
Computational Optimization and Applications, 35, 87–108, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s10589-006-6447-z

An Algorithm for Approximate Multiparametric
Convex Programming

ALBERTO BEMPORAD bemporad@unisi.it

Dip. Ingegneria dell’Informazione, Università di Siena, Italy

CARLO FILIPPI carlo@math.unipd.it

Dip. Matematica Pura e Applicata, Università di Padova, Italy

Received October 5, 2004; Revised July 25, 2005

Published online: 23 March 2006

Abstract. For multiparametric convex nonlinear programming problems we propose a recursive algorithm

for approximating, within a given suboptimality tolerance, the value function and an optimizer as functions of

the parameters. The approximate solution is expressed as a piecewise affine function over a simplicial partition

of a subset of the feasible parameters, and it is organized over a tree structure for efficiency of evaluation.

Adaptations of the algorithm to deal with multiparametric semidefinite programming and multiparametric

geometric programming are provided and exemplified. The approach is relevant for real-time implementation

of several optimization-based feedback control strategies.

Keywords: multiparametric programming, convex programming, sensitivity analysis

1. Introduction

Parametric programming considers optimization problems where the data depend on
one or more parameters. Parametric programming techniques systematically subdivide
the parameter space into characteristic regions where the optimal value and an optimizer
are given as explicit functions of the parameters.

In recent years, a new interest in parametric programming arose in the model pre-
dictive control (MPC) community. MPC is a well-known technique widely used in the
process industry for the automatic regulation of plants under operating constraints [9, 23].
In model predictive control, the next command action is obtained by solving an opti-
mization problem where the cost function and the constraints depend on the current
sensor measurements. In the classic setting, the optimization problem is solved on-line
at each time step. However, most of the optimization effort may be moved off-line by
solving a multiparametric program where variables correspond to command inputs, and
parameters correspond to sensor measurements [2, 5, 30].

A vast literature is concerned with parametric programming, but it is almost always
restricted to a single parameter and/or to very well-known problems, like linear pro-
grams [7, 15] or convex quadratic programs [5, 30, 31]. We may distinguish two main
issues explaining these limitations of the research efforts: (i) contrarily to the case of
one scalar parameter, where the parametric solution consists of a subdivision of the real

88 BEMPORAD AND FILIPPI

axis into segments, parametric solutions with more than one parameter are difficult to
analyze by a human decision maker; (ii) for more general convex optimization prob-
lems the exact characterization of the optimal value function may not be expressible in
analytical form.

When MPC applications are assumed, the above issue (i) vanishes, as the output anal-
ysis competes to an electronic device. On the other hand, designing methods to get an
approximate description of the optimal value function and of a sub-optimal solution
is a promising direction for coping with the above issue (ii). A seminal contribution
in this direction was given by ([12], Chapter 9). In the context of general paramet-
ric convex nonlinear programming, he sketched a strategy for approximating optimal
value functions along a mono-dimensional cut of the parameter space. Essentially, Fi-
acco noted that optimal primal solutions associated with two fixed parameter vectors
may be used to compute an affine upper bound along the line segment joining the
same parameter vectors; furthermore, optimal dual solutions associated with the two
parameter vectors may be used to compute a piecewise affine lower bound along the
same line segment. By following similar observations, Filippi [14] developed an al-
gorithm for approximate multiparametric linear programming. A completely different
approach was used by [4] to get an approximate solution to a multiparametric strictly
convex quadratic programming problem. They proposed to enlarge the exact charac-
teristic region corresponding to a fixed active constraint set by relaxing the first-order
optimality conditions, while preserving primal feasibility. Another approach was taken
by [20] for obtaining piecewise affine approximate solutions of multiparametric non-
linear programming problems using local quadratic approximations. By extending a
previous work of [21, 22] proposed a further approach to multiparametric nonlinear
programming, where the parameter space is partitioned by boxes organized in a tree
structure. Inside each box, an affine function describing a feasible suboptimal solution
is obtained by solving a nonlinear program having one constraint for each vertex of the
box.

The problem of multiparametric mixed-integer semidefinite programming was tackled
in [28], where the authors find approximate solutions by solving sequences of multi-
parametric linear programs.

In this paper we consider a quite general class of multiparametric convex programs,
and propose a recursive algorithm for approximating, within a given prescribed toler-
ance, the optimal value and an optimizer as explicit functions of the parameters. Our
approach is inspired by the lines suggested in ([12], Chapter 9) and [14], and its main
ideas are the following: (i) given a full-dimensional simplex in the parameter space and
an optimizer for each simplex vertex, the linear interpolation of the given solutions gives
a primal feasible approximation of an optimizer inside the simplex; (ii) if the resulting
absolute error in the objective exceeds a prescribed tolerance then the simplex is split
into smaller simplices where it applies recursively; (iii) initial simplices are obtained by
a triangulation of a polyhedral estimate of the set of feasible parameters. The resulting
approximate solution is expressed as a piecewise affine function over a simplicial par-
tition of a subset of the set of feasible parameters, and organized over a tree structure
for efficiency of evaluation (a similar tree structure based on boxes rather than simplices
was used in [21] and [22]).

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 89

The algorithm described in this paper applies to multiparametric convex programming,
but may be conveniently adapted to other cases of relevant interest. In particular, the
case of multiparametric semidefinite programming is briefly examined and exemplified
on a test example. Our algorithm also applies to multiparametric nonconvex problems
that can be equivalently reformulated as convex ones. In particular, the case of geometric
programming is considered in this paper.

One of the goals of our approach is to open up the application of explicit receding
horizon techniques [5] to several robust model predictive control schemes based on
convex optimization. A first attempt in this direction was done in [25], where the authors
use the approximate multiparametic programming algorithm of this paper to compute
robust controllers for uncertain constrained linear dynamical systems.

2. Multiparametric convex programming

Consider the multiparametric convex program

(CPθ)

minx f (x, θ)
subject to gi (x, θ) ≤ 0 (i = 1, . . . , p)

Ax + Bθ + d = 0,

where x ∈ IRn are the decision variables, θ ∈ IRm are the parameters, f : IRn×IRm �→ IR
is the objective function, gi : IRn × IRm �→ IR, for all i = 1, . . . , p, A is a q × n real
matrix, B is a q × m real matrix, and d ∈ IRq . We assume that f and gi (i = 1, . . . , p)
are jointly convex in the variables and the parameters. We are interested in characterizing
the solution of problem (CPθ) for a given full-dimensional, convex, and bounded set �

of parameters. In order to describe more precisely this task, we give some definitions.

Definition 2.1. The feasible parameter set �∗ is the set of all θ ∈ � for which the
corresponding problem (CPθ) admits an optimal solution.

Definition 2.2. The value function V ∗ : �∗ �→ IR is the function that associates with
every θ ∈ �∗ the corresponding unique optimal value of (CPθ).

