
Vol.:(0123456789)

Computational Optimization and Applications (2020) 77:571–595
https://doi.org/10.1007/s10589-020-00215-w

1 3

Global optimization via inverse distance weighting
and radial basis functions

Alberto Bemporad1

Received: 9 January 2020 / Published online: 27 July 2020
© The Author(s) 2020

Abstract
Global optimization problems whose objective function is expensive to evaluate can
be solved effectively by recursively fitting a surrogate function to function samples
and minimizing an acquisition function to generate new samples. The acquisition
step trades off between seeking for a new optimization vector where the surrogate
is minimum (exploitation of the surrogate) and looking for regions of the feasible
space that have not yet been visited and that may potentially contain better values
of the objective function (exploration of the feasible space). This paper proposes
a new global optimization algorithm that uses inverse distance weighting (IDW)
and radial basis functions (RBF) to construct the acquisition function. Rather arbi-
trary constraints that are simple to evaluate can be easily taken into account. Com-
pared to Bayesian optimization, the proposed algorithm, that we call GLIS (GLobal
minimum using Inverse distance weighting and Surrogate radial basis functions), is
competitive and computationally lighter, as we show in a set of benchmark global
optimization and hyperparameter tuning problems. MATLAB and Python imple-
mentations of GLIS are available at http://cse.lab.imtlu cca.it/~bempo rad/glis.

Keywords Global optimization · Inverse distance weighting · Bayesian
optimization · Radial basis functions · Surrogate models · Derivative-free
algorithms · Black-box optimization

1 Introduction

Many problems in machine learning and statistics, engineering design, physics,
medicine, management science, and in many other fields, require finding a global
minimum of a function without derivative information; see, e.g., the excellent sur-
vey on derivative-free optimization [32]. Some of the most successful approaches
for derivative-free global optimization include deterministic methods based on

 * Alberto Bemporad
 alberto.bemporad@imtlucca.it

1 IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy

http://orcid.org/0000-0001-6761-0856
http://cse.lab.imtlucca.it/%7ebemporad/glis
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00215-w&domain=pdf

572 A. Bemporad

1 3

recursively splitting the feasible space in rectangles, such as the DIRECT (DIvide a
hyper-RECTangle) [22] and Multilevel Coordinate Search (MCS) [18] algorithms,
and stochastic methods such as Particle Swarm Optimization (PSO) [12], genetic
algorithms [43], and evolutionary algorithms [16].

The aforementioned methods can be very successful in reaching a global mini-
mum without any assumption on convexity and smoothness of the function, but may
result in evaluating the function a large number of times during the execution of the
algorithm. In many problems, however, the objective function is a black box that
can be very time-consuming to evaluate. For example, in hyperparameter tuning of
machine learning algorithms, one needs to run a large set of training tests per hyper-
parameter choice; in structural engineering design, testing the resulting mechanical
property corresponding to a given choice of parameters may involve several hours
for computing solutions to partial differential equations; in control systems design,
testing a combination of controller parameters involves running a real closed-loop
experiment, which is time consuming and costly. For this reason, many researchers
have been studying algorithms for black-box global optimization that aim at mini-
mizing the number of function evaluations by replacing the function to minimize
with a surrogate function [21]. The latter is obtained by sampling the objective func-
tion and interpolating the samples with a map that, compared to the original func-
tion, is very cheap to evaluate. The surrogate is then used to solve a (much cheaper)
global optimization problem that decides the new point where the original function
must be evaluated. A better-quality surrogate is then created by also exploiting the
new sample and the procedure is iterated. For example, quadratic surrogate func-
tions are used in the well known global optimization method NEWUOA [30].

As underlined by several authors (see, e.g., [21]), purely minimizing the surrogate
function may lead to converge to a point that is not the global minimum of the black-
box function. To take into account the fact that the surrogate and the true objective
function differ from each other in an unknown way, the surrogate is typically aug-
mented by an extra term that takes into account such an uncertainty. The resulting
acquisition function is therefore minimized instead for generating a new sample of
the optimization vector, trading off between seeking for a new vector where the sur-
rogate is small and looking for regions of the feasible space that have not yet been
visited.

Bayesian Optimization (BO) is a popular class of global optimization methods
based on surrogates that, by modeling the black-box function as a Gaussian process,
enables one to quantify in statistical terms the discrepancy between the two func-
tions, an information that is taken into account to drive the search. BO has been
studied since the sixties in global optimization [25] and in geostatistics [26] under
the name of Kriging methods; it become popular to solve problems of Design and
Analysis of Computer Experiments (DACE) [34], see for instance the popular Effi-
cient Global Optimization (EGO) algorithm [23]. It is nowadays very popular in
machine learning for tuning hyperparameters of different algorithms [9, 13, 35, 37].

Motivated by learning control systems from data [29] and self-calibration of opti-
mal control parameters [14], in this paper we propose an alternative approach to
solve global optimization problems in which the objective function is expensive to
evaluate that is based on Inverse Distance Weighting (IDW) interpolation [24, 36]

573

1 3

Global optimization via inverse distance weighting and radial…

and Radial Basis Functions (RBFs) [17, 27]. The use of RBFs for solving global
optimization problems was already adopted in [11, 15], in which the acquisition
function is constructed by introducing a “measure of bumpiness”. The author of [15]
shows that such a measure has a relation with the probability of hitting a lower value
than a given threshold of the underlying function, as used in Bayesian optimization.
RBFs were also adopted in [31], with additional constraints imposed to make sure
that the feasible set is adequately explored. In this paper we use a different acquisi-
tion function based on two exploration components: an estimate of the confidence
interval associated with the interpolant function, defined as in [24], and a new meas-
ure based on inverse distance weighting that is totally independent of the underlying
black-box function and its surrogate. Both terms aim at exploring the domain of the
optimization vector. Moreover, arbitrary constraints that are simple to evaluate are
also taken into account, as they can be easily imposed during the minimization of
the acquisition function.

Compared to Bayesian optimization, our non-probabilistic approach to global
optimization is very competitive, as we show in a set of benchmark global optimiza-
tion problems and on hyperparameter selection problems, and also computationally
lighter than off-the-shelf implementations of BO.

A preliminary version of this manuscript was made available in [4] and later
extended in [5] to solve preference-based optimization problems. MATLAB and a
Python implementations of the proposed approach and of the one of [5] are available
for download at http://cse.lab.imtlu cca.it/~bempo rad/glis. For an application of the
GLIS algorithm proposed in this paper to learning optimal calibration parameters in
embedded model predictive control applications the reader is referred to [14].

The paper is organized as follows. After stating the global optimization problem
we want to solve in Sect. 2, Sects. 3 and 4 deal with the construction of the surrogate
and acquisition functions, respectively. The proposed global optimization algorithm
is detailed in Sect. 5 and several results are reported in Sect. 6. Finally, some conclu-
sions are drawn in Sect. 7.

