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A B S T R A C T

This paper proposes a real-time motion planning scheme for safe human–robot workspace sharing relying on
scenario-based nonlinear model predictive control (NMPC), a well-known approach for solving stochastic NMPC
problems. A scenario tree is generated via higher-order Markov chains to provide probabilistic predictions
of the human motion. Scenario-based NMPC is then used to generate point-to-point motions of the robot
manipulator based on the above-mentioned human motion predictions, accounting for safety constraints via
speed and separation monitoring (SSM). This means that the robot speed is always modulated to be able
to stop before a possible collision with the human occurs. After proving theoretical properties on recursive
feasibility and closed-loop stability of the proposed motion planning strategy, this is tested experimentally on
a Kinova Gen3 robot interacting with a human operator, showing superior performance with respect to an
NMPC scheme not relying on human predictions and to a fixed-path SSM strategy.
1. Introduction and related work

Research on physical human–robot interaction (pHRI) has been
driven by the shift from standard manufacturing applications, with
robots and human operators separated by fences, to collaborative appli-
cations, in which robots and humans share their workspace (Ajoudani
et al., 2018; Li et al., 2023). Safety is a key requirement to enable
seamless interaction and collaboration between human operators and
robot manipulators (Haddadin & Croft, 2016). In industrial practice,
human safety in the presence of collaborative robots is ensured via
ergonomic design and by generating a motion that satisfies certain
criteria, defined in the ISO 10218 and ISO/TS 15066 standards. A
first possibility is to stop the robot whenever a human operator is
detected in its workspace; this mode of operation, known as safety-rated
monitored stop (SRMS), is suitable in case of occasional human presence.
A second possibility is to vary the allowable robot speed based on
the measured distance with the human, to ensure that the robot will
be able to stop before a collision occurs. This is known as speed and
separation monitoring (SSM). A third mode of operation is power and
force limiting (PFL), in which the robot speed is limited – regardless
of the distance with the human – so as to guarantee that collisions
would not be harmful. PFL can only be applied to collaborative robots,
with suitable ergonomic design, and is often used in case of constant
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human presence in the robot workspace. These methodologies are
typically implemented for a fixed robot path either stopping the robot
when needed (SRMS), applying velocity scaling (SSM) or limiting the
maximum robot speed at an acceptably low threshold to allow for
collisions (PFL). For more details on the topic, the interested reader is
referred to the survey by Chemweno, Pintelon, and Decre (2020) and
the references therein.

To improve performance while maintaining safety, one can plan
the robot trajectory online at the same time satisfying one of the
above-mentioned safety criteria (see, e.g., Flowers and Wiens (2023)
and Tonola, Faroni, Pedrocchi, and Beschi (2021)). A possible solution
is to use model predictive control (MPC) with SSM constraints, to
improve performance compared to fixed-path SSM approaches such as
those of Kim, Kirschner, Yamada, and Okamoto (2020), Marvel (2013),
Marvel and Norcross (2017) and Rosenstrauch, Pannen, and Krüger
(2018). Using MPC (Grüne & Pannek, 2017), the robot motion would
be re-planned online at each sampling interval by numerically solving
a finite-horizon optimal control problem (FHOCP). To the best of the
authors’ knowledge, the first paper published on SSM-based MPC was
that of Zheng, Wieber, and Aycard (2020), in which linear MPC was
used to track a desired robot trajectory: the obstacle represented by
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the human operator was accounted for by using separating planes (to
keep the MPC problem linear), and the SSM condition was imposed by
ensuring that the planned robot speed was equal to zero at the end of
the prediction horizon. This approach was validated on a 7-DoF robot in
simulation via Robot Operating System (ROS), accounting for the pres-
ence of a single human arm modeled as a cylinder. A different approach
was defined by Oleinikov, Kusdavletov, Shintemirov, and Rubagotti
(2021), proposing a nonlinear MPC (NMPC) strategy to enforce SSM
constraints as defined in Marvel (2013). The space occupancy of both
human and robot was accounted for using spheres, and the whole
robot trajectory until the goal configuration was planned in the NMPC
problem. As also highlighted by Zheng et al. (2020), since long-term
predictions of the human motion are difficult to obtain, the robot trajec-
tory in the work by Oleinikov et al. (2021) was continuously re-planned
based on the currently measured human position. This approach was
validated experimentally on a real Kinova Gen3 collaborative robot,
simulating the presence of the human operator via a set of prerecorded
human motions. The approach of Oleinikov et al. (2021) was used
by Tusseyeva, Oleinikov, Sandygulova, and Rubagotti (2022) to assess
perceived safety, while a neural-network-based approximation of the
NMPC strategy of Oleinikov et al. (2021) was defined by Nurbayeva,
Shintemirov, and Rubagotti (2023). Another approach was proposed
by Eckhoff, Kirschner, Kern, Abdolshah, and Haddadin (2022), in which
a human-aware Cartesian linear MPC motion planner was coupled with
a safe motion unit that only accounted for the distance between robot
end-effector and human wrist (so safety was not imposed with reference
to the whole human body); this unit enforced in practice a simplified
SSM condition, though SSM was never explicitly mentioned in the
paper. This approach was validated experimentally on a Franka Emika
Panda manipulator with an actual human operator. In the cited articles
by Eckhoff et al. (2022), Nurbayeva et al. (2023), Oleinikov et al.
(2021), Tusseyeva et al. (2022) and Zheng et al. (2020), an explicit
prediction method of the human motion was never used, typically
assuming a constant human pose along the prediction horizon.

To obtain human motion predictions, different methods were de-
fined, such as artificial neural networks (Ravichandar & Dani, 2017),
Gaussian mixture models (Luo & Berenson, 2015), Markov chains, and
hidden Markov models (HMMs). Papers belonging to the last two cate-
gories are briefly described in the following, as they are related to the
approach presented in this paper. The capability of HMMs to represent
stochastic transitions between different motion patterns makes them
a reasonable candidate for predicting and capturing complex factors
such as human intentions (Ding et al., 2011). HMMs were used by Ding
et al. (2011) to compute the region of the workspace possibly occupied
by a human in future time instants. In the work of Liu and Wang
(2017), assembly tasks were modeled as a sequence of human motions
that were predicted based on a motion transition probability matrix
generated via HMM. A trajectory clustering algorithm was introduced
by Sung, Feldman, and Rus (2012) for the extraction of motion patterns
that were then used for HMM training to predict the motion of a target
for an interception task. Growing HMMs were used for human intention
inference by Vasquez, Fraichard, and Laugier (2009) and Elfring, Van
De Molengraft, and Steinbuch (2014). In the paper of Rohrmuller,
Althoff, Wollherr, and Buss (2008), Markov chains were used to model
and predict the dynamics of moving humans for a ‘‘soft’’ risk mapping
in populated environments. Finally, Zanchettin, Casalino, Piroddi, and
Rocco (2019) proposed to model human activities during manufac-
turing and assembly tasks as higher-order Markov chains (HOMCs),
developing a prediction algorithm to estimate the time before the
occurrence of operations requiring human–robot collaboration.