Definition 2.3. The optimizer set function X∗ : �∗ �→ 2IRn
is the function that associates

to a parameter vector θ ∈ �∗ the corresponding set of optimizers X∗(θ) = {x ∈ IRn :
f (x, θ) = V ∗(θ)} of problem (CPθ).

Definition 2.4. An optimizer function X∗ : �∗ �→ IRn is a function that associates to a
parameter vector θ ∈ �∗ (one of) the optimizer(s) x∗(θ) ∈ X∗(θ).

Solving problem (CPθ) amounts to determining the feasible parameter set �∗, an
optimizer function x∗, and the value function V ∗ as explicit functions of θ , for all
θ ∈ �∗.

The following basic result for multiparametric convex programming was proved in
([24], Lemma 1) in the absence of equality constraints; it can be easily generalized to
the presence of linear equality constraints.

90 BEMPORAD AND FILIPPI

Lemma 2.1. Consider the multiparametric problem (CPθ) and let f , gi be jointly
convex functions of (x, θ), for all i = 1, . . . , p. Then, �∗ is a convex set and V ∗ is a
convex function of θ .

Hereafter we assume that �∗ is a full-dimensional set. A numerical test for verifying
such an assumption will be provided in Section 4.

2.1. Exact multiparametric solution

In the multiparametric linear and quadratic cases, the exact characterization of �∗, x∗,
and V ∗ can be obtained from the Karush Kuhn Tucker (KKT) conditions. In fact, one can
fix different combinations of active constraints that correspond to an optimal solution for
at least one value of the parameter vector, and determine linear equality and inequality
relations from the KKT conditions. Such relations define the polyhedral subset of �∗ of
all parameters θ for which the fixed combination of constraints is the optimal one (see
e.g. [5, 7, 15] for details).

In general, applying the same approach to problem (CPθ) leads to nonlinear equalities
defining nonconvex subsets of �∗. In fact, assuming that f , gi are differentiable, the KKT
optimality conditions for problem (CPθ) are (see, e.g., [8, Chapter 5]):

gi (x, θ) ≤ 0, (i = 1, . . . , p) (1a)

Ax + Bθ + d = 0, (1b)

λi ≥ 0, (i = 1, . . . , p) (1c)

λi gi (x, θ) = 0, (i = 1, . . . , p) (1d)

∇x f (x, θ) +
p∑

i=1

λi∇x gi (x, θ) + A′ν = 0, (1e)

where ∇x f (x, θ) and ∇x gi (x, θ) (i = 1, . . . , p) denote the gradients of the respective
functions computed in (x, θ), and λ ∈ IRp and ν ∈ IRq are the vectors of dual variables
(or Lagrange multipliers).

Denoting by I ⊆ {1, . . . , p} the set of indices corresponding to a selected combination
of active constraints, the KKT conditions lead to the relations⎧⎪⎪⎪⎨⎪⎪⎪⎩

gi (x, θ) = 0, (i ∈ I)

Ax + Bθ + d = 0,

λi = 0, (i �∈ I)
∇x f (x, θ) + ∑

i∈I λi∇x gi (x, θ) + A′ν = 0,

(2a)

{
gi (x, θ) ≤ 0, (i �∈ I)

λi ≥ 0, (i ∈ I).
(2b)

For each given θ , conditions (2a) represent p + q + n (possibly nonlinear) equal-
ity relations in the p + q + n unknowns x , λ, ν. In general, relations x(θ), λ(θ),

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 91

ν(θ) satisfying (2a) may not be expressible in analytical form. By substituting x(θ)
and λ(θ) in (2b) one would obtain the characteristic (in general nonconvex) region of
parameters θ for which the selected combination of active constraints is the optimal
one.

From the above considerations, it is apparent that obtaining the exact characterization
of the feasible parameter set, of the value function, and of an optimizer function may be
impractical, if not impossible. For this reason, in the rest of the paper we describe a mul-
tiparametric programming algorithm for determining an approximate characterization
within an arbitrary given prescribed tolerance.

3. Error bounds

Let θ0, θ1, . . . , θm ∈ IRm be affinely independent points in �∗, and define S as the
following m-dimensional simplex:

S�
{

θ ∈ IRm : θ =
m∑

k=0

μkθ
k,

m∑
k=0

μk = 1, μk ≥ 0, k = 0, 1, . . . , m

}
. (3)

Let xk be an optimizer of (CPθ k), for all k = 0, 1, . . . , m; define the matrices

M�
[

1 1 · · · 1
θ0 θ1 · · · θm

]
, X�[x0 x1 · · · xm], (4)

and note that by construction M is nonsingular. As shown in [14], the system of lin-
ear inequalities M−1[1

θ
] ≥ 0 represents simplex S by using the minimum number of

constraints.
In the following, we introduce upper and lower bounds on V ∗ inside S; all of them are

visualized for convenience in Figure 1. Such bounds generalize to the multidimensional
case the concepts introduced by ([12], Chapter 9) to bound the value function of a
parametric convex program inside a line segment (cf. also [20]).

Figure 1. Approximation of the value function in convex parametric programming: the scalar case.

92 BEMPORAD AND FILIPPI

3.1. Upper bounds on the value function

Define the vector

v�[V ∗(θ0) V ∗(θ1) . . . V ∗(θm)]′, (5)

and, for a generic θ ∈ IRm ,

x̂(θ)�X M−1

[
1

θ

]
. (6)

Furthermore, define

V̂ (θ)� f (x̂(θ), θ), (7)

and

V̄ (θ)�v′M−1

[
1

θ

]
. (8)

Note that both x̂ and V̄ depend affinely on θ .

Proposition 3.1. For all θ ∈ S, vector x̂(θ) is a feasible solution of (CPθ) and

V̄ (θ) ≥ V̂ (θ) ≥ V ∗(θ). (9)

Proof: We first prove that x̂(θ) is feasible. Vector μ = M−1
[

1
θ

]
is the unique solution

of Mμ = [1
θ
]. Thus, if θ ∈ S then μ ≥ 0,

∑m
k=0 μk = 1, θ = ∑m

k=0 μkθ
k , and

x̂(θ) = ∑m
k=0 μk xk . As a consequence, for all i = 1, . . . , p,

gi (x̂(θ), θ) = gi

(
m∑

k=0

μk xk,

m∑
k=0

μkθ
k

)
≤

m∑
k=0

μk gi (x
k, θ k) ≤ 0,

where the first inequality follows from the joint convexity of gi with respect to x and θ .
Furthermore,

Ax̂(θ) + Bθ + d =
m∑

k=0

μk(Axk + Bθ k + d) = 0.