2 Problem formulation

Consider the following constrained global optimization problem

where f ∶ ℝ
n
→ ℝ is an arbitrary function of the optimization vector x ∈ ℝ

n ,
�, u ∈ ℝ

n are vectors of lower and upper bounds, and X ⊆ ℝ
n imposes further arbi-

trary constraints on x. Typically X = {x ∈ ℝ
n ∶ g(x) ≤ 0} , where the vector func-

tion g ∶ ℝ
n
→ ℝ

q defines inequality constraints, with q = 0 meaning that no ine-
quality constraint is enforced; for example, linear inequality constraints are defined
by setting g(x) = Ax − b , with A ∈ ℝ

q×n , b ∈ ℝ
q , q ≥ 0 . We are particularly inter-

ested in problems as in (1) such that f(x) is expensive to evaluate and its gradient

(1)
minx f (x)

s.t. � ≤ x ≤ u

x ∈ X

http://cse.lab.imtlucca.it/%7ebemporad/glis

574 A. Bemporad

1 3

is not available, while the condition x ∈ X is easy to evaluate. Although not com-
prehensively addressed in this paper, we will show that our approach also tolerates
noisy evaluations of f, that is if we measure y = f (x) + � instead of f(x), where � is an
unknown quantity. We will not make any assumption on f, g, and � . In (1) we do not
include possible linear equality constraints Aex = be , as they can be first eliminated
by reducing the number of optimization variables and therefore perform the explora-
tion more easily in a lower dimensional space.

3 Surrogate function

Assume that we have collected a vector F = [f1 … fN]
� of N samples fi = f (xi) of f,

F ∈ ℝ
N at corresponding points X = [x1 … xN]

� , X ∈ ℝ
N×n , with xi ≠ xj , ∀i ≠ j ,

i, j = 1,… ,N . We consider next two types of surrogate functions, namely Inverse Dis-
tance Weighting (IDW) functions [24, 36] and Radial Basis Functions (RBFs) [15, 27].

3.1 Inverse distance weighting functions

Given a generic new point x ∈ ℝ
n consider the squared Euclidean distance function

d2 ∶ ℝ
n ×ℝ

n
→ ℝ

In standard IDW functions [36] the weight functions wi ∶ ℝ
n�{xi} → ℝ are defined

by the inverse squared distances

The alternative weighting function

 suggested in [24] has the advantage of being similar to the inverse squared distance
in (3a) for small values of d2 , but makes the effect of points xi located far from x fade
out quickly due to the exponential term.

By defining for i = 1,… ,N the following functions vi ∶ ℝ
n
→ ℝ as

the surrogate function f̂ ∶ ℝ
n
→ ℝ

(2)d2(x, xi) = (xi − x)�(xi − x), i = 1,… ,N

(3a)wi(x) =
1

d2(x, xi)

(3b)wi(x) =
e−d

2(x,xi)

d2(x, xi)

(4)vi(x) =

⎧
⎪⎪⎨⎪⎪⎩

1 if x = xi
0 if x = xj, j ≠ i

wi(x)∑N

j=1
wj(x)

otherwise

575

1 3

Global optimization via inverse distance weighting and radial…

is an IDW interpolation of (X, F).

Lemma 1 The IDW interpolation function f̂ defined in (5) enjoys the following
properties:

 P1. f̂ (xj) = fj , ∀j = 1,… ,N;
 P2. minj{fj} ≤ f̂ (x) ≤ maxj{fj} , ∀x ∈ ℝ

n;
 P3. f̂ is differentiable everywhere on ℝn and in particular ∇f (xj) = 0 for all

j = 1,… ,N.

The proof of Lemma 1 is very simple and is reported in “Appendix A”.
Note that in [24] the authors suggest to improve the surrogate function by adding

a regression model in (5) to take global trends into account. In our numerical experi-
ments we found, however, that adding such a term does not lead to significant improve-
ments of the proposed global optimization algorithm.

A one-dimensional example of the IDW surrogate f̂ sampled at five different points
of the scalar function

is depicted in Fig. 1. The global optimizer is x∗ ≈ −0.9599 corresponding to the
global minimum f (x∗) ≈ 0.2795.

(5)f̂ (x) =

N∑
i=1

vi(x)fi

(6)f (x) =

(
1 +

x sin(2x) cos(3x)

1 + x2

)2

+
x2

12
+

x

10

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 1 A scalar example of f(x) as in (6) (blue) sampled at N = 5 points (blue circles), IDW surrogate
f̂ (x) (orange) with wi(x) as in (3b), RBF inverse quadratic with � = 0.5 (red), RBF thin plate spline sur-
rogate with � = 0.01 (green), global minimum (purple diamond) (Color figure online)

576 A. Bemporad

1 3

3.2 Radial basis functions

A possible drawback of the IDW function f̂ defined in (5) is due to property P3: as
the number N of samples increases, the surrogate function tends to ripple, having its
derivative to always assume zero value at samples. An alternative is to use a radial
basis function (RBF) [15, 27] as a surrogate function. These are defined by setting

where d ∶ ℝ
n ×ℝ

n
→ ℝ is the function defining the Euclidean distance as in (2),

d(x, xi) = ‖x − xi‖2 , 𝜖 > 0 is a scalar parameter, �i are coefficients to be determined
as explained below, and � ∶ ℝ → ℝ is a RBF. Popular examples of RBFs are

The coefficient vector � = [�1 … �N]
� is obtained by imposing the interpolation

condition

Condition (9) leads to solving the linear system

where M is the N × N symmetric matrix whose (i, j)-entry is

with Mii = 1 for all the RBF type listed in (8) but the linear and thin plate spline,
for which Mii = limd→0 �(�d) = 0 . Note that if function f is evaluated at a new sam-
ple xN+1 , matrix M only requires adding the last row/column obtained by computing
�(�d(xN+1, xj)) for all j = 1,… ,N + 1.

As highlighted in [15, 21], matrix M might be singular, even if xi ≠ xj for all i ≠ j .
To prevent issues due to a singular M, [15, 21] suggest using a surrogate function given
by the sum of a RBF and a polynomial function of a certain degree. To also take into
account unavoidable numerical issues when distances between sampled points get close
to zero, which will easily happen as new samples are added towards finding a global
minimum, in this paper we suggest instead to use a singular value decomposition
(SVD) M = UΣV � of M.1 By neglecting singular values below a certain positive

(7)f̂ (x) =

N∑
i=1

𝛽i𝜙(𝜖d(x, xi))

(8)

�(�d) =
1

1+(�d)2
(inverse quadratic) �(�d) = e−(�d)

2

(Gaussian)

�(�d) =
√
1 + (�d)2 (multiquadric) �(�d) = (�d)2 log(�d) (thin plate spline)

�(�d) = �d (linear) �(�d) =
1√

1+(�d)2
(inverse multiquadric)

(9)f̂ (xi) = fi, i = 1,… ,N

(10a)M� = F

(10b)Mij = �(�d(xi, xj))

1 Matrices U and V have the same columns, modulo a change a sign. Indeed, as M is symmetric, we
could instead solve the symmetric eigenvalue problem M = T �ΛT , T �T = I , which gives Σii = |Λii| , and
set U = V = T � . As N will be typically small, we neglect computational advantages and adopt here SVD
decomposition.

577

1 3

Global optimization via inverse distance weighting and radial…

threshold �SVD , we can approximate Σ =

[
Σ1 0

0 0

]
 , where Σ1 collects all singular values

�i ≥ �SVD , and accordingly split V = [V1 V2] , U = [U1 U2] so that

The threshold �SVD turns out to be useful when dealing with noisy measurements
y = f (x) + � of f. Figure 2 shows the approximation f̂ obtained from 50 samples with �
normally distributed around zero with standard deviation 0.1, when �SVD = 10−2.

