K + λγa), β1 = ββ̃. Then starting from a point

θ0 ∈ NM−1
h

(θ∗), {θk} converges to θ∗ according to the following descent properties:

E[L(θk+1)] ≤ L(θk) −
(

λ

M2
h

ω(ζk) + γl

2γa
ω′′(ζ̃k) − ξ

)
,

E‖θk+1 − θ∗‖θk+1 ≤ ϑ‖θk − θ∗‖θk + γu

β1
‖θk − θ∗‖ + γg

2
‖θk − θ∗‖2,
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Table 1 Real datasets: N = number of data samples, n p = number of features, d = number of targets

Dataset N np before & after feature mapping d

dis 3772 29 1

3017

hypothyroid 3163 25 1

2530

w2a 3470 300 1

2776

ijcnn1 35000 22 1

28000

coil2000 9822 85 1

7857

where ω(·) is an auxiliary univariate function defined by ω(t) := t − ln(1 + t) and
has a second derivative ω′′(t) = 1/(1 + t)2, and

ζk := Mh

1 + Mhηk
, ζ̃k := Mhηk, ξ := 2(γu + λγb)√

γa
,

ϑ := 1 + λ√
γaβ1(1 − Mh‖θk − θ∗‖θk )

.

The proof is provided in “Appendix B”. The results of Theorem 4 combine strong
convexity and smoothness properties of both g(θ) and h(θ), and requires that only
h(θ) is self-concordant.

5 Experiments

In this section, we validate the efficiency of GGN-SCORE (Algorithm 4) in solving the
problem ofminimizing a regularized strongly convex quadratic function and in solving
binary classification tasks. For the binary classification tasks, we use real datasets:
ijcnn1 and w2a from the LIBSVM repository [47] and dis, hypothyroid and
coil2000 from the PMLB repository [48], with an 80:20 train:test split each. The
datasets are summarized in Table 1. In each classification task, the model with a
sigmoidal output ŷn is trained using the cross-entropy fit loss function �( yn, ŷn) =
1
2

∑N
n=1 yn log

(
1
ŷn

)
+ (1 − yn) log

(
1

1− ŷn

)
, and the “deviance” residual [49] en =

(−1) yn+1
√

−2
[
yn log( ŷn) + (1 − yn) log(1 − ŷn)

]
, yn, ŷn ∈ {0, 1}.

We map the input space to higher dimensional feature space using the radial basis
function (RBF) kernel K (xn, x′

n) = exp(−γ ‖xn − x′
n‖2) with γ = 0.1. In each

experiment, we use the penalty value λ = 0.1 with both pseudo-Huber regularization
hμ(θ) [50] parameterized by μ > 0 [51, 52] and �2 regularization h2(θ) defined
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respectively as

hμ(θ) :=
√

μ2 + θ2 − μ, h2(θ) = ‖θ‖22 :=
nw∑

i=1

|θi |2 ,

with coefficient μ = 1.0. Throughout, we choose a batch size, m of 512 for w2a,
dis and hypothyroid, 2048 for coil2000 and 4096 for ijcnn1, unless other-
wise stated. We assume a scaled self-concordant regularization so that Mh = 1 [14,
Corollary 5.1.3].

5.1 GGN-SCORE for different values of˛

To illustrate the behaviour of GGN-SCORE for different values of α in Algorithm 4
versus its value indicated in Theorem 4, we consider the problem of minimizing a
regularized strongly convex quadratic function:

min
θ

L(θ) := 1

2
θ� Q̂θ − p�θ + λh(θ) ≡ g(θ) + λh(θ), (22)

where Q̂ ∈ R
nw×nw is symmetric positive definite, p ∈ R

nw , g is γa-strongly con-
vex and has γu-Lipschitz gradient, with the smallest and largest eigenvalues of Q̂
corresponding to γa and γu , respectively. For this function, suppose the gradient and
Hessian of h(θ) is known, for example when we choose h = hμ or h = h2, we
have ∂L(θ) = Q̂θ − p + λ∂h(θ) and ∂2L(θ) = Q̂ + λ∂2 h(θ). The coefficients Q̂
and p form our data, and with Q̂ ≡ 0.1 × M�M, N = nw = 1000, we generate
the data M ∈ R