To prove (9), we note that

V̄ (θ) =
m∑

k=0

μk V ∗(θ k) =
m∑

k=0

μk f (xk, θ k)

≥ f

(
m∑

k=0

μk xk,

m∑
k=0

μkθ
k

)
= f (x̂(θ), θ) = V̂ (θ),

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 93

where the inequality follows from the joint convexity of f , and

V̂ (θ) = f (x̂(θ), θ) ≥ f (x∗(θ), θ) = V ∗(θ),

where x∗(θ) denotes an optimizer of (CPθ).

In summary, V̄ and V̂ are both upper bounds of V ∗ on S, exact on every vertex on S,
V̄ is affine in θ , and V̂ is tighter than V̄ .

3.2. Lower bounds on the value function

Assuming that a subgradient of V ∗ is available at every vertex of S, we can construct a
piecewise affine lower bound of V ∗. More precisely, let sk be a subgradient of V ∗ at θ k

(k = 0, 1, . . . , m). Since V ∗ is convex, we have V ∗(θ) ≥ V ∗(θ k) + (sk)′(θ − θ k). As a
consequence, we define:

V (θ) � max
k=0,1,... ,m

{V ∗(θ k) + (sk)′(θ − θ k)}. (10)

As first noted by [12],

V (θ) ≤ V ∗(θ) for all θ ∈ S, (11)

and hence V is a piecewise affine lower bound on V ∗ inside S, exact at every vertex of
S.

Proposition 3.2. Assume f and gi (i = 1, . . . , p) are differentiable with respect
to both x and θ inside their domain, and let (xk, λk, νk) be a solution of the KKT
conditions (1) for θ = θ k , for any k = 0, 1, . . . , m. Then

sk�∇θ f (xk, θ k) + Jθ g(xk, θ k)′λk + B ′νk

is a subgradient of V ∗ of (CPθ) at θ k , where ∇θ f (x, θ) ∈ IRm denotes the gradient of f
with respect to θ and Jθ g(x, θ) denotes the p ×m Jacobian matrix of partial derivatives
of g with respect to θ .

Proof: For convenience, let g(x, θ)�[g1(x, θ) . . . gp(x, θ)]′, and let Jx g(x, θ) denote
the p × n Jacobian matrix of the partial derivatives of g with respect to x . Let x∗(θ) be
an optimizer of (CPθ). By using (1) and the convexity and differentiability of f and g
we obtain

V ∗(θ) ≥ f (x∗(θ), θ) + (λk)′g(x∗(θ), θ) + (νk)′(Ax∗(θ) + Bθ + d)

≥ f (xk, θ k) + ∇x f (xk, θ k)′(x∗(θ) − xk) + ∇θ f (xk, θ k)′(θ − θ k)

+ (λk)′[g(xk, θ k) + Jx (xk, θ k)(x∗(θ) − xk) + Jθ (xk, θ k)(θ − θ k)]

+ (νk)′[A(x∗(θ) − xk) + B(θ − θ k)]

= f (xk, θ k) + (λk)′g(xk, θ k)

+ [∇x f (xk, θ k) + Jx (xk, θ k)′λk + A′νk]′(x∗(θ) − xk)

+ [∇θ f (xk, θ k) + Jθ (xk, θ k)′λk + B ′νk]′(θ − θ k)

= V ∗(θ k) + (sk)′(θ − θ k).

94 BEMPORAD AND FILIPPI

A similar result was shown by ([12], Chapter 9) using an auxiliary lower-bounding
multiparametric linear programming problem.

In case a primal-dual method is used for computing V ∗(θ k), both optimal primal
variables xk and Lagrange multipliers λk , νk are available. If also the derivatives of f
and gi are available, then a subgradient sk valid at θ k , and therefore a linear lower bound
on V ∗, can be immediately constructed according to Proposition 3.2.

3.3. Error estimates inside a simplex

We wish to approximate V ∗ by using V̂ inside the simplex S, with vertices θ k , k =
0, 1, . . . , m. In this way, the maximum absolute error we introduce is

εM AX (S)� max
θ∈S

{V̂ (θ) − V ∗(θ)}.

Unfortunately, the above optimization problem is a DC (Difference of Convex functions)
programming problem, and thus the exact evaluation of εM AX (S) is, in general, hard [19].
For this reason, we analyze the two practically computable bounds

εL P (S) � max
θ∈S

{V̄ (θ) − V (θ)},
εCP(S) � max

θ∈S
{V̄ (θ) − V ∗(θ)},

that are related to εM AX (S) as shown in the following proposition.

Proposition 3.3. For all simplices S ⊆ �∗ and for all θ ∈ S, the following inequalities
hold

0 ≤ V̂ (θ) − V ∗(θ) ≤ εMAX(S) ≤ εCP(S) ≤ εL P (S).

Proof: The condition 0 ≤ V̂ (θ) − V ∗(θ) immediately follows from Proposition 3.1.
Moreover, we have:

V̂ (θ) − V ∗(θ) ≤ max
θ∈S

{V̂ (θ) − V ∗(θ)} = εMAX(S)

≤ max
θ∈S

{V̄ (θ) − V ∗(θ)} = εCP(S)

≤ max
θ∈S

{V̄ (θ) − V (θ)} = εLP(S),

where the second inequality follows from (9) and the third inequality follows from (11).

Proposition 3.4. Consider a given set of subgradients sk ∈ IRm of V ∗ at θ k , k =
0, 1, . . . , m, and let wk � − V ∗(θ k) + (sk)′θ k . Then the corresponding error bound

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 95

εLP(S) is the optimal value of the following linear program:

max
θ,t

V̄ (θ) − t

subject to (sk)′θ − t ≤ wk (k = 0, 1, . . . , m)

M−1

[
1
θ

]
≥ 0,

(12)

where M is defined in (4) and V̄ (θ) is defined in (5), (8).

Proof: We have:

εLP(S) = max
θ∈S

{V̄ (θ) − V (θ)}
= max

θ∈S
{V̄ (θ) − max

k
{V ∗(θ k) + (sk)′(θ − θ k) : k = 0, 1, . . . , m} : θ ∈ S}

= max
θ,t

{V̄ (θ) − t : t ≥ V ∗(θ k) + (sk)′(θ − θ k) (k = 0, 1, . . . , m), θ ∈ S}.

Proposition 3.5. The error bound εCP(S) is the optimal value of the following convex
program:

max
x,θ

V̄ (θ) − f (x, θ)

subject to gi (x, θ) ≤ 0 (i = 1, . . . , p)
Ax + Bθ + d = 0

M−1

[
1
θ

]
≥ 0.

(13)

Moreover, if (x̄, θ̄) is an optimal solution of (13) then x is an optimal solution of (CPθ),
i.e., f (x, θ) = V ∗(θ).