Contribution
The first contribution of this paper is the definition of an HOMC-

based human prediction method, explicitly tailored towards its ap-
plication in conjunction with NMPC, which generates a number of
2

representative poses of the human body associated with the discrete d
states of a Markov chain. In most collaborative assembly tasks, the
positions most often assumed by a human operator are related to
the locations of parts or tools (Zanchettin et al., 2019); this justi-
fies the use of discrete states associated with specific human poses.
However, knowing only the present discrete state (e.g., corresponding
to the operator inserting a part at a given location) would not pro-
vide enough information to infer when the discrete state will change
and where the operator will likely move afterward. This is the rea-
son why HOMCs, which receive (as input) sequences of past discrete
states within a given time horizon, are used in this work in place
of standard Markov chains. The length of these sequences – referred
to as order of the HOMC – is fixed, and its value must be chosen
based on the specific task. As the HOMC naturally outputs a tree of
possible human motions with associated probabilities, scenario-based
MPC (henceforth, S-MPC) is adopted in this paper. S-MPC is one of
the various stochastic MPC algorithms proposed in the literature; for
an overview, the reader is referred to the works of Mesbah (2016)
and Mesbah, Kolmanovsky, and Di Cairano (2019). In S-MPC (Bernar-
dini & Bemporad, 2009, 2011; Di Cairano, Bernardini, Bemporad, &
Kolmanovsky, 2013), sometimes referred to as branch MPC, the MPC
algorithm considers a finite number of realizations of parametric un-
certainties and/or additive disturbances to generate a scenario tree,
and then imposes constraint satisfaction for all scenarios. As S-MPC
typically relies on multi-stage stochastic programming, it is also of-
ten referred to as multi-stage MPC (Krishnamoorthy, Suwartadi, Foss,
Skogestad, & Jäschke, 2018; Lucia, Finkler, & Engell, 2013; Lucia,
Subramanian, Limon, & Engell, 2020). S-MPC is not the only stochastic
MPC algorithm. For example, a related approach – mainly known as
well as scenario-based MPC but sometimes referred to as randomized

PC (Calafiore & Fagiano, 2013; de Groot, Brito, Ferranti, Gavrila, &
lonso-Mora, 2021; Pedersen & Petersen, 2018; Schildbach, Fagiano,
rei, & Morari, 2014; Shang & You, 2019) – transforms an underlying
hance-constrained stochastic optimization problem into a determinis-
ic problem with a large number of deterministic constraints, obtained
or multiple realizations of the disturbances, sampled according to their
robability density functions. Other well-known approaches are tube-
ased stochastic MPC (Cannon, Kouvaritakis, Raković, & Cheng, 2010)
nd polynomial chaos-based stochastic MPC (Kim & Braatz, 2013). In
his work an S-MPC (more precisely, S-NMPC) strategy is proposed
ollowing the ideas of Bernardini and Bemporad (2009, 2011), building
he scenario tree in order to predict a factor (the future human pose)
hat influences the formulation of cost function and constraints in
he FHOCP. In the standard formulation of Bernardini and Bempo-
ad (2009, 2011), instead, the scenario tree was built to describe
he prediction of disturbances or uncertainties that affect the system
ynamics.

S-MPC was recently applied in the field of mobile robotics, to
n autonomous quadruped robot in the presence of an uncontrolled
uadruped robot (with experimental results) in Chen, Rosolia, Ubel-
acker, Csomay-Shanklin, and Ames (2022) and to autonomous driving
in simulation) in Chen et al. (2022) and Wang, Schuurmans, and
atrinos (2023). To the best of the authors’ knowledge, S-MPC was
ever applied to safe pHRI for robot manipulators, and this is the
econd contribution of this paper.

The third and last contribution is the implementation of the pro-
osed method on a Kinova Gen3 manipulator, and the experimental
alidation of the proposed approach with a human participant.

aper structure
The remainder of the paper is organized as follows. Section 2

escribes the modeling of the human operator for motion planning pur-
oses, including the proposed prediction strategy via HOMCs. Section 3
ocuses on robot modeling, with specific attention to the constraints
o be imposed, including those that guarantee human safety via SSM.
ection 4 describes the proposed S-NMPC strategy, and Section 5

escribes the related theoretical results. Sections 6 and 7 describe the
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considered case study, in which a Kinova Gen3 robot carries out a pick-
and-place task while sharing its workspace with a human operator,
and the related experimental results. Conclusions are finally drawn in
Section 8.

Notation
A sequence of integer numbers from 𝑛1 to 𝑛2 included is referred to

as N[𝑛1 ,𝑛2]; for example, N[3,6] = {3, 4, 5, 6}. ‖𝒈‖ indicates the Euclidean
norm of vector 𝒈 ∈ R𝑛. For the same vector, ‖𝒈‖2𝑴 ≜ 𝒈′𝑴𝒈, where

∈ R𝑛×𝑛, and ′ is the transposition operator. When writing 𝑴 ⪰ 0
nd 𝑴 ≻ 0, it is meant that matrix 𝑴 is either positive semi-definite
r positive definite, respectively. Given 𝑴 ⪰ 0, 𝜆min(𝑴) and 𝜆max(𝑴)

are its minimum and maximum eigenvalues, respectively. In order to
concisely express predictions of variables at the discrete time index 𝑘+𝜏
given the information at time 𝑘 or 𝑘+1, the following notation is used:
𝑘𝜏 ≜ 𝑘 + 𝜏 | 𝑘 and 𝑘+𝜏 ≜ 𝑘 + 𝜏 | 𝑘 + 1.

2. Human modeling and prediction

2.1. Human space occupancy and Markov chain states

In order to represent its space occupancy, the portion of the human
body involved in the considered task is included in the union of 𝑛ℎ
spheres, each named ℎ,𝑗 , 𝑗 ∈ Nℎ ≜ N[1,𝑛ℎ], with the radius of each
sphere equal to 𝑅ℎ,𝑗 . In the 𝑂 − 𝑥𝑦𝑧 fixed reference frame centered at
the robot base, the time-varying position of the center of each sphere
(located inside the human body) is indicated as 𝒑ℎ,𝑗 ∈ R3. As the
radius of each sphere is fixed, the human pose can be expressed by
the coordinates of the relevant sphere centers, which are concatenated
in a single vector  ∈ R3𝑛ℎ , defined as

 ≜
[

𝒑′ℎ,1 𝒑′ℎ,2 … 𝒑′ℎ,𝑛ℎ
]′
. (1)

The discrete states of the considered Markov chain are defined within
a finite set, as 𝜉 ∈ 𝛯 ≜ N[1,𝑛𝜉 ], with 𝑛𝜉 ∈ N>0. When detecting a given
operator’s pose , this must be associated with a discrete state 𝜉 = 𝑓 ()
through a suitably-defined function 𝑓 ∶ R3𝑛ℎ → 𝛯. On the other hand,
in order to determine the ‘‘typical’’ human pose  associated with
a given discrete state 𝜉, one could obtain the typical posture of the
operator for each activity, thus obtaining a function defining  = 𝑔(𝜉),
with 𝑔 ∶ 𝛯 → R3𝑛ℎ . A specific example of how to determine these
functions will be provided for the considered case study.