N×N randomly from a uniform distribution on [0, 1] and consider
the case L∗ = 0 in which p is the zero vector. The optimization variable θ is ini-
tialized to a random value generated from a normal distribution with mean 0 and
standard deviation 0.01. Figure1 shows the behaviour of GGN-SCORE for this prob-

lem with different values of α in (0, 1] and α =
√

γa
β1

(K + λγa) indicated in Theorem
4. We experiment with different batch sizes m ∈ {64, 128, 256, 512}. One observes
from Fig. 1 that larger batch size yields better convergence speed when we choose

α =
√

γa
β1

(K +λγa), validating the recommendation in Remark 3. Figure1 also shows
the comparison of GNN-SCORE with the first-order Adam [5] algorithm, and the
quasi-Newton Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) [53]

method using optimally tuned learning rates. While choosing α =
√

γa
β1

(K + λγa)

yields the kind of convergence shown in Theorem 4, Fig. 1 shows that by choosing
α in (0, 1], we can similarly achieve a great convergence that scale well with the
problem.

Strictly speaking, the value ofα indicated in Theorem4 is not of practical interest, as
it contains terms that may not be straightforward to retrieve in practice. In practice, we
treat α as a hyperparameter that takes a fixed positive value in (0, 1]. For an adaptive
step-size selection rule, such as that in Line 5 of Algorithm 4, choosing a suitable
scaling constant such as α is often straightforward, as the main step-size selection task
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Fig. 1 Numerical behaviour of GGN-SCORE for different values of α in the strongly convex quadratic test
problem (22)

Fig. 2 Numerical behaviour of GGN-SCORE for different values of α using real datasets. m = 512 for
w2a, dis and hypothyroid, and m = 2048 for coil2000

is accomplished by the defined rule. We show the behaviour of GGN-SCORE on the
real datasets for different values of α in (0, 1] in Fig. 2. In general, a suitable scaling
factor α should be selected based on the application demands.
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Fig. 3 Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS in the proposed convex problem.
m = 512 for w2a, dis and hypothyroid, m = 2048 for coil2000, and m = 4096 for ijcnn1

5.2 Comparison with SGD, Adam, and L-BFGSmethods on real datasets

Using the real datasets, we compareGGN-SCORE for solving (1) with results from the
SGD,Adam, and the L-BFGS algorithms using optimally tuned learning rates.We also
consider the training problemof a neural networkwith two hidden layers of dimensions
(2, 128), respectively for the coil2000 dataset, one hidden layer with dimension 1
for theijcnn1 dataset, and two hidden layers of dimensions (4, 128), respectively for
the remaining datasets. We use ReLU activation functions in the hidden layers of the
networks, and the network is overparameterized for dis, hypothyroid, w2a and
coil2000 with 25425, 21529, 23497 and 16229 trainable parameters, respectively.
We choose α ∈ {0.2, 0.5} for GGN-SCORE. Minimization variables are initialized to
the zero vector for all the methods. The neural network training problems are solved
under the same settings. The results are respectively displayed in Fig. 3 and Fig. 4 for
the convex and non-convex cases.
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Fig. 4 Convergence curves for GGN-SCORE, SGD, Adam and L-BFGS in the non-convex neural network
training problem: overparameterized for dis, hypothyroid, w2a and coil2000. m = 512 for w2a,
dis and hypothyroid, m = 2048 for coil2000, and m = 4096 for ijcnn1

To investigate how well the learned model generalizes, we use the binary
accuracy metric which measures how often the model predictions match the
true labels when presented with new, previously unseen data: Accuracy =
1
N