Proof: Let F(θ)�{x ∈ IRn : gi (x, θ) ≤ 0 (i = 1, . . . , p), Ax + Bθ + d = 0} be the
feasible set of (CPθ). Then,

εCP(S) = max
θ∈S

{V̄ (θ) − V ∗(θ)}
= max

θ∈S
{V̄ (θ) − min

x
{ f (x, θ) : x ∈ F(θ)}}

= max
θ∈S

{V̄ (θ) + max
x

{− f (x, θ) : x ∈ F(θ)}}
= max

x,θ
{V̄ (θ) − f (x, θ) : x ∈ F(θ), θ ∈ S}.

The last statement can be trivially proved by contradiction.

In conclusion, both εLP and εCP are computable upper bounds to εMAX , with εLP raising
from a multidimensional extension of the ideas suggested in [12]. As a consequence,
both εLP and εCP can be embedded in an approximate multiparametric convex solver.

96 BEMPORAD AND FILIPPI

Computing εLP involves solving a linear program with m + 1 variables, whereas com-
puting εCP involves solving a convex program with m +n variables. However, obtaining
the subgradients used to compute εLP may require an additional effort, unless the para-
metric program takes some special form. Furthermore, the computation of εLP(S) yields
a parameter vector θ̄ ∈ S such that V̄ (θ̄) − V (θ̄) = εLP(S), whereas the computation of
εCP(S) yields a parameter vector θ̄ ∈ S such that V̄ (θ̄) − V ∗(θ̄) = εCP(S) and an opti-
mal solution of (CPθ̄). Since this latter information seems crucial to obtain an efficient
multiparametric solver, in the sequel we shall focus on the use of εCP.

3.4. Error bounds on the optimizer

In some applications the focus may be on approximating the optimizer rather than the
value function. In principle, this is possible, but hardly practicable. Some computable
error bounds on the optimizer have been proposed in the literature for nonlinear programs,
but usually they are very hard to obtain (see, e.g., [13, 18, 27]).

The most promising error bound has been proposed by Fiacco and Kyparisis [13]
in connection with the approximation method of ([12], Chapter 9). As mentioned in
Section 1, Fiacco suggested to approximate the optimal solution of a parametric convex
program along a line segment in the parametric space by using the linear interpolation
of the optimal solutions computed at the extremes of the same segment. Fiacco and
Kyparisis [13] showed how to bound the distance of such a linear interpolation from
a genuine optimizer by means of uniform quadratic underestimation of the objective
function value. Their approach is easily extendable to the case where the line segment is
replaced by a full-dimensional simplex. However, computing Fiacco-Kyparisis’ bound
requires, in general, solving a multiparametric nonconvex problem, and thus leads to an
unpracticable method.

We simply mention that Fiacco-Kyparisis’ bound may be computable in some special,
though important, cases, i.e., separable objective function, convex quadratic program-
ming, and nonparametric objective function with bounded feasible set. In the latter case,
however, the obtained bound may be very conservative.

4. An approximate multiparametric convex solver

We are in a position to state a basic approximation algorithm for (CPθ). We first analyze
in detail the case when an initial full-dimensional simplex S ⊆ �∗ is given, then we
embed the resulting algorithm in a more general solver for convex, bounded, and full-
dimensional sets �. The general solver also handles the case of lower dimensional �∗.

4.1. A recursive algorithm

The following algorithm takes as input:

(a) m + 1 parameter vectors θ0, θ1, . . . , θm ∈ �∗;
(b) the corresponding optimal values V ∗(θ0), V ∗(θ1), . . . , V ∗(θm);

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 97

(c) m + 1 vectors x0, x1, . . . , xm ∈ IRn such that xk is an optimal solution of (CPθ k)
for all k = 0, 1, . . . , m.

The input either comes from the algorithm itself because of a recursive call, or from
the general solver described in Section 4.2. In the latter case, vectors θ0, θ1, . . . , θm

are guaranteed to be affinely independent, so that their convex hull is a full-dimensional
simplex contained in �∗.

Algorithm 4.1

Build M and X as defined in (4);
if M is nonsingular then

compute the optimum εCP(S) and an optimizer (x̄, θ̄) of (13);
if εCP(S) > ε then

for k = 0, 1, . . . , m do
replace θ k by θ̄ , V ∗(θ k) by V ∗(θ̄) = f (x̄, θ̄), and xk by x̄;
call this algorithm on the modified data;

else return (M−1, X)

Note that, at each recursive iteration, the current simplex is split into at most m + 1
full-dimensional simplices with nonoverlapping interiors. The output of Algorithm 4.1
is a collection {(M−1

h , Xh) : h = 1, . . . , L} from which we can obtain:

(A) a simplicial partition {Sh : h = 1, . . . , L} of the initial simplex S, where Sh�{θ ∈
IRm : M−1

h

[
1
θ

] ≥ 0};
(B) a piecewise affine function x̂ : S �→ IRn defined as:

x̂(θ) � Xh M−1
h

[
1

θ

]
if θ ∈ Sh (h = 1, . . . , L);

(C) a piecewise analytical function V̂ : S �→ IR defined as

V̂ (θ) � f (x̂(θ), θ) for all θ ∈ S.

In particular, the above functions enjoy the following properties:

(i) x̂(θ) is a feasible solution of (CPθ) for all θ ∈ S;
(ii) 0 ≤ V̂ (θ) − V ∗(θ) ≤ ε for all θ ∈ S;

(iii) V̂ (θ#) = V ∗(θ#) for any vector θ# that is a vertex of a simplex in the obtained
partition.

Remark 4.1. The values of x̂ and V̂ might not be uniquely defined on overlapping
boundaries of the returned simplices (a subset of S of null measure) although any single-
valued function one can extract would still enjoy the above properties. However, if in

98 BEMPORAD AND FILIPPI

every recursive call vector θ̄ lies in the interior of its simplex, then x̂ and V̂ are both
continuous functions of the parameter θ . If the continuity property is required, we may
force the above condition by imposing in (13) the tighter constraint M−1

[
1
θ

] ≥ σe,

where σ is a comparatively small positive scalar and e ∈ IRm+1 is a vector of ones.
This is equivalent to letting μk ≥ σ > 0 for all k = 0, 1, . . . , m, where μk are the
coefficients of the convex combination of the vertices of the simplex. As an alternative,
in order to enforce continuity and obtain a geometric balance, one may always decide
to split S in its center 1

m+1

∑m
k=0 θ k .