A drawback of RBFs, compared to IDW functions, is that property P2 is no longer
satisfied, with the consequence that the surrogate may extrapolate large values f̂ (x)
where f(x) is actually small, and vice versa. See the examples plotted in Fig. 1. On the
other hand, while differentiable everywhere, RBFs do not necessarily have zero gradi-
ents at sample points as in P3, which is favorable to better approximate the underlying
function with limited samples. For the above reasons, we will mostly focus on RBF
surrogates in our numerical experiments.

3.3 Scaling

To take into account that different components xj of x may have different ranges uj − �
j ,

we simply rescale the variables in optimization problem (1) so that they all range in
[−1, 1] . To this end, we first possibly tighten the given box constraints
B
�,u = {x ∈ ℝ

n ∶ � ≤ x ≤ u} by computing the bounding box B
�g,ug

 of the set
{x ∈ ℝ

n ∶ x ∈ X} and replacing B
�,u ← B

�,u ∩ B
�g,ug

 . The bounding box B
�g,ug

 is
obtained by solving the following 2n optimization problems

where ei is the ith column of the identity matrix, i = 1,… , n . In case of linear ine-
quality constraints X = {x ∈ ℝ

n Ax ≤ b} , the problems in (11a) can be solved by

(10c)� = V1Σ
−1
1
U�

1
F

(11a)
�
i
g

= minx∈X e�
i
x

ui
g

= maxx∈X e�
i
x

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 2 Function f(x) as in (6) is sampled 50 times, with each sample corrupted by noise � ∼ N(0, 10−2)
(blue). The RBF thin plate spline surrogate with � = 0.01 (green) is obtained by setting �SVD = 10−2
(Color figure online)

578 A. Bemporad

1 3

linear programming (LP), as shown later in (17). Since now on, we assume that �, u
are replaced by

 where “ min ” and “ max ” in (11b) operate component-wise. Next, we introduce
scaled variables x̄ ∈ ℝ

n whose relation with x is

for all j = 1,… , n and finally formulate the following scaled global optimization
problem

where fs ∶ ℝ
n
→ ℝ , Xs are defined as

In case X is a polyhedron we have

where Ā , b̄ are a rescaled version of A, b defined as

 and diag(u−�
2
) is the diagonal matrix whose diagonal elements are the components

of u−�
2

.
Note that, when approximating fs with f̂s , we use the squared Euclidean distances

where the scaling factors �h = uh−�h

2
 and ph ≡ 2 are constant. Therefore, finding a

surrogate f̂s of fs in [−1, 1] is equivalent to finding a surrogate f̂ of f under scaled
distances. This is a much simpler scaling approach than computing the scaling fac-
tors �h and power p as it is common in stochastic process model approaches such as
Kriging methods [23, 34]. As highlighted in [21], Kriging methods use radial basis
functions �(xi, xj) = e

−
∑n

h=1
�h�xh

i
−xh

j
�ph , a generalization of Gaussian RBF functions in

which the scaling factors and powers are recomputed as the data set X changes.

(11b)
� ← max{�,�g}

u ← min{u, ug}

(12a)xj(x̄) = x̄j
(
uj − �

j

2

)
+

uj + �
j

2

(12b)
min fs(x̄)

s.t. − 1 ≤ x̄j ≤ 1, j = 1,… , n

x̄ ∈ Xs

fs(x̄) = f (x(x̄))

Xs = {x̄ ∈ ℝ
n ∶ x(x̄) ∈ X}

(12c)Xs = {x̄ ∶ Āx̄ ≤ b̄}

(12d)
Ā = A diag

(
u−�

2

)

b̄ = b − A
(

u+�

2

)

d2(x̄, x̄i) =

n∑
h=1

(x̄ − x̄i)
2 =

n∑
h=1

(
𝜃h(xh − xh

i
)
)ph

579

1 3

Global optimization via inverse distance weighting and radial…

Note also that the approach adopted in [5] for scaling automatically the surrogate
function via cross-validation could be also used here, as well as other approaches
specific for RBFs such as Rippa’s method [33]. In our numerical experiments we
have found that adjusting the RBF parameter � via cross-validation, while increasing
the computational effort, does not provide significant benefit. What is in fact most
critical is the tradeoff between exploitation of the surrogate and exploration of the
feasible set, that we discuss in the next section.

4 Acquisition function

As mentioned earlier, minimizing the surrogate function to get a new sample xN+1 =
argmin f̂ (x) subject to � ≤ x ≤ u and x ∈ X , evaluating f (xN+1) , and iterating over
N may easily miss the global minimum of f. This is particularly evident when f̂ is
the IDW surrogate (5), that by Property P2 of Lemma 1 has a global minimum at
one of the existing samples xi . Besides exploiting the surrogate function f̂ , when
looking for a new candidate optimizer xN+1 it is therefore necessary to add to f̂ a
term for exploring areas of the feasible space that have not yet been probed.

In Bayesian optimization, such an exploration term is provided by the covariance
associated with the Gaussian process. A function measuring “bumpiness” of a sur-
rogate RBF function was used in [15]. Here instead we propose two functions that
provide exploration capabilities, that can be used in alternative to each other or in a
combined way. First, as suggested in [24] for IDW functions, we consider the confi-
dence interval function s ∶ ℝ

n
→ ℝ for f̂ defined by

We will refer to function s as the IDW variance function associated with (X, F).
Clearly, when f̂ (xi) = f (xi) then s(xi) = 0 for all i = 1,… ,N (no uncertainty at
points xi where f is evaluated exactly). See Fig. 3 for a noise-free example and Fig. 4
for the case of noisy measurements of f.

Second, we introduce the new IDW distance function z ∶ ℝ
n
→ ℝ defined by

where wi(x) is given by either (3a) or (3b). The rationale behind (14) is that z(x) is
zero at sampled points and grows in between. The arctangent function in (14) avoids
that z(x) grows excessively when x is located far away from all sampled points. Fig-
ure 5 shows a scalar example of functions v1 and z.

Given parameters �, � ≥ 0 and N samples (X, F), we define the following acquisi-
tion function a ∶ ℝ

n
→ ℝ

(13)s(x) =

√√√√ N∑
i=1

vi(x)(fi − f̂ (x))2

(14)z(x) =

⎧⎪⎨⎪⎩

0 if x ∈ {x1,… , xN}

2

�
tan−1

�
1∑N

i=1
wi(x)

�
otherwise

580 A. Bemporad

1 3

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 3 Plot of f̂ (x) ± s(x) and z(x) for the scalar example as in Fig. 1, with wi(x) as in (3a) and f as in (6)

0.5 1 1.5 2 2.5

0.5

1

1.5

Fig. 4 Zoomed plot of f̂ (x) ± s(x) for the scalar example as in Fig. 3 when 50 samples of f(x) are meas-
ured with noise � ∼ N(0, 10−2) and �SVD = 10−2

-2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

-2 -1 0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5

Fig. 5 A scalar example of functions v1(x) and z(x) for x1 = −1 , x2 = 2 , x3 = 3

581

1 3

Global optimization via inverse distance weighting and radial…

where ΔF = max{maxi{fi} −min i{fi}, �ΔF} is the range of the observed samples F
and the threshold 𝜖ΔF > 0 is introduced to prevent the case in which f is not a con-
stant function but, by chance, all sampled values fi are equal. Scaling z by ΔF eases
the selection of the hyperparameter � , as the amplitude of ΔFz is comparable to that
of f̂ .