∑N
n=1

(
2 yn ŷn − yn − ŷn + 1

)
. While GGN-SCORE converges faster than SGD,

Adam and L-BFGSmethods, it generalizes comparatively well. The results are further
compared with other known binary classification techniques to measure the quality of
our solutions. The accuracy scores for dis, hypothyroid, coil2000 and w2a
datasets, with a 60:40 train:test split each, are computed on the test set. The mean
scores are compared with those from the different classification techniques, and are
shown in Fig. 5. The CPU runtimes are also compared where it is indicated that on
average GGN-SCORE solves each of the problems within one second. This scales
well with the other techniques, as we note that while GNN-SCORE solves each of the
problems in high dimensions, the success of most of the other techniques are limited
to relatively smaller dimensions of the problems. The obtained results from the clas-
sification techniques used for comparison are computed directly from the respective
scikit-learn [54] functions.

The L-BFGS experiments are implemented with PyTorch [55] (v. 1.10.1+cu102) in
full-batch mode. The GGN-SCORE, Adam and SGDmethods are implemented using
the open-source Keras API with TensorFlow [56] backend (v. 2.7.0). All experiments
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Fig. 5 Classification task results using the method of this paper – logistic regression (LR), k-nearest
neighbours (KNN), linear support vector machine (L-SVM), RBF-SVM, Gaussian process (GP), decision
tree (DT), random forest (RF) and adaptive boosting (AdaBoost) techniques for dis, hypothyroid,
coil2000 and w2a datasets. LR and SVM methods use the �2 penalty function with parameter λ = 1.0.
Solutions with GGN-SCORE, SGD, Adam, and L-BFGS are obtained over one data pass with m = 128

are performed on a laptop with dual (2.30GHz + 2.30GHz) Intel Core i7-11800HCPU
and 16GB RAM.

In summary, GGN-SCORE converges way faster (in terms of number of epochs)
than SGD, Adam, and L-BFGS, and generalizes comparatively well. Experimental
results show the computational convenience and elegance achieved by our “aug-
mented” approach for including regularization functions in the GGN approximation.
Although GGN-SCORE comes with a higher computational cost (in terms of wall-
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clock time per iteration) than first-order methods on average, if per-iteration learning
time is not provided as a bottleneck, thismay not become an obvious issue aswe need to
pass the proposed optimizer on the dataset only a few times (epochs) to obtain superior
function approximation and relatively high-quality solutions in our experiments.

6 Conclusion

In this paper, we have proposed GGN-SCORE, a generalized Gauss–Newton-type
algorithm for solving unconstrained regularized minimization problems, where the
regularization function is considered to be self-concordant. In this generalized setting,
we employed a matrix approximation scheme that significantly reduces the computa-
tional overhead associated with the method. Unlike existing techniques that impose
self-concordance on the problem’s objective function, our analysis involves a less
restrictive condition from a practical point of view but similarly benefits from the idea
of self-concordance by considering scaled optimization step-lengths that depend on
the self-concordant parameter of the regularization function. We proved a quadratic
local convergence rate for our method under certain conditions, and validate its effi-
ciency in numerical experiments that involve both strongly convex problems and the
general non-convex problems that arise when training neural networks. In both cases,
our method compare favourably against Adam, SGD, and L-BFGS methods in terms
of per-iteration convergence speed, as well as some machine learning techniques used
in binary classification, in terms of solution quality.

In future research, it would be interesting to relax some conditions on the problem
andanalyze aglobal convergence rate for the proposedmethod.Wewould also consider
an analysis for our method in a general non-convex setting even though numerically
we have observed a similar convergence speed as the strongly convex case.
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Appendix A useful results

Following Assumptions 1 – 3, we get that [14, Theorem 2.1.6]

γl Inw � ∂2g(θ) � γu Inw , γa Inw � ∂2h(θ) � γb Inw , (A1)

where Inw ∈ R
nw×nw is an identity matrix. Consequently,

(γl + λγa)Inw � ∂2L(θ) � (γu + λγb)Inw . (A2)