Remark 4.2. By using εCP(S), the proposed method controls the absolute error on the
value function with respect to V̄ , which constitutes an approximation of V ∗ worse than
the actually returned V̂ . As a consequence, there may be cases where a simplex is split
because εCP(S) > ε though the maximum difference εMAX(S) between V̂ and V ∗ is
less than the prescribed ε. In order to possibly avoid unnecessary splits, consider the
error quantity ε(S) � V̂ (θ̄) − V ∗(θ̄) = f (x̂(θ̄), θ̄) − V ∗(θ̄) ≤ εMAX(S), where εMAX(S)
is the maximum absolute error on S. If ε(S) > ε then clearly εMAX(S) > ε and hence
the simplex S must be split. On the other hand, when ε(S) ≤ ε there is the possibility
that the actual error εMAX(S) is smaller than ε. A technique based on a piecewise linear
approximation of V̂ over S for estimating εMAX(S) with an arbitrary precision before
deciding to split the simplex is described in [3].

4.1.1. Complexity analysis. We now discuss how to bound the complexity of Algo-
rithm 4.1. Such a complexity depends on the solution of a number of convex programs.
Since the time complexity of convex programming depends on the properties of the
model and the algorithm implemented, we consider a convex programming solver as an
oracle, and we evaluate the complexity by the maximum number of convex programs
that have to be solved. Accordingly, we denote by cp[α, β, γ] a time complexity of
solving a convex program with α variables, β nonlinear convex constraints, and γ affine
constraints.

Consider Algorithm 4.1. The complexity of each recursive call is clearly dominated
by the solution of problem (13). Then, the time complexity of each call of Algorithm 4.1
is simply

O (cp[n + m, p, q + m + 1]).

The total number of calls depends on the number of simplices generated to build an
approximation of V ∗ satisfying the required tolerance. We may guess that such a number
is exponential in the input size (cf. [26]). On the other hand, it is reasonable to express
the overall complexity of Algorithm 4.1 as a function of the output size. To this end, we
need a definition and a technical lemma.

A rooted tree T is full if every node of T either is a leaf or has at least two chil-
dren (cf. Chapter 5 of [10]). The smallest full tree is composed by three nodes: the root
and its two children. Let ρ(λ) denote the maximum number of nodes of a full tree with
λ leaves. It is easy to prove by contradiction that if T is a full tree with λ leaves and
ρ(λ) nodes, then T must be binary. Moreover, it is easy to prove by induction on λ that

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 99

if T is a full binary tree with λ leaves then T has exactly 2λ − 1 nodes. We deduce the
technical lemma.

Lemma 4.1. ρ(λ) = 2λ − 1.

We are thus able to state the following.

Lemma 4.2. Algorithm 4.1 builds up an approximate description of S using L sim-
plices in time

O (Lcp[n + m, p, q + m + 1]). (14)

Proof: Each time Algorithm 4.1 is called, a simplex in the parameter space is explored.
If the upper bound on the error inside the simplex is less than the prescribed tolerance, the
current simplex is returned; otherwise the simplex is subdivided in two or more smaller
simplices and a recursive call is performed for each of them. Thus, the exploration of the
parameter space performed by Algorithm 4.1 may be visualized by a search tree, where
nodes correspond to explored simplices and arcs correspond to recursive calls. When
Algorithm 4.1 stops, a problem (13) has been solved for every node of the search tree.
If L = 1 then the search tree is a single node, and the stated time complexity trivially
holds. If L > 1, the assumed L simplices returned by the algorithm are the leaves of
the search tree and Algorithm 4.1 has solved I + L problems (13), where I denote the
number of the tree nodes with at least one child. By construction, each tree node with
at least one child has in fact a number of children ranging from 2 to m + 1. Thus the
search tree is full, and we may write I + L ≤ ρ(L). As from Lemma 4.1.1 we have that
ρ(L) = O(L), the stated time complexity follows.

The following result is immediate.

Theorem 4.1. If cp is a polynomial function, then the time complexity of Algorithm 4.1
is polynomial in the output size.

4.2. The general solver

So far, we have assumed that �∗ is a full-dimensional set, and our analysis has been
restricted to a full-dimensional simplex contained in �∗. In order to obtain a general ap-
proximate multiparametric convex solver, we need first to verify the full-dimensionality
assumption, and then to approximate �∗ by an initial collection of nonoverlapping sim-
plices.

A necessary condition for �∗ to be full-dimensional is that the equality constraints
Ax + Bθ + d = 0 do not restrict θ to lie on a lower-dimensional affine subspace of IRm

(i.e., the set {θ ∈ IRm : ∃x ∈ IRn : Ax + Bθ + d = 0} has dimension m). This can be
easily verified by computing a Gauss reduction of [A B d] and then checking if equality
constraints of the form a′θ = α appear with a �= 0 ∈ IRm .

100 BEMPORAD AND FILIPPI

Assuming that the linear constraints Ax + Bθ + d = 0 do not reduce the dimension
of �∗, let S(θ, ρ) be the convex hull of θ + ρe0, θ + ρe1, . . . , θ + ρem , where e j is
the j th column of the m × m identity matrix, j = 1, . . . , m, and e0 = 0 ∈ IRm . We
determine the largest simplex S(θ, ρ) contained in �∗ by solving

ρ� = max
θ,ρ,y0,... ,ym

ρ

subject to gi (y j , θ + ρe j) ≤ 0, (i = 1, . . . , p; j = 0, . . . , m)
(15)

Ay j + B(θ + ρe j) = d, (j = 0, . . . , m)

θ + ρe j ∈ �, (j = 0, . . . , m)

which is a convex program in (m + 1)(n + 1) variables. Then �∗ is full-dimensional if
and only if ρ� > 0, as the volume of the largest simplex is (ρ�)m/m! > 0.

Once the full-dimensionality of �∗ is tested, we determine an inner polyhedral approx-
imation �̂ through a “ray-shooting” procedure, described as follows. Let r0, r1 . . . , r t+m

be m +1+ t directions in IRm , t ≥ 0, such that the convex positive cone C = {θ ∈ IRm :
θ = ∑m+t

k=0 μkr k, μk ≥ 0} is equal to IRm . For instance, rk may be obtained by collecting
uniformly distributed samples of the unit hyper-sphere. For each k = 0, 1, . . . , m + t
solve the convex problem

max
x,θ

(rk)′θ

subject to gi (x, θ) ≤ 0, (i = 1, . . . , p)

Ax + Bθ + d = 0,

θ ∈ �,

denoting by (xk, θ k) the obtained optimal solution. Define �̂ as the convex hull of
θ0, θ1, . . . , θm+t . It is convenient to discard all vectors θ k which are not vertices of �̂. To
this aim, note that a vector θ k is a vertex of �̂ if and only if the linear
system∑

k �=k

θ kμk = θ k̄,
∑
k �=k

μk = 1, μk ≥ 0, (k �= k̄)

has no solution. This can be checked via linear programming.
For convenience, we thus assume that θ0, θ1, . . . , θm+H are the vertices of �̂, where

H ≤ t and H ≥ 0 because �∗ is full dimensional. There is no need to compute the
hyperplane representation of �̂. Instead, through the Delaunay triangulation [33] of
θ0, θ1, . . . , θm+H , one computes a set of simplices S1, . . . , SN such that:

(i) ∪N
i=1Si = �̂;

(ii) Si , Sj have disjoint interiors for i �= j ;
(iii) N = O

(
(m + H + 1)�m/2�), as reported in [29].