As we will detail next, given N samples (X, F) a global minimum of the acqui-
sition function (15) is used to define the (N + 1) th sample xN+1 by solving the
global optimization problem

The rationale behind choosing (15) for acquisition is the following. The term
f̂ directs the search towards a new sample xN+1 where the objective function f is
expected to be optimal, assuming that f and its surrogate f̂ have a similar shape, and
therefore allows a direct exploitation of the samples F already collected. The other
two terms account instead for the exploration of the feasible set with the hope of
finding better values of f, with s promoting areas in which f̂ is more uncertain and z
areas that have not been explored yet. Both s and z provide exploration capabilities,
but with an important difference: function z is totally independent on the samples F
already collected and promotes a more uniform exploration, s instead depends on
F and the surrogate f̂ . The coefficients � , � determine the exploitation/exploration
tradeoff one desires to adopt.

For the example of scalar function f in (6) sampled at five random points, the
acquisition function a obtained by setting � = 1 , � =

1

2
 , using a thin plate spline

RBF with �SVD = 10−6 , and wi(x) as in (3a), and the corresponding minimum are
depicted in Fig. 6.

The following result, whose easy proof is reported in “Appendix A”, highlights
a nice property of the acquisition function a.

(15)a(x) = f̂ (x) − 𝛼s(x) − 𝛿ΔFz(x)

(16)xN+1 = arg min
�≤x≤u, x∈X

a(x)

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 6 Plot of f̂ (x) and acquisition function a(x) with � = 1 , � =
1

2
 , thin plate spline RBF with

�SVD = 10−6 , for the scalar example as in Fig. 1, with wi(x) as in (3a) and f as in (6)

582 A. Bemporad

1 3

Lemma 2 Function a is differentiable everywhere on ℝn.

Problem (16) is a global optimization problem whose objective function and
constraints are very easy to evaluate. It can be solved very efficiently using various
global optimization techniques, either derivative-free [32] or, if X = {x ∶ g(x) ≤ 0}
and g is also differentiable, derivative-based. In case some components of vector x
are restricted to be integer, (16) can be solved by mixed-integer programming.

5 Global optimization algorithm

Algorithm 1, that we will refer to as GLIS (GLobal minimum using Inverse distance
weighting and Surrogate radial basis functions), summarizes the proposed approach
to solve the global optimization problem (1) using surrogate functions (either IDW
or RBF) and the IDW acquisition function (15).

Algorithm 1 GLIS – Global optimization algorithm based on IDW-RBF surro-
gates
Input: Upper and lower bounds (�, u), constraint set X ; number Ninit of initial samples,

number Nmax ≥ Ninit of maximum number of function evaluations; α, δ ≥ 0, εSVD > 0,
ε∆F > 0.

1. Tighten (�, u) as in (11);
2. Scale problem as in (12);
3. Set N ← Ninit;
4. Generate N random initial samples X = [x1 . . . xN]′ using Latin hypercube sampling [28];
5. Compute f̂ as in (7), (10) (RBF function) or as in (5) (IDW function);
6. While N < Nmax do

6.1. Compute acquisition function a as in (15);
6.2. Solve global optimization problem (16) and get xN+1;
6.3. N ← N + 1;

7. End.

Output: Approximation x∗ = xNmax of the global optimizer.

As common in global optimization based on surrogate functions, in Step 4 Latin
Hypercube Sampling (LHS) [28] is used to generate the initial set X of samples in
the given range �, u . Note that the generated initial points may not satisfy the ine-
quality constraints x ∈ X . We distinguish between two cases:

(i) the objective function f can be evaluated outside the feasible set F ;
(ii) f cannot be evaluated outside F .

 In the first case, initial samples of f falling outside F are still useful to define the surro-
gate function and can be therefore kept. In the second case, since f cannot be evaluated
at initial samples outside F , a possible approach is to generate more than Ninit sam-
ples and discard the infeasible ones before evaluating f. For example, the author of [6]
suggests the simple method reported in Algorithm 2. This requires the feasible set F

583

1 3

Global optimization via inverse distance weighting and radial…

to be full-dimensional. In case of linear inequality constraints X = {x ∶ Ax ≤ b} , full-
dimensionality of the feasible set F can be easily checked by computing the Chebychev
radius rF of F via the LP [8]

where in (17) the subscript i denotes the ith row (component) of a matrix (vector).
The polyhedron F is full dimensional if and only if rF > 0 . Clearly, the smaller the
ratio between the volume of F and the volume of the bounding box B

�g,ug
 , the larger

on average will be the number of samples generated by Algorithm 2.
Note that, in alternative to LHS, the IDW function (14) could be also used to gener-

ate Ninit feasible points by solving

for N = 1,… ,Ninit − 1 , for any x1 ∈ F .

Algorithm 2 Latin hypercube sampling with constraints
Input: Upper and lower bounds (�, u) for x and inequality constraint function g : Rn → Rq ,

defining a full dimensional set F = {x ∈ Rn : � ≤ x ≤ u, g(x) ≤ 0}; number Ninit of initial
samples.

1. N ← Ninit; Nk ← 0;
2. While Nk < Ninit do

2.1. Generate N samples using Latin hypercube sampling;
2.2. Nk ← number of samples satisfying x ∈ X ;
2.3. If Nk < Ninit then increase N by setting

N ←
{
�min{20, 1.1Ninit

Nk
}N� if Nk > 0

20N otherwise

3. End.

Output: Ninit initial samples X = [x1 . . . xNinit]
′ satisfying � ≤ xi ≤ u, x ∈ X .

The examples reported in this paper use the Particle Swarm Optimization (PSO)
algorithm [41] to solve problem (16) at Step 6.2, although several other global opti-
mization methods such as DIRECT [22] or others [18, 32] could be used in alterna-
tive. Inequality constraints X = {x ∶ g(x) ≤ 0} can be handled as penalty functions,
for example by replacing (16) with

where in (18) 𝜌 ≫ 1 . Note that due to the heuristic involved in constructing function
a, it is not crucial to find global solutions of very high optimality accuracy when
solving problem (16). Regarding feasibility, in case xN+1 violates the constraints and

(17)
rF = maxr,x r

s.t. Aix ≤ bi − ‖Ai‖2r, i = 1,… , q

�i + r ≤ xi ≤ ui − r, i = 1,… , n

xN+1 = max
x∈F

z(x)

(18)xN+1 = arg min
�≤x≤u

{
a(x) + �ΔF

q∑
i=1

max{gi(x), 0}
2

}

584 A. Bemporad

1 3

f cannot be evaluated outside X , a remedy would be to increase the penalty param-
eter � and/or to slightly tighten the constraints by penalizing max{gi(x) + �g, 0}
in (18) instead of max{gi(x), 0} , for some small positive scalar �g.