2.2. HOMC for human prediction

In this work, HOMCs are used to predict 𝜉, using a discrete-time
framework where subsequent time instants 𝑘, 𝑘+ 1, etc., are generated
using a fixed sampling interval 𝑇𝑠. Differently from standard Markov
chains, in which only the current state is used to generate a prediction,
HOMCs use a window of 𝑛𝑚 values of 𝜉, i.e., the current value and 𝑛𝑚−1
past values. The probability of the next discrete state being equal to a
fixed 𝜉1 ∈ 𝛯 can be expressed as


(

𝜉(𝑘 + 1) = 𝜉1 | 𝜉(𝑘 − 𝑛𝑚 + 1) = 𝜉−𝑛𝑚+1,… , 𝜉(𝑘 − 1) = 𝜉−1, 𝜉(𝑘) = 𝜉0
)

(2)

where, for 𝑖 = N[0,𝑛𝑚−1], each 𝜉−𝑖 ∈ 𝛯 represents current or past values
of 𝜉. Defining a HOMC requires in general 𝑛𝑛𝑚+1𝜉 (𝑛𝜉 − 1) parameters,
which results in exponential complexity with respect to 𝑛𝑚, referred to
as order of the HOMC (Raftery, 1985).

To reduce the number of parameters needed to describe the HOMC,
mixture transition distribution (MTD) models (Berchtold & Raftery, 2002)
are employed in this paper. In MTD models, the probability distribution
in (2) is approximated by a convex combination of multiple-steps
transition probabilities, as
𝑛𝑚−1
∑

𝜆𝑖
(

𝜉(𝑘 + 1) = 𝜉1 ∣ 𝜉(𝑘 − 𝑖) = 𝜉−𝑖
)

, (3)
3

𝑖=0
where 𝜆𝑖 are the 𝑛2𝜉 (𝑛𝑚 + 1) MTD model parameters, whose number
increases only linearly – rather than exponentially – with 𝑛𝑚. A new
notation 𝐗(𝑘) ∈ N𝑛𝜉 is introduced for the Markov state at time 𝑘:
𝐗(𝑘) is a column vector of zeros, except for the element corresponding
to 𝜉(𝑘), which is equal to 1. Using this notation, following the ap-
proach of Raftery (1985), in this work the prediction of the probability
distribution at time 𝑘 + 1 is calculated as

𝐗̂(𝑘 + 1) =
𝑛𝑚
∑

𝑖=0
𝜆𝑖𝑖𝐗(𝑘 − 𝑖), (4)

where 𝑖 ∈ R𝑛𝜉×𝑛𝜉 denote the transition probability matrices, estimated
from data together with the parameters 𝜆𝑖. The most common solution
to estimate these parameters, also used in this paper, is described
in the work of Lèbre and Bourguignon (2008), and consists of ap-
proximating the maximum-likelihood estimate of the MTD model via
expectation–maximization (EM). To use the EM algorithm, Lèbre and
Bourguignon (2008) fitted the MTD model into the general framework
of hidden-variable models to compute a maximum-likelihood estimate
from incomplete data. Maximizing the log-likelihood of the incomplete
data is equivalent to maximizing the log-likelihood of the complete
model conditional on the observed sequence and the current parameter.
The latter is computed in the expectation step of the EM algorithm, and
maximized using the Lagrange method in the maximization step.

2.3. Generation of the scenario tree

The estimates of future discrete states defined in (4) are used to
construct a scenario tree, which provides a probabilistic description of
the future human motion, and is used to plan the robot motion via S-
NMPC. A scenario tree is simply a connected acyclic graph of all possible
state transitions with associated probabilities. The root node, which
represents 𝜉(𝑘), has 𝑛𝜉 children that correspond to each of the possible
𝑛𝜉 states of the Markov chain at time 𝑘 + 1. The tree is expanded by
assigning 𝑛𝜉 children to each child node, up to a fixed horizon 𝑁𝑠 in
the future, i.e., up to time 𝑘 +𝑁𝑠. To each node after the root node is
assigned the probability of the corresponding state occurring accord-
ing to the HOMC prediction (4), determined based on the observed
and/or already predicted discrete states, in a window of 𝑛𝑚 values.
The probability of any given branch of the tree (corresponding to a
specific sequence of discrete states) can be calculated as the product of
the probabilities of each node in that branch.

Directly using the scenario tree in the S-NMPC algorithm (which
would be the typical approach in multi-stage MPC) would lead to
considerable computational burden, especially relevant for fast systems
such as robotic manipulators. Therefore, after the tree is constructed,
for a fixed 𝑛𝑠 ∈ N>0 only the 𝑛𝑠 most likely sequences of human motion,
referred to in the remainder of the paper as scenarios, are determined,
with associated probability values 𝑃 (𝜎), 𝜎 ∈ N𝑠 ≜ N[1,𝑛𝑠].

2.4. Human motion prediction for S-NMPC

After sorting the 𝑛𝑠 highest branch probabilities 𝑃 (𝜎) in descending
order, the 𝜎𝑡ℎ sequence of predicted human poses can be obtained
applying function  = 𝑔(𝜉), already introduced in Section 2.1. The se-
quence is indicated as follows (please refer to the Notation in Section 1
for the meaning of 𝑘𝜏 ):

(𝜎)
𝑁𝑠

(𝑘) ≜
[

(𝑘)′ (𝜎)(𝑘1)′ … (𝜎)(𝑘𝑁𝑠
)′
]′ ∈ R3𝑁𝑠𝑛𝑠 . (5)

While the prediction of the human pose from time 𝑘1 onward is
obtained from the discrete states of the Markov chain using function
𝑔(𝜉), the current value (𝑘) simply corresponds to the measured human
pose. The S-NMPC strategy considered in the following might need a
longer sequence of values than (𝜎)

𝑁𝑠
(𝑘); this is the case if the prediction

horizon of S-NMPC, namely 𝑁 , is such that 𝑁 > 𝑁𝑠. This longer
sequence, referred to as (𝜎)(𝑘) ∈ R3𝑁𝑛𝑠 , can be constructed by ap-
pending the last pose (𝜎)(𝑘 ) until the end of the S-NMPC prediction
𝑁𝑠
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horizon, thus implicitly assuming that the human will maintain the last
predicted pose. Finally, the overall information for all 𝑛𝑠 scenarios is
referred to as