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 101

Clearly, the full-dimensionality test (15) may be substituted by the condition

rank

[
1 1 . . . 1

θ0 θ1 . . . θm+H

]
= m, (16)

i.e., by testing that �̂ is a full-dimensional polyhedron. On the other hand, test (15) is
independent on the choice of the directions rk , and therefore it is more robust from a
numerical viewpoint.

4.2.1. Evaluation of the solution. The proposed method provides the solution of (CPθ)
organized on a tree structure T . The root node of T corresponds to the whole IRm . At
the first level, the nodes correspond to the initial simplices S1, . . . , SN obtained by the
ray-shooting and triangulation procedure. Each node at the first level is the root of a
subtree corresponding to the simplicial partition produced by the recursive procedure.

The multiparametric solution is defined over the simplices associated with the leaf
nodes, and in principle the internal nodes do not provide any information. However, by
keeping such an information, the tree can be exploited to evaluate the multiparametric
solution in a very efficient manner. In fact, it is easy to check that for a given θ ∈ IRm ,
determining the simplex which contains θ requires at most m2(N + (D − 1) (m + 1))
basic arithmetic operations, where D is the depth of T . Note that this way of evaluating
the solution requires not only the storage of (M−1, X) in the leaf nodes, where M , X are
defined in (4), but also the storage of M−1 in all the internal nodes.

4.2.2. Complexity analysis. We conclude this section with some remarks on the time
complexity of the proposed general solver for approximate multiparametric convex pro-
gramming.

Testing the full-dimensionality of �∗ by problem (15) requires

O (cp[(m + 1)(n + 1),p(m + 1), (q + u)(m + 1)]) (17)

time, where u is the number of inequalities representing �, and thus the time complexity
is polynomial in the input size provided cp is a polynomial function.

The ray-shooting procedure requires

O ((m + t)cp[m + n,p,q + u]) (18)

time, where m + t + 1 is the total number of shot rays. It is easy to recognize that
identifying the vertices of �̂ requires at most

O ((m + t)cp[m + t, 0, 2m + t]) (19)

time. Under the weak hypothesis that t is polynomial in m, both the above complexities
are polynomial in the input size provided cp is a polynomial function. The complexity
of the Delaunay triangulation depends on the chosen algorithm, see e.g. p.381 of [17]

102 BEMPORAD AND FILIPPI

where the worst-case complexity of

O
(
(m + H + 1)�m/2�) (20)

is reported and m+H+1 ≤ m+t+1 is the number of nonredundant shot vertices. Clearly,
such a complexity is exponential in the input size. However, by virtue of property (i i i)
of Section 4.2, the Delaunay triangulation has a linear complexity O(N) in the output
size N .

Let L̄ be the total number of simplices returned by the application of Algorithm 4.1
to each of the simplices obtained by the initial triangulation. By summing up the time
requirements (14) we obtain the the total running time required by the N calls of Algo-
rithm 4.1 is

O
(
L̄ cp[n + m, p, q + m + 1]

)
. (21)

The overall time complexity of the proposed approach is obtained by summing up (17)–
(20) and (21). As that the total output size is O(mnL̄), we may conclude that if the
number of shot rays is at most polynomial in the number L̄ of output simplices and if
cp is a polynomial function, then the overall complexity of the proposed approach is
polynomial in the output size. Note that assuming that t grows polynomially with L̄ is a
rather weak hypothesis in the case �∗ is bounded by nonlinear manifolds, as the number
t of shot rays is usually not much larger than the number H = O(log N) of vertices of
�̂, where N ≤ L .

The general solver was implemented in Matlab 6.5, considering the convex solver as a
library function to be chosen according to the type of problem. The initial set of simplices
S1, . . . , SN is obtained via Delaunay triangulation using function delaunayn, that is
based on the Qhull package [1]. An application example is reported in the next section.
Further numerical results are reported in [25].

5. Adaptation to other classes of multiparametric problems

In this section we show how one can easily adapt the approximate multiparametric
approach developed above to two general problem classes: multiparametric semidefinite
programming and multiparametric geometric programming.

5.1. Approximate multiparametric semidefinite programming

The structure of parametric semidefinite programming (SDP) was analyzed in [16] for
the case of scalar perturbations of the cost function. To the best of the authors’ knowledge,
the only way to obtain an exact analytical characterization of the value function of a
(multi)parametric SDP problem consists in two steps. In the first step the problem is
reformulated as a multiparametric convex one; in the second step the value function of
the equivalent problem is characterized. Unfortunately, the first step produces complex
analytical expressions (see, e.g., the approaches proposed in [6]), while the second

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 103

step encounters the difficulties pointed out in Section 2.1. Thus, at present, only an
approximate solution can be given to a multiparametric SDP.

In order to deal with SDP problems with multiparametric perturbations, the analysis
and the algorithm developed in the previous sections for the multiparametric convex
program (CPθ) must be extended to generalized inequalities and generalized convexity.
Here we focus on a parametric semidefinite program where all functions are affine and
the inequalities are defined with respect to the proper cone Sp

+ of symmetric positive
semidefinite p × p real matrices; we denote the condition P ∈ Sp

+ by P � 0.
More precisely, we formulate a multiparametric semidefinite programming problem

as follows:

minx c′x + f ′θ

subject to
n∑

i=1

xi Fi + G0 +
m∑

j=1

θ j G j � 0

Ax + Bθ + d = 0

(22)

where c ∈ IRn , f ∈ IRm , Fi are all real symmetric p × p matrices, G j are all real
symmetric p × p matrices, A is a real q × n matrix, B is a real q × m matrix, and
d ∈ IRq . We add the term f ′θ in the objective function for consistency with respect to
the formulation of (CPθ), though such a term is irrelevant for the optimization.

Lemma 5.1. Let �∗ be the feasible parameter set and let V ∗ be the value function of
problem (22). Then, �∗ is a convex set and V ∗ is a convex function.

Proof: We first show that �∗ is a convex set. Let θh ∈ �∗, and let xh = [xh
1 . . . xh

n]′

be a corresponding optimal solution of problem (22), with h = 1, 2; let α ∈ [0, 1]. Let
Mh�

∑n
i=1 xh

i Fi + G0 + ∑m
j=1 θh

j G j , with h = 1, 2. We have:

n∑
i=1

(
αx1

i + (1 − α)x2
i

)
Fi + G0 +

m∑
j=1

(
αθ1

j + (1 − α)θ2
j

)
G j = αM1 + (1 − α)M2.