In addition, the second derivative of L(θ) is (γg + λγh)-Lipschitz continuous ∀x ∈
R
n p , y ∈ R

d , that is,

∥∥∥∂2L( y, f (θ1; x)) − ∂2L( y, f (θ2; x))

∥∥∥ ≤ (γg + λγh) ‖θ1 − θ2‖ . (A3)

Lemma 5 Let Assumptions 1, 2 and 3 hold. Let θ1, θ2 be any two points in Rnw . Then
we have

‖g(θ1) − g(θ2) − 〈H(θ2), θ1 − θ2〉‖ ≤ γg + λγh

2
‖θ1 − θ2‖2 , (A4)

∣∣∣∣L(θ1) − L(θ2) − 〈g(θ2), θ1 − θ2〉 − 1

2
〈H(θ2)(θ1 − θ2), θ1 − θ2〉

∣∣∣∣

≤ γg + λγh

6
‖θ1 − θ2‖3 . (A5)

Proof Fix θ1, θ2 ∈ R
nw . Then

g(θ1) − g(θ2) =
∫ 1

0
∂2L(θ2 + τ(θ1 − θ2))(θ1 − θ2)dτ.

As τ ∈ [0, 1], we have θ2 + τ(θ1 − θ2) ∈ R
nw . Hence writing ∂2L = H , we have

g(θ1) − g(θ2)

=
∫ 1

0
H(θ2 + τ(θ1 − θ2))(θ1 − θ2)dτ

g(θ1) − g(θ2) − H(θ2)(θ1 − θ2)

=
∫ 1

0
(H(θ2 + τ(θ1 − θ2)) − H(θ2)) (θ1 − θ2)dτ

‖g(θ1) − g(θ2) − H(θ2)(θ1 − θ2)‖

=
∥∥∥∥
∫ 1

0
(H(θ2 + τ(θ1 − θ2)) − H(θ2)) (θ1 − θ2)dτ

∥∥∥∥

≤
∫ 1

0
‖(H(θ2 + τ(θ1 − θ2)) − H(θ2)) (θ1 − θ2)‖ dτ
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≤
∫ 1

0
‖H(θ2 + τ(θ1 − θ2)) − H(θ2)‖ · ‖θ1 − θ2‖ dτ

≤
∫ 1

0
τ(γg + λγh) ‖θ1 − θ2‖2 dτ

= γg + λγh

2
‖θ1 − θ2‖2 .

The proof of (A5) follows immediately using a similar procedure (see e.g., [57]). ��

Corollary 5.1 Let Assumptions 1, 2 and 3 hold. Let θ1, θ2 be any two points in R
nw .

Then by writing ∂2L = H ,

H(θ2) − (γg + λγh) ‖θ1 − θ2‖ ≤ H(θ1) ≤ H(θ2) + (γg + λγh) ‖θ1 − θ2‖ . (A6)

Proof The proof follows immediately by recalling for any θ ∈ R
nw , H(θ) is positive

definite, and hence the eigenvalues s j of the difference H(θ1) − H(θ2) satisfy

∣∣s j
∣∣ ≤ (γg + λγh) ‖θ1 − θ2‖ , j = 1, 2, . . . , nw,

so that we have

−(γg + λγh) ‖θ1 − θ2‖ ≤ H(θ1) − H(θ2) ≤ (γg + λγh) ‖θ1 − θ2‖ .

��

Lemma 6 ( [14, Theorem 2.1.5]) Let the first derivative of a function �(·) be L-
Lipschitz on dom(�). Then for any θ1, θ2 ∈ dom(�), we have

0 ≤ �(θ1) − �(θ2) − 〈∂�(θ2), θ1 − θ2〉 ≤ L

2
‖θ2 − θ1‖2.

Definition 3 ( [14, Definition 2.1.3]) A continuously differentiable function ψ(·) is
γsc-strongly convex on dom(ψ) if for any θ1, θ2 ∈ dom(ψ), we have

ψ(θ1) ≥ ψ(θ2) + 〈∂ψ(θ2), θ1 − θ2〉 + γsc

2
‖θ1 − θ2‖2, γsc > 0.