The exploration parameter � promotes visiting points in [�, u] where the func-
tion surrogate has largest variance, � promotes instead pure exploration inde-
pendently on the surrogate function approximation, as it is only based on the
sampled points x1,… , xN and their mutual distance. For example, if � = 0 and
𝛿 ≫ 1 Algorithm 1 will try to explore the entire feasible region, with consequent
slower detection of points x with low cost f(x). On the other hand, setting � = 0
will make GLIS proceed only based on the function surrogate and its variance,
that may lead to miss regions in [�, u] where a global optimizer is located. For
� = � = 0 , GLIS will proceed based on pure minimization of f̂ that, as observed
earlier, can easily lead to converge away from a global optimizer.

Figure 7 shows the first six iterations of the GLIS algorithm when applied to
minimize the function f given in (6) in [−3, 3] with � = 1 , � = 0.5.

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

Fig. 7 GLIS steps when applied to minimize the function f given in (6) using the same settings as in
Fig. 6 and �SVD = 10−6 . The plots show function f (blue), its samples fi (blue circles), the thin plate
spline interpolation f̂ with � = 0.01 (green), the acquisition function a (yellow), and the minimum of the
acquisition function reached at xN+1 (purple diamond) (Color figure online)

585

1 3

Global optimization via inverse distance weighting and radial…

5.1 Computational complexity

The complexity of Algorithm 1, as a function of the number Nmax of iterations and
dimension n of the optimization space and not counting the complexity of evaluat-
ing f, depends on Steps 6.1 and 6.2. The latter depends on the global optimizer used
to solve Problem (16), which typically depends heavily on n. Step 6.1 involves com-
puting Nmax(Nmax − 1) RBF values �(�d(xi, xj)) , i, j = 1,… ,Nmax , j ≠ i , compute the
SVD decomposition of the N × N symmetric matrix M in (10a), whose complexity is
O(N3) , and solve the linear system in (10a) (O(N2)) at each step N = Ninit,… ,Nmax.

6 Numerical tests

In this section we report different numerical tests performed to assess the perfor-
mance of the proposed algorithm (GLIS) and how it compares to Bayesian opti-
mization (BO). For the latter, we have used the off-the-shelf algorithm bayesopt
implemented in the Statistics and Machine Learning Toolbox for MATLAB [39],
based on the lower confidence bound as acquisition function. All tests were run
on an Intel i7-8550 CPU @1.8GHz machine. Algorithm 1 was run in MATLAB
R2019b in interpreted code. The PSO solver [42] was used to solve problem (18).
We focus our comparison on BO only as it one of the most efficient methods to deal
with the optimization of expensive black-box functions.

6.1 GLIS optimizing its own parameters

We first use GLIS to optimize its own hyperparameters � , � , � when solving the
minimization problem with f(x) as in (6) and x ∈ [−3, 3] . In what follows, we use
the subscript ()H to denote the parameters/function used in the execution of the outer
instance of Algorithm 1 that is optimizing � , � , � . To this end, we solve the global
optimization problem (1) with x = [� � �]�,

where f is the scalar function in (6) that we want to minimize in [−3, 3] , and we
set �H = [0 0 0.1]� , uH = [3 3 3]� , which is a reasonably large-enough range accord-
ing to our numerical experience. The min in (19) provides the best objective value
found up to iteration Nmax∕2 + h , the term (h + 1) aims at penalizing high values of
the best objective the more the later they occur during the iterations, Nt = 20 is the
number of times Algorithm 1 is executed to minimize fH for the same triplet (�, �, �) ,
Nmax = 20 is the number of times f is evaluated per execution, xi,N is the sample gen-
erated by Algorithm 1 during the ith run at step N, i = 1,… ,Nt , N = 1,… ,Nmax .
Clearly (19) penalizes failure to convergence close to the global optimum f ∗ in Nmax
iterations without caring of how the algorithm performs during the first Nmax∕2 − 1
iterations.

(19)fH(x) =

Nt∑
i=1

Nmax∕2∑
h=0

(h + 1)min{f (xi,1),… , f (xi,Nmax∕2+h
)}

586 A. Bemporad

1 3

In optimizing (19), the outer instance of Algorithm 1 is run with �H = 2 ,
�H = 0.5 , �H = 0.5 , Ninit,H = 8 , Nmax,H = 100 [which means that fH in (19) is evalu-
ated 100 times, each evaluation requiring executing Algorithm 1 Nt = 20 times to
minimize function f], and PSO as the global optimizer of the acquisition function.
The RBF inverse quadratic function is used in both the inner and outer instances of
Algorithm 1. The resulting optimal selection is

Figure 8 compares the behavior of GLIS (Algorithm 1) when minimizing f(x) as
in (6) in [−3, 3] with tentative parameters � = 1 , � = 1 , � = 0.5 and with the optimal
values in (20). The figure also shows the results obtained by using BO on the same
problem.

Clearly the results of the hyper-optimization depend on the function f which is
minimized in the inner loop. For a more comprehensive and general optimization
of GLIS hyperparameters, one could alternatively consider in fH the average perfor-
mance with respect to a collection of problems instead of just one problem.

6.2 Benchmark global optimization problems

We test the proposed global optimization algorithm on standard benchmark prob-
lems, summarized in Table 1. For each function the table shows the corresponding
number of variables, upper and lower bounds, and the name of the example in [19]
reporting the definition of the function. For lack of space, we will only consider
the GLIS algorithm implemented using inverse quadratic RBFs for the surrogate,
leaving IDW only for exploration, because compared to other RBFs it was found a
robust choice experimentally.

(20)� = 1.5078, � = 1.4246, � = 1.0775

5 10 15 20
0

0.5

1

1.5

2

2.5
BO
GLIS

5 10 15 20
0

0.5

1

1.5

2

2.5
BO
GLIS

Fig. 8 Minimization of f(x) as in (6) in [−3, 3] : tentative hyperparameters (left) and optimal hyperparam-
eters (right). The average performance obtained over Ntest = 100 runs as a function of evaluations of fH ,
along with the band defined by the best- and worst-case instances

587

1 3

Global optimization via inverse distance weighting and radial…

As a reference target for assessing the quality of the optimization results, for each
benchmark problem the optimization algorithm DIRECT [22] was used to compute
the global optimum of the function through the NLopt interface [20], except for the
ackley and stepfunction2 benchmarks in which PSO is used instead due to the
slow convergence of DIRECT on those problems. The corresponding global minima
were validated, when possible, against results reported in [19] or, in case of one- or
two-dimensional problems, by inspection.

Algorithm 1 is run by using the RBF inverse quadratic function with hyperpa-
rameters obtained by dividing the values in (20) by the number n of variables, with
the rationale that exploration is more difficult in higher dimensions and it is there-
fore better to rely more on the surrogate function during acquisition. The threshold
�SVD = 10−6 is adopted to compute the RBF coefficients in (10c). The number of
initial samples is Ninit = 2n.