As x1 and x2 are feasible with respect to θ1 and θ2, respectively, the right-hand side of
the above equation is a nonnegative combination of positive semidefinite matrices, and
thus it is a positive semidefinite matrix. Furthermore,

A(αx1 + (1 − α)x2) + B(αθ1 + (1 − α) θ2) + d

= α(Ax1 + Bθ1 + d) + (1 − α) (Ax2 + Bθ2 + d)

= 0

Hence, αx1 + (1 − α)x2 is feasible with respect to αθ1 + (1 − α)θ2, proving that �∗ is
a convex set. Since

V ∗(αθ1 + (1 − α)θ2) ≤ c′(αx1 + (1 − α)x2) + f ′(αθ1 + (1 − α)θ2)

= α(c′x1 + f ′θ1) + (1 − α)(c′x2 + f ′θ2)

= αV ∗(θ1) + (1 − α)V ∗(θ2).

it follows that V ∗ is a convex function.

104 BEMPORAD AND FILIPPI

As the convexity of V ∗ is the key hypothesis behind our development, Lemma 5.1
implies that the analysis of Section 3 and the solver of Section 4 can be extended to a
problem of the form (22) in a straightforward manner.

5.1.1. A Numerical Example. Consider the multiparametric semidefinite program

min
x∈R3

x1 − 2x2 + x3

subject to

⎡⎣ 1 2 −3
2 4 −1

−3 −1 3

⎤⎦ +
⎡⎣ 1 −1 2

−1 1 3
2 3 2

⎤⎦ θ1 +
⎡⎣−1 1 0

1 1 2
0 2 −2

⎤⎦ θ2

+
⎡⎣ 3 −2 4

−2 1 −2
4 −2 −2

⎤⎦ x1 +
⎡⎣−3 1 1

1 −2 −1
1 −1 1

⎤⎦ x2 +
⎡⎣ 5 4 2

4 1 1
2 1 −1

⎤⎦ x3

� 0. (23)

We are interested in approximating the multiparamentric solution within the box
� = {θ ∈ IR2 : −2 ≤ θ1, θ2 ≤ 2} with a precision ε = 0.5. To this end, we run
our general solver, which returns the solution after 0.85 s (the results were obtained
on a laptop PC 1.4 Ghz running the Matlab 6.5 code of our solver and the SDP solver
of [32]). In Figure 2(a) we depict the simplicial partition determined by the algorithm,
while in Figure (2b) the associated tree structure for evaluation of the approximate
solution, which consists of eight levels. The polyhedral partition in Figure (2a) contains
20 regions, corresponding to the leaf nodes in Figure (2b). In Figure 3 we show the
value function V ∗(θ) and the error V̂ (θ) − V ∗(θ) on a grid of θ ∈ �̂. Note that the error
is always smaller than the prescribed precision ε = 0.5, is zero at the vertices of the
simplices, and is always below about 10% of the range of values of the optimal value
function.

Figure 2. Approximate multiparametric solution of problem (23). (a) Partition in θ -space. The vertices of �̂

are represented by circles and (b) Tree structure for evaluation of the approximate solution.

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 105

Figure 3. Multiparametric solution associated with problem (23). (a) Value function V ∗(θ) and (b) Error

V̂ (θ) − V ∗(θ).

5.2. Approximate multiparametric geometric programming

The approximate multiparametric programming approach developed earlier can be ap-
plied in principle to any multiparametric nonconvex programming problem that admits
an equivalent convex reformulation. In particular, here we consider the class of multi-
parametric geometric programming problems, defined as follows.

A posynomial function f : IRn × IRm �→ IR has the form

f (x, θ) =
K∑

k=1

ck xa1k
1 xa2k

2 . . . xank
n θ

b1k
1 θ

b2k
2 . . . θbmk

m ,

where all aik , bik , and ck coefficients are real numbers, and ck ≥ 0 for all i and k. If
K = 1, function f is called monomial. A multiparametric geometric programming (GP)
problem is defined as

V ∗(θ) = minx f (x, θ)
subject to gi (x, θ) ≤ 1, (i = 1, . . . , p)

h j (x, θ) = 1, (j = 1, . . . , q)
(24)

where f and gi are all posynomial functions, and h j are all monomial functions [11].
By a change of variables and a transformation of the objective and constraint functions,

the GP problem (24) can be transformed in the convex form

W ∗(φ) = miny log

(
K0∑

k=1

ea′
0k y+b′

0kφ+c0k

)

subject to log

(
Ki∑

k=1

ea′
ik y+b′

ikφ+cik

)
≤ 0, (i = 1, . . . , p)

Ay + Bφ + D = 0,

(25)

106 BEMPORAD AND FILIPPI

where φ = log θ is the vector of parameters,1 y = log x is the optimization vector, the
real coefficients aik , bik , cik and matrices A ∈ IRq×n , B ∈ IRq×m , D ∈ IRq are obtained
from f , gi , h j as detailed for instance in Chapter 4 of [8], and

log V ∗(θ) = W ∗(log θ).

As the objective function and the constraints in problem (25) are jointly convex in y
and φ, we can apply the general solver developed in the previous sections. For a given
ε > 1, let Sh = {φ ∈ Rm : M−1

h

[
1
φ

] ≥ 0}, with h = 1, . . . , L , be the simplices in
the φ-space generated by the recursive algorithm with maximum error log ε, and let
�̂ be the union of all such simplices. The solver finds an approximate piecewise affine
optimizer function ŷ : �̂ �→ Rn and an approximate value function Ŵ : �̂ �→ R such
that

Ŵ (φ) = log

(
K0∑

k=1

ea′
0k ŷ(φ)+b′

0kφ+c0k

)

with 0 ≤ Ŵ (φ) − W ∗(φ) ≤ ε for all φ ∈ �̂.
Coming back to the original multiparametric GP problem (24), let �̂ = {θ ∈

Rm : eθ ∈ �̂}, and define the functions x̂ : �̂ �→ Rn and V̂ : �̂ �→ R such that
x̂(θ) = eŷ(log θ) and V̂ (θ) = eŴ (log θ). It is straightforward to prove that

V̂ (θ)

ε
≤ V ∗(θ) ≤ V̂ (θ) for all θ ∈ �̂. (26)

Equation (26) provides a relative approximation error, rather than an absolute one,
for any choice of ε > 1. Furthermore, the approximate feasible parameter set �̂ is such
that �̂ = ∪L

h=1 Zh , where

Zh =
{
θ ∈ Rm : M−1

h

[
1

log θ

]
≥ 0

}
, (h = 1, . . . , L)

and Zh , Zk have disjoint interiors for all h �= k.
We remark that from the results in [24] it follows that the exact optimizer function

y∗(φ) of problem (25) is continuous in φ, and therefore x∗(θ) = ey∗(log θ) is also contin-
uous. Thus, in the (nonconvex) multiparametric GP case the exact optimizer function is
continuous.