We remark that if the first derivative of the function ψ(·) in the above definition is
L-Lipschitz continuous, then by construction, for any θ1, θ2 ∈ dom(ψ), ψ satisfies
the Lipschitz constraint

|ψ(θ1) − ψ(θ2)| ≤ L‖θ1 − θ2‖. (A7)
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Lemma 7 ( [14, Theorem 5.1.8]) Let the function φ(·) be Mφ-self-concordant. Then,
for any θ1, θ2 ∈ dom(φ), we have

φ(θ1) ≥ φ(θ2) + 〈∂φ(θ2), θ1 − θ2〉 + 1

M2
φ

ω(Mφ‖θ1 − θ2‖θ2),

where ω(·) is an auxiliary univariate function defined by ω(t) := t − ln(1 + t).

Lemma 8 ( [14, Corollary 5.1.5]) Let the function φ(·) be Mφ-self-concordant. Let
θ1, θ2 ∈ dom(φ) and r = ‖θ1 − θ2‖θ1 < 1

Mφ
. Then

(
1 − Mφr + 1

3
M2

φr
2
)

∂2φ(θ1) �
∫ 1

0
∂2φ(θ2 + τ(θ1 − θ2))dτ � 1

1 − Mφr
∂2φ(θ1).

Appendix Bmissing proofs

Proof of Lemma 2 By the arguments ofRemark1,wehave that thematrix (J(θk)
T QJ(θk)+

λHh(θk))
−1 is positive definite. Hence, with g(θk) �= 0, we have gH(θk)

−1g(θk) =
−δθT g(θk) > 0 and δθT g(θk) < 0. ��
Proof of Theorem 3 The process formulated in (16) performs the update

θk+1 = θk − H(θk)
−1g(θk).

As g(θ∗) = 0 by mean value theorem and the first part of (SOSC), we have

θk+1 − θ∗ = θk − θ∗ − H(θk)
−1
∫ 1

0
∂2L(θ∗ + τ(θk − θ∗))(θk − θ∗)dτ

=
[
I − H(θk)

−1
∫ 1

0
∂2L(θ∗ + τ(θk − θ∗))dτ

]
(θk − θ∗)

= H(θk)
−1
∫ 1

0

(
H(θk) − ∂2L(θ∗ + τ(θk − θ∗))

)
dτ(θk − θ∗)

∥∥θk+1 − θ∗∥∥ =
∥∥∥∥H(θk)

−1
∫ 1

0

(
H(θk) − ∂2L(θ∗ + τ(θk − θ∗))

)
dτ(θk − θ∗)

∥∥∥∥

≤
∥∥∥H(θk)

−1
∥∥∥
∫ 1

0

∥∥∥H(θk) − ∂2L(θ∗ + τ(θk − θ∗))
∥∥∥ dτ

∥∥θk − θ∗∥∥

Also, as τ ∈ [0, 1] we have that θ∗ + τ(θk − θ∗) ∈ Bε(θ
∗) ⊆ R

nw . By taking the
limit lim

k→∞
∥∥θk+1 − θ∗∥∥, we have by the first part of (SOSC) and Assumption 4(ii)

∥∥θk+1 − θ∗∥∥ ≤
∥∥∥H(θk)

−1
∥∥∥
∫ 1

0

∥∥H(θk) − H(θ∗ + τ(θk − θ∗))
∥∥ dτ

∥∥θk − θ∗∥∥
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≤
∥∥∥H(θk)

−1
∥∥∥
∫ 1

0
(1 − τ)(γg + λγh)

∥∥θk − θ∗∥∥ dτ
∥∥θk − θ∗∥∥

= γg + λγh

2

∥∥∥H(θk)
−1
∥∥∥
∥∥θk − θ∗∥∥2 .