For each benchmark, the problem is solved Ntest = 100 times to collect statisti-
cally significant enough results. The last two columns of Table 1 report the aver-
age CPU time spent for solving the Ntest = 100 instances of each benchmark using
BO and GLIS. As the benchmark functions are very easy to compute, the CPU
time spending on evaluating the Nmax function values F is negligible, so the time
values reported in the table are practically those due to the execution of the algo-
rithms. Algorithm 1 (GLIS) is between 4.6 and 9.4 times faster than Bayesian
optimization (about 7 times faster on average). The execution time of GLIS in
Python 3.7 on the same machine, using the PSO package pyswarm (https ://pytho

Table 1 Benchmark problems considered in the comparison

Last two columns: average CPU time spent on each benchmark for solving the Ntest = 100 instances ana-
lyzed in Fig. 9 by Bayesian optimization (BO) and GLIS (Algorithm 1)

Benchmark Function name
problem n � u [19] BO[s] GLIS [s]

ackley 2
[
−5

−5

] [
5

5

]
Ackley 1, D = 2 29.39 3.13

adjiman 2
[
−1

−1

] [
2

1

]
Adjiman 3.29 0.68

branin 2
[
−5

0

] [
10

15

]
Branin RCOS 9.66 1.17

camelsixhumps 2
[
−5

−5

] [
5

5

]
Camel - Six Humps 4.82 0.62

hartman3 3 [0 0 0]� [1 1 1]� Hartman 3 26.27 3.35
hartman6 6 xi ≥ 0 xi ≤ 1 Hartman 6 54.37 8.80
himmelblau 2

[
−6

−6

] [
6

6

]
Himmelblau 7.40 0.90

rosenbrock8 8 xi ≥ −30 xi ≤ 30 Rosenbrock 1, D = 8 63.09 13.73
stepfunction2 4 xi ≥ −100 xi ≤ 100 Step 2, D = 5 11.72 1.81
styblinski-tang5 5 xi ≥ −5 xi ≤ 5 Styblinski-Tang, n = 5 37.02 6.10

https://pythonhosted.org/pyswarm

588 A. Bemporad

1 3

nhost ed.org/pyswa rm) to optimize the acquisition function, is similar to that of
the BO package GPyOpt [38].

The results of the tests are reported in Fig. 9, where in each plot we show the
average function value obtained over Ntest = 100 runs as a function of the num-
ber of function evaluations, and the band defined by the best-case and worst-case
instances, and how the global optimum is approached.

10 20 30 40 50 60
0

5

10
BO
GLIS

5 10 15 20 25
0

2

4 104

BO
GLIS

10 20 30 40 50 60
-200

0

200 BO
GLIS

5 10 15
-2

-1

0

1
BO
GLIS

5 10 15 20 25
0

100

200 BO
GLIS

5 10 15
0

2000

4000

6000
BO
GLIS

10 20 30 40 50
-4

-2

0
BO
GLIS

20 40 60 80
-4

-2

0
BO
GLIS

5 10 15 20
0

500

1000

1500
BO
GLIS

20 40 60 80
0

1

2

3 108

BO
GLIS

Fig. 9 Comparison between Algorithm 1 (GLIS) and Bayesian optimization (BO) on benchmark prob-
lems. Each plot reports the best function value obtained as a function of the number of function evalu-
ations: average over Ntest = 100 runs (thick lines), band defined by the best- and worst-case instances
(shadowed areas), and global optimum to be attained (black dashed line)

https://pythonhosted.org/pyswarm

589

1 3

Global optimization via inverse distance weighting and radial…

In order to test the algorithm in the presence of constraints, we consider the cam-
elsixhumps problem and solve it under the following constraints

Algorithm 1 is run with hyperparameters set by dividing by n = 2 the values
obtained in (20) and with �SVD = 10−6 , Ninit = 2n for Nmax = 20 iterations, with pen-
alty � = 1000 in (18). The results are plotted in Fig. 10. The unconstrained two

global minima of the function are located at
[
−0.0898

0.7126

]
 ,
[
0.0898

−0.7126

]
.

6.3 ADMM hyperparameter tuning for QP

The Alternating Direction Method of Multipliers (ADMM) [7] is a popular method for
solving optimization problems such as the following convex Quadratic Program (QP)

where z ∈ ℝ
n is the optimization vector, � ∈ ℝ

p is a vector of parameters affect-
ing the problem, and A ∈ ℝ

q×n , b ∈ ℝ
q , S ∈ ℝ

q×p , and we assume Q = Q� ≻ 0 .

−2 ≤ x
1
≤ 2, −1 ≤ x

2
≤ 1

⎡⎢⎢⎢⎢⎣

1.6295 1

− 1 4.4553

− 4.3023 − 1

− 5.6905 − 12.1374

17.6198 1

⎤⎥⎥⎥⎥⎦
x ≤

⎡⎢⎢⎢⎢⎣

3.0786

2.7417

− 1.4909

1

32.5198

⎤⎥⎥⎥⎥⎦
, x2

1
+ (x

2
+ 0.1)2 ≤ 0.5

(21)�(�) = minz
1

2
z�Qz + (c + F�)�z

s.t. Az ≤ b + S�

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 10 Constrained camelsixhumps problem: constrained minimum (yellow dot) and unconstrained
global minima (red diamonds) (Color figure online)

590 A. Bemporad

1 3

Problems of the form (21) arise for example in model predictive control applications
[2, 3], where z represents a sequence of future control inputs to optimize and � col-
lects signals that change continuously at runtime depending on measurements and
set-point values. ADMM can be used effectively to solve QP problems (21), see for
example the solver described in [1]. A very simple ADMM formulation for QP is
summarized in Algorithm 3.

Algorithm 3 ADMM for QP
Input: Matrices Q, c, F,A, b, S, parameter θ, ADMM hyperparameters ρ̄, ᾱ, number N of

ADMM iterations.

1. MA ← (1
ρ̄
Q+A′A)−1A′; mθ ← (1

ρ̄
Q+A′A)−1(c+ Fθ); bθ ← b+ Sθ;

2. s ← 0, u ← 0;
3. for i = 1, . . . , N do:

3.1. z ← MA(s− u)−mθ;
3.2. w ← ᾱAz + (1− ᾱ)s;
3.3. s ← min(w + u, bθ);
3.4. u ← u+ w − s;

4. End.

Output: Optimal solution z∗ = z.

We consider a randomly generated QP test problem with n = 5 , q = 10 , p = 3 that
is feasible for all � ∈ [−1, 1]3 , whose matrices are reported in “Appendix B” for refer-
ence. We set N = 100 in Algorithm 3, and generate M = 2000 samples �j uniformly
distributed in [−1, 1]3 . The aim is to find the hyperparameters x = [�̄� �̄�]� that provide
the best QP solution quality after N ADMM iterations. Quality is expressed by the fol-
lowing objective function

where �∗
j
(x) , z∗

j
(x) are the optimal value and optimizer found at run #j , respectively,

�∗(x) is the solution of the QP problem obtained by running the very fast and accu-
rate ODYS QP solver [10]. The first term in (22) measures relative optimality, the
second term relative violation of the constraints, and we set 𝛽 = 1 to equally weight
relative optimality versus relative accuracy. Function f in (22) is minimized for

� =

[
0.01

0.01

]
 and u =

[
3

3

]
 using GLIS with the same parameters used in Sect. 6.2 and,

for comparison, by Bayesian optimization. Due to the fact that ADMM provides
suboptimal solutions, when acquiring the samples fi the argument of the logarithm
in (22) is always found positive in our tests. The test is repeated Ntest = 100 times
and the results are depicted in Fig. 11. It is apparent that GLIS attains slightly better
function values for the same number of functions evaluations than BO, both on

(22)

f (x) = log

(
1

M

M∑
j=1

max

{
𝜙∗
j
(x) − 𝜙∗(x)

1 + |𝜙∗(x)| , 0

}

+ 𝛽max

{
max

i

{
Aiz

∗
j
(x) − bi − Six

1 + |bi + Six|

}
, 0

})

591

1 3

Global optimization via inverse distance weighting and radial…

average and in the worst-case. The resulting hyperparameter tuning that minimized
the selected ADMM performance index (22) is �̄� = 0.1566 , �̄� = 1.9498.