6. Conclusions

In this paper we have provided a recursive algorithm for determining approximate mul-
tiparametric solutions of convex nonlinear programming problems, where the value
function is approximated within a given suboptimality threshold. The approximate so-
lution is expressed as a piecewise affine function over a simplicial partition of a given
set of feasible parameters.

ALGORITHM FOR MULTIPARAMETRIC CONVEX PROGRAMMING 107

We envision several applications of the technique, especially for the practical imple-
mentation of robust model predictive control schemes based on convex optimization, of
which several formulations are already available in the literature.

Note

1. For a given vector x ∈ IRn , we denote by log x the vector [log x1... log xn]′ and by ex the vector [ex1 ...exn]′.

References

1. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, “Qhull homepage,” The Geometry Center, University of

Minnesota, 1993. http://www.geom.umn.edu/software/qhull/.

2. A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control based on linear programming—The

explicit solution,” IEEE Trans. Automatic Control, vol. 47, no. 12, pp. 1974–1985, 2002a.

3. A. Bemporad and C. Filippi, “Approximate multiparametric convex programming,” In Proc. 42th IEEE

Conf. on Decision and Control, Maui, Hawaii, USA, pp. 3185–3190, 2003a.

4. A. Bemporad and C. Filippi, “Suboptimal explicit RHC via approximate multiparametric quadratic pro-

gramming,” Journal of Optimization Theory and Applications, vol. 117, no. 1, pp. 9–38, 2003b.

5. A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos, “The explicit linear quadratic regulator for

constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002b.

6. H.Y. Benson and R.J. Vanderbei, “Solving problems with semidefinite and related constraints using

interior-point methods for nonlinear programming,” Mathematical Programming, vol. 95, no. 2, pp. 279–

302, 2003.

7. F. Borrelli, A. Bemporad, and M. Morari, “A geometric algorithm for multi-parametric linear program-

ming,” Journal of Optimization Theory and Applications, vol. 118, no. 3, pp. 515–540, 2003.

8. S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge, MA: Cambridge University Press.

http://www.stanford.edu/ boyd/cvxbook.html, 2004.

9. E.F. Camacho and C. Bordons, “Model predictive control,” Advanced Textbooks in Control and Signal

Processing, London: Springer-Verlag, 2nd edition, 2004.

10. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, Chapt. 5. New York: McGraw-

Hill, 1990.

11. R.J. Duffin, E.L. Peterson, and C. Zener, “Geometric programming – theory and applications,” New York:

Wiley, 1967.

12. A.V. Fiacco, “Introduction to sensitivity and stability analysis in nonlinear programming,” London, U.K.,

Academic Press, 1983.

13. A.V. Fiacco and J. Kyparisis, “Computable bounds on parametric solutions of convex problems,” Mathe-

matical Programming, vol. 40, pp. 213–221, 1988.

14. C. Filippi, “An algorithm for approximate multiparametric linear programming,” Journal of Optimization

Theory and Applications, vol. 120, no. 1, pp. 73–95, 2004.

15. T. Gal, Postoptimal Analyses, Parametric Programming, and Related Topics, Berlin: de Gruyter, 2nd

edition, 1995.

16. D. Goldfarb and K. Scheinberg, “On parametric semidefinite programming,” Applied Numerical Mathe-

matics, vol. 29, pp. 361–377, 1999.

17. J.E. Goodman and J. O’Rourke (Eds.), “Handbook of discrete and computational geometry,” Discrete

Mathematics and Its Applications, New York: CRC Press, 1997.

18. E. Hansen, “Global optimization with data perturbation,” Computers and Operations Research, vol. 11,

pp. 97–104, 1984.

19. R. Horst and N.V. Thoai, “DC Programming: Overview,” Journal of Optimization Theory and Applications,

vol. 103, no. 1, pp. 1–43, 1999.

20. T.A. Johansen, “On multi-parametric nonlinear programming and explicit nonlinear model predictive

control,” In Proc. 41th IEEE Conf. on Decision and Control, Las Vegas, Nevada, USA, pp. 2768–2773,

2002.

108 BEMPORAD AND FILIPPI

21. T.A. Johansen, “Approximate explicit receding horizon control of constrained nonlinear systems,” Auto-

matica, vol. 40, no. 2, pp. 293–300, 2004.

22. T.A. Johansen and A. Grancharova, “Approximate explicit constrained linear model predictive control via

orthogonal search tree,” IEEE Trans. Automatic Control, vol. 48, no. 5, pp. 810–815, 2003.

23. J. Maciejowski, Predictive Control with Constraints, Harlow, UK: Prentice Hall, 2002.

24. O.L. Mangasarian and J.B. Rosen, “Inequalities for stochastic nonlinear programming problems,” Oper-

ations Research, vol. 12, pp. 143–154, 1964.

25. D. Muñoz de la Peña, A. Bemporad, and C. Filippi, “Robust explicit MPC based on approximate multi-

parametric convex programming,” In Proc. 43th IEEE Conf. on Decision and Control, Paradise Island,

Bahamas, pp. 2491–2496, 2004.

26. K.G. Murty, “Computational complexity of parametric linear programming,” Mathematical Programming,

vol. 19, pp. 213–219, 1980.

27. S.M. Robinson, “Computable error bounds for nonlinear programming,” Mathematical Programming,

vol. 5, 235–242, 1973.

28. C. Rowe and J.M. Maciejowski, “An algorithm for multi-parametric mixed integer semidefinite optimi-

sation,” In Proc. 42th IEEE Conf. on Decision and Control, Maui, Hawaii, USA, pp. 3197–3202, 2003.

29. R. Seidel, “Exact upper bounds for the number of faces in d-dimensional Voronoi diagram,” In P. Gritzmann

and B. Sturmfels (Eds.): Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift,

DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Providence, RI: American

Mathematical Society, pp. 517–529, 1991.

30. M. Seron, J. DeDoná, and G. Goodwin, “Global analytical model predictive control with input constraints,”

In Proc. 39th IEEE Conf. on Decision and Control, Sydney, Australia, pp. 154–159, 2000.

31. P. Tøndel, T.A. Johansen, and A. Bemporad, “An algorithm for multi-parametric quadratic programming

and explicit MPC solutions,” Automatica, vol. 39, no. 3, 489–497, 2003.

32. L. Vandenberghe, S. Boyd, and B. Alkire, “SP — Software for semidefinite programming (version 1.1),”

http://www.ee.ucla.edu/ vandenbe/sp.html, 1999.

33. L. Yepremyan and J. Falk, “Delaunay partitions in Rn applied to non-convex programs and vertex/facet

enumeration problems,” Computers and Operations Research, vol. 32, 793–812, 2005.