By combining the claims in Corollary 5.1 and the bounds of H(θk) in (17), we obtain
the relation

γl + aγa − (γg + λγh)
∥∥θk − θ∗∥∥ � H(θ∗) − (γg + λγh)

∥∥θk − θ∗∥∥ � H(θk).

Recall that H(θk) is positive definite, and hence invertible. We deduce that, indeed
for all θk satisfying

∥∥θk − θ∗∥∥ ≤ ε, ε small enough, we have

∥∥∥H(θk)
−1
∥∥∥ ≤ (γl − γg − λ(γh − γa)

∥∥θk − θ∗∥∥)−1
.

Therefore,

∥∥θk+1 − θ∗∥∥ ≤ ξk
∥∥θk − θ∗∥∥2 ,

where

ξk = 1

2

γg + λγh(
γl − γg − λ(γh − γa)

∥∥θk − θ∗∥∥) .

��
Proof of Theorem 4 First, we upper bound the norm ‖δθ‖θk := ‖θk+1 − θk‖θk =
‖H1/2

h (θk+1 − θk)‖. From Remark 3, we have

‖J(θk)
T (λI + QJH−1

h JT (θk))
−1‖

≤ γa‖J(θk)
T ‖

K + λγa
≤ β̃γa

K + λγa
.

Hence,

‖θk+1 − θk‖θk ≤ α

1 + Mhηk

∥∥∥H1/2
h H−1

h JT (θk)(λI + QJH−1
h JT (θk))

−1e(θk)
∥∥∥

≤ α

1 + Mhηk

∥∥∥Hh(θk)
1/2
∥∥∥
∥∥∥Hh(θk)

−1
∥∥∥
∥∥∥J(θk)

T (λI + QJH−1
h JT (θk))

−1
∥∥∥ ‖e(θk)‖

≤ αββ̃γ
−1/2
a

(K + λγa)(1 + Mhηk)
. (B8)

Similarly, we have

‖θk+1 − θk‖ ≤ αββ̃

(K + λγa)(1 + Mhηk)
. (B9)
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By Lemma 6, the function L(θ) satisfies

L(θk+1) ≤ L(θk) + 〈∂L(θk), θk+1 − θk〉 + γu + λγb

2
‖θk+1 − θk‖2

= L(θk) + 〈gg(θk), θk+1 − θk
〉+ λ

〈
gh(θk), θk+1 − θk

〉 γu + λγb

2
‖θk+1 − θk‖2.

By convexity of g and h, and self-concordance of h, we have (using Definition 3,
Lemma 7 and (A7))

L(θk+1) ≤ L(θk) + (γu + λγb)‖θk+1 − θk‖ + γu + λγb − γl

2
‖θk+1 − θk‖2

− λ

M2
h

ω(Mh‖θk+1 − θk‖θk )

(B8)≤ L(θk) + (γu + λγb)‖θk+1 − θk‖ + γu + λγb − γl

2
‖θk+1 − θk‖2

− λ

M2
h

ω

(
αββ̃γ

−1/2
a Mh

(K + λγa)(1 + Mhηk)

)
.

Substituting the choice α = (ββ̃)−1(γa)
1/2(K + λγa), we have

L(θk+1) ≤ L(θk) + (γu + λγb)‖θk+1 − θk‖ + γu + λγb − γl

2
‖θk+1 − θk‖2

− λ

M2
h

ω

(
Mh

1 + Mhηk

)
.

Taking expectation on both sides with respect to m conditioned on θk , we get

E[L(θk+1)] ≤ L(θk) + (γu + λγb)‖θk+1 − θk‖ + γu + λγb − γl

2
‖θk+1 − θk‖2

− E

[
λ

M2
h

ω

(
Mh

1 + Mhηk

)]
,

Note the second derivative ω′′ of ω: ω′′(t) = 1/(1 + t)2. By the convexity of ω and
using Jensen’s inequality, also recalling unbiasedness of the derivatives,

E[L(θk+1)] ≤ L(θk) + γu + λγb√
γa(1 + Mhηk)