7 Conclusions

This paper has proposed an approach based on surrogate functions to address
global optimization problems whose objective function is expensive to evaluate,
possibly under constraints that are inexpensive to evaluate. Contrarily to Bayesian
optimization methods, the approach is driven by deterministic arguments based on
radial basis functions (or inverse distance weighting) to create the surrogate, and
on inverse distance weighting to characterize the uncertainty between the surrogate
and the black-box function to optimize, as well as to promote the exploration of the
feasible space. The computational burden associated with the algorithm is lighter
then the one of Bayesian optimization while performance is comparable. Clearly, the
main limitation of the algorithm is related to the dimension of the optimization vec-
tor it can cope with, as many other black-box global optimization algorithms.

Current research is devoted to extend the approach to include constraints that are
also expensive to evaluate, and to explore if performance can be improved by adapt-
ing the parameters � and � during the search. Future research should address theo-
retical issues of convergence of the approach, by investigating assumptions on the
black-box function f and on the parameters 𝛼, 𝛿, 𝜖SVD, 𝜖ΔF > 0 of the algorithm, so to
allow guaranteeing convergence, for example using the arguments in [15] based on
the results in [40].

Acknowledgements Open access funding provided by Scuola IMT Alti Studi Lucca within the CRUI-
CARE Agreement.

5 10 15 20 25 30
-5

0

5

10

15

20

25 ADMM hyperparameter optimization

BO
GLIS

Fig. 11 Hyperparameter optimization for ADMM. Average performance over Ntest = 100 runs and best/
worst-case instance bands

592 A. Bemporad

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendices

A Proofs

Proof of Lemma 1 Property P1 easily follows from (4). Property P2 also easily fol-
lows from the fact that for all x ∈ ℝ

n the values vi(x) ∈ [0, 1] , ∀i = 1,… ,N , and ∑N

i=1
vi(x) = 1 , so that

Regarding differentiability, we first prove that for all i = 1,… ,N , functions vi are dif-
ferentiable everywhere on ℝn , and that in particular ∇vi(xj) = 0 for all j = 1,… ,N .
Clearly, functions vi are differentiable for all x ∉ {x1,… , xN} , ∀i = 1,… ,N . Let eh
be the hth column of the identity matrix of order n. Consider first the case in which
wi(x) are given by (3b). The partial derivatives of vi at xi are

and similarly at xj , j ≠ i are

In case wi(x) are given by (3a) differentiability follows similarly, with e−t2 replaced
by 1. Therefore f̂ is differentiable and

 ◻

min
j
{fj} =

N∑
i=1

vi(x)min
j
{fj} ≤

N∑
i=1

vi(x)fi = f̂ (x) ≤

N∑
i=1

vi(x)max
j
{fj} = max

j
{fj}

�vi(xi)

�xh
= lim

t→0

1

t

�
wi(xi + teh)

∑N

j=1
wj(xi + teh)

− 1

�
= lim

t→0
−

∑
j≠i wj(xi + teh)

t
∑N

j=1
wj(xi + teh)

= lim
t→0

−

∑
j≠i wj(xi)

t
e−‖xi+teh−xi‖2

‖xi+teh−xi‖2
= lim

t→0
−t

∑
j≠i wj(xi)

e−t
2

= 0

�vi(xj)

�xh
= lim

t→0

1

t

�
wi(xj + teh)

∑N

k=1
wk(xj + teh)

− 0

�
= lim

t→0

1

t

wi(xj)

e−t
2

t2
+
∑

k≠j wk(xj)
= 0

∇f̂ (xj) =

N∑
i=1

fi∇vi(xj) = 0

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

593

1 3

Global optimization via inverse distance weighting and radial…

Proof of Lemma 2 As by Lemma 1 functions f̂ and vi are differentiable, ∀i = 1,… ,N ,
it follows immediately that s(x) is differentiable. Regarding differentiability of z,
clearly it is differentiable for all x ∉ {x1,… , xN} , ∀i = 1,… ,N . Let eh be the hth
column of the identity matrix of order n. Consider first the case in which wi(x) are
given by (3b). The partial derivatives of z at xi are

In case wi(x) are given by (3a) differentiability follows similarly, with e−t2 replaced
by 1. Therefore the acquisition function a is differentiable for all �, � ≥ 0 . ◻

B Matrices of parametric QP considered in Sect. 6.3

�z(xi)

�xh
= lim

t→0

1

t

�
2

�
tan−1

�
1∑N

j=1
wj(xi + teh)

�
− 0

�

= lim
t→0

2

�t
tan−1

⎛⎜⎜⎝
1

e−t
2

t2
+
∑

j≠i wj(xi)

⎞⎟⎟⎠
= lim

t→0

2

�t
tan−1

�
t2

1 +
∑

j≠i wj(xi)

�
= 0

Q =

⎡
⎢⎢⎢⎢⎣

6.6067 − 1.6361 2.8198 0.3776 3.1448

− 1.6361 0.9943 − 0.9998 − 0.4786 − 0.5198

2.8198 − 0.9998 4.0749 0.2183 0.2714

0.3776 − 0.4786 0.2183 0.7310 0.1689

3.1448 − 0.5198 0.2714 0.1689 2.1716

⎤
⎥⎥⎥⎥⎦

c =

⎡
⎢⎢⎢⎢⎣

− 11.4795

1.0487

7.2225

25.8549

− 6.6689

⎤
⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0.8637 − 1.0891 − 0.6156 1.4193 − 1.0000

0.0774 0.0326 0.7481 0.2916 − 1.0000

− 1.2141 0.5525 − 0.1924 0.1978 − 1.0000

− 1.1135 1.1006 0.8886 1.5877 − 1.0000

− 0.0068 1.5442 − 0.7648 − 0.8045 − 1.0000

1.5326 0.0859 − 1.4023 0.6966 − 1.0000

− 0.7697 − 1.4916 − 1.4224 0.8351 − 1.0000

0.3714 − 0.7423 0.4882 − 0.2437 − 1.0000

− 0.2256 − 1.0616 − 0.1774 0.2157 − 1.0000

1.1174 2.3505 − 0.1961 − 1.1658 − 1.0000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0838

0.2290

0.9133

0.1524

0.8258

0.5383

0.9961

0.0782

0.4427

0.1067

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F =

⎡
⎢⎢⎢⎢⎣

1.8733 8.4038 − 6.0033

− 0.8249 − 8.8803 4.8997

− 19.3302 1.0009 7.3936

− 4.3897 − 5.4453 17.1189

− 17.9468 3.0352 − 1.9412

⎤⎥⎥⎥⎥⎦
S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.9080 − 0.3538 0.0229

0.8252 − 0.8236 − 0.2620

1.3790 − 1.5771 − 1.7502

− 1.0582 0.5080 − 0.2857

− 0.4686 0.2820 − 0.8314

− 0.2725 0.0335 − 0.9792

1.0984 − 1.3337 − 1.1564

− 0.2779 1.1275 − 0.5336

0.7015 0.3502 − 2.0026

− 2.0518 − 0.2991 0.9642

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

594 A. Bemporad

1 3

References

 1. Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S.: Embedded code genera-
tion using the OSQP solver. In: Proc. 56th IEEE Conf. on Decision and Control, pp. 1906–1911,
Melbourne, Australia, 2017. https ://githu b.com/oxfor dcont rol/osqp