(𝑘) ≜
{

(1)(𝑘),… ,(𝑛𝑠)(𝑘)
}

. (6)

3. Robot modeling

3.1. Robot space occupancy and kinematics

The space occupied by the manipulator in the above-mentioned
𝑂−𝑥𝑦𝑧 reference frame is over-approximated as the union of 𝑛𝑟 spheres.
Their centers 𝒑𝑟,𝑖 ∈ R3, 𝑖 ∈ N𝑟 ≜ N[1,𝑛𝑟] are placed at pre-determined
ocations along the robot links, and thus their coordinates in the 𝑂−𝑥𝑦𝑧
rame depend on the robot configuration. The corresponding spheres,
ith radii equal to 𝑅𝑟,𝑖, 𝑖 ∈ N𝑟 ≜ N[1,𝑛𝑟], are referred to as 𝑟,𝑖. For

simplicity, it is assumed that 𝒑𝑟,𝑛𝑟 is chosen to correspond to the robot
end effector location in the 𝑂 − 𝑥𝑦𝑧 frame. Using unions of spheres to
represent the space occupancy of both human and robot is convenient
to easily obtain their distance (which only depends on sphere radii and
centers, and not on the orientation of human limbs or robot links), and
to directly use it as a closed-form expression in the FHOCP.

The robot configuration is given by the vector of joint variables
𝜽 ∈ R𝑛𝜃 . The position of each sphere center 𝒑𝑟,𝑖, 𝑖 ∈ N𝑟, is determined
via forward kinematics through a set of suitable functions, here simply
referred to as 𝛷fwd,i(⋅) ∶ R𝑛𝜃 → R3, as 𝒑𝑟,𝑖 = 𝛷fwd,i(𝜽). The differ-
ential kinematics function, which is indicated in this paper simply as
𝛷dif f ,i(⋅) ∶ R𝑛𝜃 → R3 is used to determine the velocity 𝒗𝑟,𝑖 of 𝒑𝑟,𝑖 as
𝒗𝑟,𝑖 = 𝛷dif f ,i(𝜽,𝝎), in which 𝝎 ≜ 𝜽̇ ∈ R𝑛𝜃 is the vector of joint speeds.

3.2. Prediction of the robot motion

In the considered approach, reference joint velocities are provided
to the manipulator inner control loops. When predicting the robot
motion, it is assumed that these references are perfectly tracked. This
choice was dictated by two reasons. Firstly, as a nonlinear program
is solved by S-NMPC at each sampling time based on the robot dy-
namics, this simple model allows a much faster computation of the
control law as compared to a full dynamic model with joint torques as
inputs. Secondly, the actual joint torques cannot be directly imposed
in most commercial robots, which instead rely on velocity references
and inner control loops to track them. Thus, the proposed framework
solves a real-time motion planning problem without direct focus on the
low-level control loops.

As the S-NMPC law will be introduced in discrete time, the perfect
tracking of the reference speeds, coinciding with the actual speeds 𝝎,
is defined as

𝜽(𝑘 + 1) = 𝜽(𝑘) + 𝑇𝑠𝝎(𝑘), (7)

in which 𝑘 ∈ N is the discrete-time index already used in Section 2.
Eq. (7) can be interpreted as the exact discretization of continuous-time
integrators. The S-NMPC controller will explore 𝑛𝑠 different realiza-
tions, within a prediction horizon of 𝑁 time steps, of the discrete-time
control sequence

𝝎̄(𝜎)(𝑘) ≜
{

𝝎(𝜎)(𝑘0),𝝎(𝜎)(𝑘1),… ,𝝎(𝜎)(𝑘𝑁−1)
}

, (8)

where 𝜎 ∈ N𝑠, and 𝝎(𝜎)(𝑘𝜏 ) is the prediction of 𝝎 at time 𝑘 + 𝜏, 𝜏 ∈
N[0,𝑁−1], associated with the 𝜎𝑡ℎ scenario of human motion determined
via HOMCs. A related variable is the sequence of states obtained via
(7) using 𝝎̄(𝜎)(𝑘) and initial state 𝜽(𝜎)(𝑘0) equal to the measured state
𝜽(𝑘), namely

𝜽̄(𝜎)(𝑘) ≜
{

𝜽(𝜎)(𝑘0),𝜽(𝜎)(𝑘1),… ,𝜽(𝜎)(𝑘𝑁 )
}

. (9)

For compactness of notation, all 𝑛𝑠 input or state sequences are written
as single variables, and precisely

𝝎̄(𝑘) ≜
{

𝝎̄(1)(𝑘),… , 𝝎̄(𝑛𝑠)(𝑘)
}

,

𝜽̄(𝑘) ≜
{

𝜽̄(1)(𝑘),… , 𝜽̄(𝑛𝑠)(𝑘)
}

.

4

3.3. Motion constraints

Certain constraints to be imposed on the robot motion do not
depend on the human operator. The first of these constraints consists
of bounds on joint speeds; these constraints are referred to as 𝝎 ∈ 𝛺,
where 𝛺 ⊆ R𝑛𝜃 is a compact set (typically, a hyper-rectangle) that
includes the origin in its interior (otherwise, some joints would be able
to move only in one direction).

A second set of constraints concerns the limits on joint angles,
which can also be imposed to avoid self-collisions. These constraints
are usually imposed on each joint angle separately so the set 𝛩 ⊆ R𝑛𝜃

defined to impose 𝜽 ∈ 𝛩 is typically a box.
The third considered type of constraints is the avoidance of fixed

obstacles, which can be imposed using different methods. In general,
it is imposed that each point 𝒑𝑟,𝑖, 𝑖 ∈ N𝑟, belongs to a set 𝑟,𝑖 defined
such that the corresponding sphere 𝑟,𝑖 does not intersects with any
obstacles. In short,

𝒑𝑟,𝑖 ∈ 𝑟,𝑖, 𝑖 ∈ N𝑟. (10)

In the considered case study, it will be imposed that the robot remains
above a flat horizontal surface. Thus, condition (10) is obtained requir-
ing that the Euclidean distance between each sphere center 𝒑𝑟,𝑖, 𝑖 ∈ N𝑟,
and the hyperplane that describes the obstacle surface is larger than
𝑅𝑟,𝑖. As the robot tasks considered in this work always consist of point-
to-point motions, it is assumed that the initial configuration and all
configurations that are used as goals – the current goal configuration
is referred to as 𝜽𝑔 – are included in 𝛩 and defined such that the
corresponding sphere centers satisfy (10).