+ γu + λγb

2γa(1 + Mhηk)2
− γl

2γa
ω′′(Mhηk)

− λ

M2
h

ω

(
Mh

1 + Mhηk

)

≤ L(θk) −
[

λ

M2
h

ω

(
Mh

1 + Mhηk

)
+ γl

2γa
ω′′(Mhηk) − 2(γu + λγb)√

γa

]
.
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In the above, we used the bounds of the norm in (B9), and again used the choice
α = (ββ̃)−1(γa)

1/2(K + λγa).
To proceed, let us make a simple remark that is not explicitly stated in Remark 4:

For any θk, θk+1 ∈ Nε(θ
∗), we have

∥∥Hg(θk+1) − Hg(θk)
∥∥ ≤ γg ‖θ1 − θ2‖ → 0 as k → ∞,

‖Hh(θk+1) − Hh(θk)‖ ≤ γh ‖θ1 − θ2‖ → 0 as k → ∞.

Now, recall the proposed update step (21):

θk+1 = θk − α

1 + Mhηk
H−1

h JT
(
λI + QJH−1

h JT
)−1

e.

Then the above remark allows us to perform the following operation: Subtract θ∗ from
both sides and pre-multiply by H1/2

h (θk+1) ≈ H1/2
h (θk) = H1/2

h , we get the recursion

H1/2
h (θk+1 − θ∗)

= H1/2
h (θk − θ∗) − α

1 + Mhηk
H1/2

h H−1
h JT (θk)

(
λI + QJH−1

h JT (θk)
)−1

e(θk),
∥∥∥H1/2

h (θk+1 − θ∗)
∥∥∥

=
∥∥∥∥H

1/2
h (θk − θ∗) − α

1 + Mhηk
H1/2

h H−1
h JT (θk)

(
λI + QJH−1

h JT (θk)
)−1

e(θk)

∥∥∥∥

≤
∥∥∥H1/2

h (θk − θ∗)
∥∥∥+ α

1 + Mhηk

∥∥∥H1/2
h

∥∥∥
∥∥∥∥H

−1
h JT

(
λI + QJH−1

h JT
)−1

e(θk)

∥∥∥∥ .

Take expectation with respect tom on both sides conditioned on θk and again consider
unbiasedness of the derivatives. Further, recall the definition of the local norm ‖ · ‖θ ,
and the bounds of Hh , then

E
∥∥θk+1 − θ∗∥∥

θk+1

≤ ∥∥θk − θ∗∥∥
θk

+ α√
γa(1 + Mhηk)

∥∥∥∥
(
λI + QJH−1

h JT (θk)
)−1
∥∥∥∥
∥∥∥H−1

h JT e(θk)
∥∥∥

≤ ∥∥θk − θ∗∥∥
θk

+ αγa√
γa(1 + Mhηk)(K + λγa)

∥∥∥H−1
h g(θk)

∥∥∥

= ∥∥θk − θ∗∥∥
θk

+ γa

ββ̃(1 + Mhηk)

∥∥∥H−1
h gg(θk) + λH−1

h gh(θk)
∥∥∥

≤ ∥∥θk − θ∗∥∥
θk

+ γa

ββ̃

∥∥∥H−1
h gg(θk) + λH−1

h gh(θk)
∥∥∥

≤ ∥∥θk − θ∗∥∥
θk

+ γa

ββ̃

∥∥∥H−1
h gg(θk)

∥∥∥+ λγa

ββ̃

∥∥∥H−1
h gh(θk)

∥∥∥ .
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By the mean value theorem and the first part of (SOSC),

gg(θk) =
∫ 1

0
Hg(θ

∗ + τ(θk − θ∗))(θk − θ∗)dτ

= Hg(θ
∗)(θk − θ∗) +

∫ 1

0

(
Hg(θ

∗ + τ(θk − θ∗)) − Hg(θ
∗)
)
(θk − θ∗)dτ,

where Hg is the second derivative of g.