 2. Bemporad, A.: Model-based predictive control design: new trends and tools. In: Proc. 45th IEEE
Conf. on Decision and Control, pp. 6678–6683, San Diego, CA (2006)

 3. Bemporad, A.: A multiparametric quadratic programming algorithm with polyhedral computations
based on nonnegative least squares. IEEE Trans. Autom. Control 60(11), 2892–2903 (2015)

 4. Bemporad, A.: Global optimization via inverse distance weighting. 2019. Available on arXiv at
arxiv:1906.06498. Code available at http://cse.lab.imtlu cca.it/~bempo rad/glis

 5. Bemporad, A., Piga, D.: Active preference learning based on radial basis functions. 2019. Available
on arXiv at arxiv:1909.13049. Code available at http://cse.lab.imtlu cca.it/~bempo rad/idwgo pt

 6. Blok, H.J.: The lhsdesigncon MATLAB function, 2014. https ://githu b.com/rikbl ok/matla
b-lhsde signc on

 7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learn-
ing via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122
(2011)

 8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York, NY,
USA (2004). http://www.stanf ord.edu/~boyd/cvxbo ok.html

 9. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost func-
tions, with application to active user modeling and hierarchical reinforcement learning. arXiv pre-
printarXiv:1012.2599 (2010)

 10. Cimini, G., Bemporad, A., Bernardini, D.: ODYS QP Solver. ODYS S.r.l. (https ://odys.it/qp), Sep-
tember 2017

 11. Costa, A., Nannicini, G.: Rbfopt: an open-source library for black-box optimization with costly
function evaluations. Math. Program. Comput. 10(4), 597–629 (2018)

 12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, pp. 39–43. Nagoya (1995)

 13. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Auto-sklearn:
efficient and robust automated machine learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.)
Automated Machine Learning: Methods, Systems, Challenges, pp. 113–134. Springer International
Publishing (2019)

 14. Forgione, M., Piga, D., Bemporad, A.: Efficient calibration of embedded MPC. In: Proc. 21th IFAC
World Congress. https ://arxiv .org/abs/1911.13021 (2020)

 15. Gutmann, H.-M.: A radial basis function method for global optimization. J. Glob. Optim. 19, 201–
2227 (2001)

 16. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol.
Comput. 9(2), 159–195 (2001)

 17. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res.
76(8), 1905–1915 (1971)

 18. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim.
14(4), 331–355 (1999)

 19. Jamil, M., Yang, X.-S.: A literature survey of benchmark functions for global optimisation prob-
lems. Int. J. Math. Model. Numer. Optim. 4(2):150–194 (2013). arxiv :1308.4008.pdf

 20. Johnson, S.G.: The NLopt nonlinear-optimization package. http://githu b.com/steve ngj/nlopt
 21. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob.

Optim. 21(4), 345–383 (2001)
 22. Jones, D.R.: DIRECT global optimization algorithm. Encyclopedia of Optimization, pages 725–735,

(2009)
 23. Jones, D.R., Schonlau, M., Matthias, W.J.: Efficient global optimization of expensive black-box

functions. J. Glob. Optim. 13(4), 455–492 (1998)
 24. Joseph, V.R., Kang, L.: Regression-based inverse distance weighting with applications to computer

experiments. Technometrics 53(3), 255–265 (2011)
 25. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the

presence of noise. J. Basic Eng. 86(1), 97–106 (1964)
 26. Matheron, G.: Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

https://github.com/oxfordcontrol/osqp
http://cse.lab.imtlucca.it/%7ebemporad/glis
http://cse.lab.imtlucca.it/%7ebemporad/idwgopt
https://github.com/rikblok/matlab-lhsdesigncon
https://github.com/rikblok/matlab-lhsdesigncon
http://www.stanford.edu/%7eboyd/cvxbook.html
https://odys.it/qp
https://arxiv.org/abs/1911.13021
http://arxiv.org/abs/1308.4008.pdf
http://github.com/stevengj/nlopt

595

1 3

Global optimization via inverse distance weighting and radial…

 27. McDonald, D.B., Grantham, W.J., Tabor, W.L., Murphy, M.J.: Global and local optimization using
radial basis function response surface models. Appl. Math. Model. 31(10), 2095–2110 (2007)

 28. McKay, M.D., Beckman, R.J., Conover, W.J.: Comparison of three methods for selecting values
of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245
(1979)

 29. Piga, D., Forgione, M., Formentin, S., Bemporad, A.: Performance-oriented model learning for
data-driven MPC design. IEEE Control Systems Letters, 2019. Also in Proc. 58th IEEE Conf. Deci-
sion and Control, Nice (France) (2019). arxiv :1904.10839

 30. Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In
Large-scale nonlinear optimization, pp. 255–297. Springer (2006)

 31. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions
using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)

 32. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of
software implementations. J. Glob. Optim. 56(3), 1247–1293 (2013)

 33. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function inter-
polation. Adv. Comput. Math. 11(2–3), 193–210 (1999)

 34. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments.
Stat. Sci. 409–423 (1989)

 35. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the
loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2015)

 36. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proc. ACM
National Conference, pp. 517–524. New York (1968)

 37. Snoek, J., Jasper, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms.
In: Advances in Neural Information Processing Systems, pp. 2951–2959 (2012)

 38. The GPyOpt authors. GPyOpt: a Bayesian optimization framework in Python. http://githu b.com/
Sheffi eldM L/GPyOp t (2016)

 39. The Mathworks, Inc. Statistics and Machine Learning Toolbox User’s Guide (2019). https ://www.
mathw orks.com/help/relea ses/R2019 a/pdf_doc/stats /stats .pdf

 40. Törn, A., Žilinskas, A.: Global Optimization, vol. 350. Springer, Berlin (1989)
 41. Vaz, A.I.F., Vicente, L.N.: A particle swarm pattern search method for bound constrained global

optimization. J. Glob. Optim. 39(2), 197–219 (2007)
 42. Vaz, A.I.F., Vicente, L.N.: PSwarm: a hybrid solver for linearly constrained global derivative-free

optimization. Optim. Methods Softw. 24, 669–685 (2009). http://www.norg.uminh o.pt/aivaz /pswar
m/

 43. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1904.10839
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf
https://www.mathworks.com/help/releases/R2019a/pdf_doc/stats/stats.pdf
http://www.norg.uminho.pt/aivaz/pswarm/
http://www.norg.uminho.pt/aivaz/pswarm/

	Global optimization via inverse distance weighting and radial basis functions
	Abstract
	1 Introduction
	2 Problem formulation
	3 Surrogate function
	3.1 Inverse distance weighting functions
	3.2 Radial basis functions
	3.3 Scaling

	4 Acquisition function
	5 Global optimization algorithm
	5.1 Computational complexity

	6 Numerical tests
	6.1 GLIS optimizing its own parameters
	6.2 Benchmark global optimization problems
	6.3 ADMM hyperparameter tuning for QP

	7 Conclusions
	Acknowledgements
	References