The last type of constraints are safety constraints aimed at guaran-
teeing that, under the assumption that no points of the human operator
will ever exceed a given speed 𝑣ℎ (as defined in the ISO/TS 15066
standard), an impact between the operator and a moving part of the
robot will never occur. In other words, the robot will be able to stop
the links involved in a collision before the collision happens, under the
conservative assumption that the human operator can always move its
closest point to the robot towards the robot itself with speed 𝑣ℎ. This
idea was already explained by Oleinikov et al. (2021), in turn based
on an adaptation of Eq. (14) in the paper by Marvel (2013), which
corresponds to the ISO/TS 15066 SSM criterion. A summary of the main
concepts is here reported for the reader’s convenience.

First of all, let 𝑑𝑖𝑗 ≜ ‖𝒑𝑟,𝑖 − 𝒑ℎ,𝑗‖, 𝑖, 𝑗 ∈ N𝑟 ×Nℎ, from which one can
define the distance between the 𝑖th robot sphere and the closest human
sphere as 𝑑𝑖ℎ ≜ min𝑗∈Nℎ

{

𝑑𝑖𝑗 − (𝑅𝑟,𝑖 + 𝑅ℎ,𝑗 )
}

. Let the speed of each robot
sphere center be 𝑣𝑖 ≜ ‖𝒗𝑖‖, 𝑖 ∈ N𝑟.

The SSM criterion can be expressed as follows:

𝑣̄ℎ

(

𝑇𝑑𝑟 +
𝑣𝑖
𝑎̄𝑟

)

+ 𝑣𝑖𝑇𝑑𝑟 +
𝑣2𝑖
2𝑎̄𝑟

+ 𝜖𝑠 ≤ 𝑑𝑖ℎ, 𝑖 ∈ N𝑟 (11)

where 𝑎̄𝑟 is the maximum robot deceleration, 𝑇𝑑𝑟 is the time of detection
f the human pose and related reaction time, and 𝜖𝑠 is the precision of

the motion capture system that detects the human position. For each
robot sphere center, the inequality in (11) can be read as follows: the
maximum distance that the human can cover while the robot detects
it, reacts to it, and comes to a stop, plus the distance that the robot
would cover in the same time interval, plus the human measurement
precision, must not exceed the current human–robot distance.

Condition (11) is difficult to implement in a numerical optimization
problem, as 𝑣𝑖 and 𝑑𝑖ℎ are Euclidean norms, and as such they contain
square roots in their expressions. This typically causes problems for the
numerical solver; in order to avoid these issues, a condition slightly
more conservative than (11) is instead imposed, which only contains
𝑣2𝑖 and 𝑑2𝑖𝑗 , so as to avoid square roots. The condition is the following:

2
𝑖 ≤ 𝛼2

(

𝑑2𝑖𝑗 −
(

𝑅𝑟,𝑖 + 𝑅ℎ,𝑗 + 𝑑
)2
)

, 𝑖, 𝑗 ∈ N𝑟 × Nℎ (12)

in which 𝛼 and 𝑑 are positive real tuning parameters, set such that
(11) is satisfied for all values of interest of 𝑑 . These parameters are
𝑖ℎ
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Fig. 1. Schematic of the overall robot motion planning and control system.

tuned via trial and error, aiming at obtaining a boundary that is the
least conservative possible with respect to that defined by (11). For a
graphical representation of these curves, which are not a contribution
of this work, the interested reader is referred to Fig. 3 in the paper
by Oleinikov et al. (2021).

Assumption 1. The human motion always happens so that there
exists a fixed threshold 𝛿ℎ ∈ N>0 such that 𝜽 = 𝜽𝑔 implies 𝑑2𝑖𝑗 ≥
(𝑅𝑟,𝑖 + 𝑅ℎ,𝑗 + 𝑑)2 + 𝛿ℎ for 𝑖, 𝑗 ∈ N𝑟 × Nℎ. □

Remark 1. Assumption 1 requires that, when the robot is at its
goal configuration with zero speed, the human is always maintaining
a distance that guarantees the satisfaction of the SSM constraints.
This condition is needed because the SSM constraints account for the
detection and reaction time in addition to the robot speed also when the
latter is equal to zero. As a consequence, even when the robot has zero
speed, if the human moves too close to it the SSM constraints might be
violated.

4. S-NMPC-based robot motion planning

4.1. Overall control scheme

The closed-loop control scheme proposed in this work is made of a
cascade of different controllers, explained in the following and depicted
in Fig. 1. The highest level consists of the proposed S-NMPC, which
acquires the current robot state 𝜽(𝑘) and the predictions of the human
motion (𝑘) from the HOMC, and generates the control variable 𝝎(𝑘)
by solving a FHOCP. Ideally, one should use a sampling interval 𝑇𝑠 that
is (i) small enough to capture the robot dynamics and to generate an
acceptably low value of 𝑇𝑑𝑟 in (11), and (ii) large enough to allow
reaching the goal configuration 𝜽𝑔 for a computationally reasonable
value of 𝑁 . However, to satisfy condition (i), one would need a very
large 𝑁 , which, with the current state of the art in optimization
algorithms and computational capabilities, would lead to extremely
large solution times. Therefore, 𝑇𝑠 was chosen as the smallest possible
interval that still satisfies condition (ii), which is typically in the order
of fractions of a second. The optimal input and state sequences 𝝎̄∗ and
𝜽̄∗ are then passed as a reference to another NMPC controller (referred
to in the following simply as inner-loop NMPC, or I-NMPC), analogous
to that explained by Oleinikov et al. (2021), which acts with a smaller
sampling time 𝑇̃𝑠 in the order of tens of milliseconds. I-NMPC solves
a tracking problem using the same kinematic model (7) of S-NMPC,
and re-determines the robot motion imposing the same constraints.
Also, it assumes that the currently measured human pose (with its own
sampling interval) remains constant throughout the prediction horizon.
As already mentioned above, an important aim of I-NMPC is to reduce
the value of 𝑇𝑑𝑟, which would be too high with the sampling interval
of S-NMPC. The joint speed values, namely 𝒖, determined by I-NMPC
are passed to the embedded robot controller that acts with a sampling
time ranging from hundreds of microseconds to a few milliseconds. This
embedded control loop is typically already implemented and impossible
to modify in commercial robots. It enforces limits on joint torques
5

and accelerations, to protect the manipulator against reaching the joint
angle limits and against torque overload.

To design and analyze the S-NMPC algorithm it will be assumed that
I-NMPC and the embedded robot controllers manage to achieve perfect
tracking of the reference joint speeds 𝝎(𝑘) coming from S-NMPC. The
actual performance of the closed-loop system will be then verified
experimentally.