∥∥gg(θk)
∥∥ =

∥∥∥∥Hg(θ
∗)(θk − θ∗) +

∫ 1

0

(
Hg(θ

∗ + τ(θk − θ∗)) − Hg(θ
∗)
)
(θk − θ∗)dτ

∥∥∥∥

≤ ∥∥Hg(θ
∗)
∥∥ ∥∥θk − θ∗∥∥+

∫ 1

0

∥∥Hg(θ
∗ + τ(θk − θ∗)) − Hg(θ

∗)
∥∥ ∥∥θk − θ∗∥∥ dτ

= ∥∥Hg(θ
∗)
∥∥ ∥∥θk − θ∗∥∥+

∫ 1

0
τγg

∥∥θk − θ∗∥∥2 dτ

= ∥∥Hg(θ
∗)
∥∥ ∥∥θk − θ∗∥∥+ γg

2

∥∥θk − θ∗∥∥2 dτ

≤ γu
∥∥θk − θ∗∥∥+ γg

2

∥∥θk − θ∗∥∥2 .

In the above steps, we have used Assumption 4 and the remarks that follow it. Further,

∥∥∥H−1
h gg(θk)

∥∥∥ =
∥∥∥H−1

h gg(θk)
∥∥∥

≤
∥∥∥H−1

h

∥∥∥
∥∥gg(θk)

∥∥

≤ 1

γa

(
γu
∥∥θk − θ∗∥∥+ γg

2

∥∥θk − θ∗∥∥2
)

= γu

γa

∥∥θk − θ∗∥∥+ γg

2γa

∥∥θk − θ∗∥∥2 .

Next, we analyze
∥∥∥H−1

h gh(θk)
∥∥∥. We have

∥∥∥H−1
h gh(θk)

∥∥∥ =
∥∥∥H−3/2

h H1/2
h gh(θk)

∥∥∥

≤ 1

γ
3/2
a

∥∥∥H1/2
h gh(θk)

∥∥∥

(SOSC )= 1

γ
3/2
a

∥∥∥H1/2
h (θk)

(
gh(θk) − gh(θ

∗)
)∥∥∥ ,

and by the mean value theorem,

∥∥∥H−1
h gh(θk)

∥∥∥ = 1

γ
3/2
a

∥∥∥∥
∫ 1

0
H1/2

h (θk)Hh(θ
∗ + τ(θk − θ∗))(θk − θ∗)dτ

∥∥∥∥
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≤ 1

γ
3/2
a

∥∥∥H1/2
h (θk)(θk − θ∗)

∥∥∥
∥∥∥∥
∫ 1

0
Hh(θ

∗ + τ(θk − θ∗))dτ

∥∥∥∥

= 1

γ
3/2
a

∥∥θk − θ∗∥∥
θk

∥∥∥∥
∫ 1

0
Hh(θ

∗ + τ(θk − θ∗))dτ

∥∥∥∥

≤ 1

γ
3/2
a

∥∥θk − θ∗∥∥
θk

∥∥∥∥
∫ 1

0
H−1/2

h (θk)Hh(θ
∗ + τ(θk − θ∗))H−1/2

h (θk)dτ

∥∥∥∥

Lemma8≤
∥∥θk − θ∗∥∥

θk

γ
3/2
a

(
1 − Mh

∥∥θk − θ∗∥∥
θk

) .

In the above, we have used the fact θ0 ∈ NM−1
h

(θ∗) �⇒ θk ∈ NM−1
h

(θ∗) for all θk
generated by the process (21).

Combining the above results, we have

E
∥∥θk+1 − θ∗∥∥

θk+1
≤
⎡

⎣1 + λγ
−1/2
a

ββ̃
(
1 − Mh

∥∥θk − θ∗∥∥
θk

)

⎤

⎦∥∥θk − θ∗∥∥
θk

+ γu

ββ̃

∥∥θk − θ∗∥∥+ γg

2

∥∥θk − θ∗∥∥2 .

��
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