4.2. S-NMPC: cost function

The cost function to be minimized by S-NMPC contains four types
of terms. The first (which can be referred to as ‘‘state term’’) is given
by

𝑒(𝜎)𝜃 (𝑘𝜏 ) ≜ ‖𝜽(𝜎)(𝑘𝜏 ) − 𝜽𝑔‖2𝑸 (13)

where 𝑸 = 𝑸′ ∈ R𝑛𝜃×𝑛𝜃 , with 𝑸 ≻ 0, which penalizes the error on robot
pose. The second (‘‘control term’’) is

𝑒(𝜎)𝜔 (𝑘𝜏 ) ≜ ‖𝝎(𝜎)(𝑘𝜏 )‖2𝑹 (14)

where 𝑹 = 𝑹′ ∈ R𝑛𝜃×𝑛𝜃 , with 𝑹 ≻ 0, which penalizes unnecessarily
large joint speeds. The third (which can be called ‘‘repulsive term’’ for
reasons that will be explained later in this paragraph), influenced by
the predicted human motion, is defined as

𝑒(𝜎)𝜑 (𝑘𝜏 ) ≜ 𝛾 ⋅
(

𝑟(𝜎)(𝑘𝜏 )
)2 , (15)

with

𝑟(𝜎)(𝑘𝜏 ) ≜
⎧

⎪

⎨

⎪

⎩

exp

(

−𝛽

(

𝛿(𝜎)ℎ (𝑘𝜏 )
)2

‖𝜽(𝜎)(𝑘𝜏 )−𝜽𝑔‖2

)

, if 𝜽(𝜎)(𝑘𝜏 ) ≠ 𝜽𝑔 ,

0, otherwise ,

(16)

where 𝛾, 𝛽 ∈ R>0 are design parameters, whereas 𝛿(𝜎)ℎ
(

𝑘𝜏
)

is the
distance, for the 𝜎𝑡ℎ scenario, between the end-effector location and the
location of a specific human sphere center calculated based on (𝜎)(𝑘𝜏 ).
As these are all defined inside the human body (see Section 2), then
there exists 𝛿min ∈ R>0 such that

𝛿(𝜎)ℎ
(

𝑘𝜏
)

≥ 𝛿min, 𝜎 ∈ N𝑠, 𝜏 ∈ N[0,𝑁−1]. (17)

Notice that in practice 𝜽(𝜎)(𝑘𝜏 ), depending on actual measurements, is
never exactly equal to 𝜽𝑔 , so the value of 𝑟(𝜎)(𝑘𝜏 ) can be directly defined
as the first option in (16), without checking the condition on 𝜽(𝜎)(𝑘𝜏 ).
However, the definition in (16) is cleaner from the mathematical stand-
point, as, to be rigorous, the exponential function in (16) is not defined
for 𝜽(𝜎)(𝑘𝜏 ) = 𝜽𝑔 . The term 𝑒(𝜎)𝜑 (𝑘𝜏 ) decreases as the end effector moves
away from the human; it has the role of ‘‘pushing’’ the end effector
away from the human (similarly to a repulsive artificial potential field,
see, e.g., Khatib (1986)) in order to avoid motions that would result
in the robot moving too close to the operator and, due to the presence
of the safety constraints, often come to a stop. Note that the value of
𝛿(ℎ)ℎ,𝑖 is used squared to avoid calculating square roots when solving the
optimization problem, for the same reason already explained for (12).

The fourth term (‘‘penalty term’’) in the cost function is given by

𝑒(𝜎)𝜀 (𝑘𝜏 ) ≜ 𝜌
𝑛𝑟
∑

𝑖=1

𝑛ℎ
∑

𝑗=1

(

𝜀(𝜎)𝑖𝑗 (𝑘𝜏 )
)2

(18)

where 𝜌 ∈ R, 𝜌 ≫ 1, is a scalar weight (tuning parameter), whereas
𝜀(𝜎)𝑖𝑗 (𝑘𝜏 ) ∈ R is a slack variable related to soft constraints. Its definition
will be provided in the next subsection.

Overall, the cost function for the 𝜎𝑡ℎ scenario is

𝐽 (𝜎)
(

𝝎̄(𝜎)(𝑘), 𝜽̄(𝜎)(𝑘),(𝜎)(𝑘)
)

≜
𝑁−1
∑

𝜏=0
𝓁(𝜎)(𝑘𝜏 ), (19)

with

𝓁(𝜎)(𝑘 ) ≜ 𝑒(𝜎)(𝑘 ) + 𝑒(𝜎)(𝑘 ) + 𝑒(𝜎)(𝑘 ) + 𝑒(𝜎)(𝑘 ). (20)
𝜏 𝜃 𝜏 𝜔 𝜏 𝜑 𝜏 𝜀 𝜏
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𝐽

As S-NMPC will make use of the 𝑛𝑠 most likely realizations (𝜎)(𝑘), the
overall cost function is constructed to account for all of these scenar-
ios, weighting them based on the corresponding probabilities 𝑃 (𝜎), or

ore precisely on their normalized values 𝑃 (𝜎)
𝑛 ≜ 𝑃 (𝜎)∕

∑𝑛𝑠
𝜎=1 𝑃

(𝜎). In
onclusion, the S-NMPC cost function is defined as

(

𝝎̄(𝑘), 𝜽̄(𝑘),(𝑘)
)

≜
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝐽 (𝜎)

(

𝝎̄(𝜎)(𝑘), 𝜽̄(𝜎)(𝑘),(𝜎)(𝑘)
)

. (21)

4.3. S-NMPC: constraints

The first constraint considered in the FHOCP is the system dynamics
(7), which determines how the predicted state values for each scenario
𝜎 are obtained along the prediction horizon based on the predicted
inputs:

𝜽(𝜎)(𝑘𝜏+1) = 𝜽(𝜎)(𝑘𝜏 ) + 𝑇𝑠𝝎(𝜎)(𝑘𝜏 ), (22a)

for 𝜏 ∈ N[0,𝑁−1] and 𝜎 ∈ N𝑠. The second constraint imposes that all pre-
dictions of the robot motion start at the measured robot configuration
𝜽(𝑘):

𝜽(𝜎)(𝑘0) = 𝜽(𝑘), 𝜎 ∈ N𝑠. (22b)

Similarly, the third condition requires that all predictions of the robot
motion end, after 𝑁 time instants, at the goal configuration 𝜽𝑔 :

𝜽(𝜎)(𝑘𝑁 ) = 𝜽𝑔 , 𝜎 ∈ N𝑠. (22c)

As several system trajectories are planned by S-NMPC, but only one
control move can be applied to the system, a fourth (causality) con-
straint is imposed, requiring that the first 𝑛𝑞 ∈ N[1,𝑁] moves of all 𝑛𝑠
scenarios be the same:

𝝎(1)(𝑘𝜏 ) = 𝝎(2)(𝑘𝜏 ) = ⋯ = 𝝎(𝑛𝑠)(𝑘𝜏 ), 𝜏 ∈ N[0,𝑛𝑞−1]. (22d)

Setting 𝑛𝑞 = 1 will reduce the conservativity of S-NMPC as compared to
higher values of 𝑛𝑞 , which can anyway be used for example to reduce
the complexity of the resulting optimization problem, or due to the
need to provide a single speed profile for more than one sampling
interval to I-NMPC (see Section 4.5). The fifth and sixth constraints
impose the joint speed and angle constraints described in Section 3.3:

𝝎(𝜎)(𝑘𝜏 ) ∈ 𝛺, 𝜏 ∈ N[0,𝑁−1], 𝜎 ∈ N𝑠, (22e)

𝜽(𝜎)(𝑘𝜏 ) ∈ 𝛩, 𝜏 ∈ N[0,𝑁−1], 𝜎 ∈ N𝑠. (22f)

The seventh constraint concerns the avoidance of fixed obstacles, also
explained in Section 3.3. By imposing condition (10) for all time
instants and all scenarios, one obtains

𝒑(𝜎)𝑟,𝑖 (𝑘𝜏 ) ∈ 𝑟,𝑖, 𝑖 ∈ N𝑟, 𝜏 ∈ N[0,𝑁−1], 𝜎 ∈ N𝑠. (22g)

The eighth constraint imposes safety based on (12) for all scenarios and
all time instants:
(

𝑣(𝜎)𝑖 (𝑘𝜏 )
)2

≤ 𝛼2
[(

𝑑(𝜎)𝑖𝑗 (𝑘𝜏 )
)2

−
(

𝑅𝑟,𝑖 + 𝑅ℎ,𝑗 + 𝑑
)2
]

+ 𝜀(𝜎)𝑖𝑗 (𝑘𝜏 ), (22h)

for 𝑖, 𝑗 ∈ N𝑟 × Nℎ, 𝜏 ∈ N[0,𝑁−1] and 𝜎 ∈ N𝑠, where 𝜀(𝜎)𝑖𝑗 (𝑘𝜏 ) are the slack
variables introduced in (18). Soft constraints are used here to avoid
situations in which S-NMPC cannot plan feasible robot motions due
to unforeseen changes in the human pose. This might seem to pose
a threat to human safety, however condition (12) is verified at each
sampling instant of the I-NMPC loop, and the robot can be stopped
before a possible collision happens, as guaranteed by the SSM principle.
A ninth constraint has to be imposed to ensure that the slack variables
are non-negative, i.e.,

𝜀(𝜎)𝑖𝑗 (𝑘𝜏 ) ≥ 0, (22i)
6

for all 𝑖, 𝑗 ∈ N𝑟 × Nℎ, 𝜏 ∈ N[0,𝑁−1], and 𝜎 ∈ N𝑠.
4.4. S-NMPC: FHOCP

With reference to the input and state sequences defined in (8) and
(9), the goal of S-NMPC is to find their optimal realizations, namely
𝝎̄(𝜎)
∗ (𝑘) and 𝜽̄(𝜎)∗ (𝑘), for all considered values of 𝜎. All optimal realiza-

tions can be aggregated into single variables, namely 𝝎̄∗(𝑘) and 𝜽̄∗(𝑘).
The optimal sequences are found by solving the following FHOCP:
(

𝝎̄∗(𝑘), 𝜽̄∗(𝑘)
)

=arg min
𝝎̄(𝑘),𝜽̄(𝑘)

𝐽
(

𝝎̄(𝑘), 𝜽̄(𝑘),(𝑘)
)

, (23)

subj. to (22a)–(22i).

After all optimal control sequences and corresponding state evolutions
are obtained, only the first control move 𝝎(𝜎)

∗ (𝑘0) (which is the same
for all 𝜎 ∈ N𝑠, according to condition (22d)) is passed to the inner
control loop consisting of I-NMPC planner, embedded root controller
and manipulator (see Fig. 1) as 𝝎(𝑘). Another FHOCP in form (23) is
then solved again at time 𝑘 + 1 based on newly available information
on robot pose and human motion predictions.

4.5. Overview of I-NMPC

It is important to highlight that, when analyzing the theoretical
results on S-NMPC stability, the tracking operated by I-NMPC and robot
controllers is assumed to be perfect, and thus 𝝎(𝑘) is considered as input
of the controlled system. In practice, the angular speed signal from S-
NMPC is resampled with a sampling interval 𝑇̃𝑠 (sub-multiple of 𝑇𝑠),
and renamed as 𝒖𝑑 (𝑘𝜏 ). Given the last measured state (robot angular
positions) considered by S-NMPC – here simply referred to as 𝜻0 – a
reference signal is generated as

𝜻𝑑 (𝑘𝜏+1) = 𝜻𝑑 (𝑘𝜏 ) + 𝑇̃𝑠𝒖𝑑 (𝑘𝜏 ), (24)

with 𝜻𝑑 (𝑘0) = 𝜻0. The value of 𝜻𝑑 is reinitialized every time a new
S-NMPC solution becomes available. Naming 𝜻 the state of the system
for the I-NMPC planner (acquired from the robot sensors with sampling
time 𝑇̃𝑠), a cost function is minimized that – after changing the names
of input and state to 𝒖 and 𝜻 – is identical to (21), apart from the
following differences. First of all, the human pose used in the prediction
remains constant at the last value  measured when running S-NMPC.
This implies that only one scenario is used, i.e., 𝑛𝑠 = 1 for I-NMPC.
Second, the ‘‘state term’’ (13) becomes equal to

‖𝜻(𝑘𝜏 ) − 𝜻𝑑 (𝑘𝜏 )‖2𝑸 (25)

to track the ideal robot motion planned by S-NMPC.
The solved FHOCP, again after changing the sampling interval and

the variable names, has the same constraints as problem (23), again
with some notable differences. First, the terminal constraint (22c) is
not imposed, as I-NMPC does not solve a regulation problem. Second,
(22d) is also not imposed: it would be redundant, as only one scenario
is considered. Third, (22h) is formulated as hard constraint, to enforce
SSM in practice. This also leads to the removal of (22i), as no slack
variables are present. The prediction horizon of I-NMPC, namely 𝑁̃ ,
can in principle be different from 𝑁 , and in any case will correspond
to a much shorter time interval than that of S-NMPC.

Given the computational delays of S-NMPC and the need for I-NMPC
to use a non-negligible prediction horizon, in practice one should use
more than one control move from S-NMPC to define 𝒖𝑑 (𝑘𝜏 ). Therefore,
it is advisable to set values of 𝑛𝑞 in S-NMPC greater than one, such as
𝑛𝑞 = 2 or 𝑛𝑞 = 3. Excessively high values of 𝑛𝑞 would force the same
robot motion for all scenarios for a considerable portion of the S-NMPC

prediction horizon, thus increasing conservativity.
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5. Theoretical results

Implementing a computationally intensive control method such as
S-NMPC on a fast system such as a robot manipulator is extremely
challenging, and thus some simplifying assumptions had to be intro-
duced, in particular approximating the system dynamics as simple
integrators (Section 3.2). The effectiveness of the proposed approach is
first shown by proving theoretical properties under ideal assumptions
(e.g., no uncertainties in the system dynamics), and then (in the next
two sections) by showing the practical results obtained in the shown
case study.

Theorem 1 (Recursive Feasibility). Consider the closed-loop system given
y (7), with 𝝎(𝑘) given by the solution of (23), and assume that the FHOCP

(23) is feasible at time 𝑘. Then, the FHOCP is still feasible at time 𝑘 + 1.

roof. See Appendix A. ■

To prove a general result on closed-loop stability, two assumptions
re introduced. The first is on the characteristics of the predicted robot
otion.

ssumption 2. Given the FHOCP solution at time 𝑘, there exists a
cenario 𝜎̂ ∈ N𝑠 that satisfies the following conditions:
𝑁−1
∑

=𝑛𝑞+1
‖𝜽(𝜎̂)∗ (𝑘𝜏 )‖2𝜽𝑔 ≤

𝜆max(𝑸)
𝜆min(𝑸)

𝑁−1
∑

𝜏=𝑛𝑞+1

𝑛𝑠
∑

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛𝑛 ‖𝜽(𝜎)∗ (𝑘𝜏 )‖2𝜽𝑔 , (26)

𝑁−1
∑

𝜏=𝑛𝑞

‖𝝎(𝜎̂)
∗ (𝑘𝜏 )‖2𝜽𝑔 ≤

𝜆max(𝑹)
𝜆min(𝑹)

𝑁−1
∑

𝜏=𝑛𝑞

𝑛𝑠
∑

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛𝑛 ‖𝝎(𝜎)

∗ (𝑘𝜏 )‖2𝜽𝑔 , (27)

here 𝑃 (𝜎)
𝑛𝑛 ≜ 𝑃 (𝜎)

𝑛 ∕
∑𝑛𝑠

𝑗=1
𝑗≠𝜎̂

𝑃 (𝑗)
𝑛 . □

The second assumption accounts for the fact that the convergence of
he robot configuration to its goal is strongly influenced by the human
otion. Given an arbitrary scenario value 𝜎 ∈ N𝑠, define (𝜎)(𝑘𝜏 ) as the
redicted human pose extracted from (𝑘) relative to time 𝑘 + 𝜏, and
(𝜎)(𝑘+𝜏 ) as the predicted human pose extracted from (𝑘+1) relative to

ime 𝑘+𝜏. Given a specific scenario 𝜎̂ ∈ N𝑠, define 𝛿(𝜎)ℎ,𝜎̂

(

𝑘+𝜏
)

as the value
f 𝛿(𝜎)ℎ (introduced after Eq. (16)) associated with time 𝑘+ 𝜏, calculated
sing the human pose (𝜎)(𝑘+𝜏 ) (as defined above) and the robot state
(𝜎̂)
∗ (𝑘𝜏 ). Also, define 𝑒(𝜎)𝜀,𝜎̂ (𝑘

+
𝜏 ) as the value of 𝑒(𝜎)𝜀 (introduced in (18))

ssociated with time 𝑘 + 𝜏, calculated using the human pose (𝜎)(𝑘+𝜏 )
(as defined above) and robot position and velocity equal to 𝜽(𝜎̂)∗ (𝑘𝜏 ) and
𝝎(𝜎̂)
∗ (𝑘𝜏 ), respectively.

Assumption 3. Given the FHOCP solution at time 𝑘 and the human
motion predictions (𝑘) and (𝑘 + 1), there exists 𝜎̂ ∈ N𝑠 such that
𝑁−1
∑

𝜏=1
min
𝜎∈N𝑠

𝛿(𝜎)ℎ,𝜎̂

(

𝑘+𝜏
)

≥
𝑁−1
∑

𝜏=1
max
𝜎∈N𝑠

𝛿(𝜎)ℎ∗ (𝑘𝜏 ), (28)

𝑁−1
∑

𝜏=1
max
𝜎∈N𝑠

𝑒(𝜎)𝜀,𝜎̂ (𝑘
+
𝜏 ) ≤

𝑁−1
∑

𝜏=1
min
𝜎∈N𝑠

𝑒(𝜎)𝜀∗ (𝑘𝜏 ), (29)

where 𝛿(𝜎)ℎ∗ (𝑘𝜏 ) and 𝑒(𝜎)𝜀∗ (𝑘𝜏 ) are the values of 𝛿(𝜎)ℎ (𝑘𝜏 ) and 𝑒(𝜎)𝜀 (𝑘𝜏 ), respec-
tively, associated with the optimal FHOCP solution at time 𝑘. □

Theorem 2 (Stability). Consider the closed-loop system given by (7), with
𝝎(𝑘) given by the solution of (23). Assume that a feasible solution of
the FHOCP (23) exists at time 𝑘, and that Assumptions 1–3 hold, with
Assumptions 2 and 3 being satisfied by the same scenario 𝜎̂. Then, the goal
configuration 𝜽𝑔 is a uniformly asymptotically stable equilibrium point for
the closed-loop system.
7

Proof. See Appendix B. ■
Remark 2. Assumptions 2 and 3 represent sufficient conditions that
provide some insight into what determines the robot pose to converge
to its goal. Assumption 2 requires that the planned robot position and
velocity associated with one specific scenario 𝜎̂ correspond to cost
terms that are in a way lower than those associated with alternative
scenarios, so that using only this scenario to determine the robot motion
at the next time instant will prevent the corresponding cost terms from
increasing. Assumption 3 instead has to rely on the human motion
predicted at time 𝑘+ 1 as well. Its first part requires that the predicted
distances between a specific point on the human and the robot end
effector identified by 𝛿ℎ increase from 𝑘 to 𝑘 + 1: this is intuitively
explained by the fact that, if the human moves away from the robot,
the corresponding cost term decreases. Its second part, instead, requires
a decrease of the slack variables which is difficult to be explained
intuitively, as it depends on the whole predicted human and robot
motions. A simple case in which this part of the assumption is satisfied
is when the SSM constraints hold with zero values of the slack variables
at time 𝑘 + 1.

Remark 3. As detailed in the proof in Appendix B, closed-loop sta-
bility, as implied by the sufficient conditions of Assumptions 2 and 3,
relies on the constant decrease of the optimal S-NMPC cost function. In
practical applications, this might not hold at the time instants in which
the re-planned robot motion, due to a change in the human motion
prediction, is associated with a larger value of the cost function. As a
matter of fact, it is impossible to guarantee that the robot reaches the
goal point in general, as the human operator might in theory even move
to prevent it on purpose. When describing the experimental results,
it will be shown that, in practice, the robot always reached the goal
configuration.

6. Case study

In the case study analyzed in this paper, a Kinova Gen3 collaborative
robot was employed, together with an OptiTrack optical motion capture
system, consisting of 12 OptiTrack PrimeX13 cameras placed on a
cubic cage with side of 3 m. The human motion was tracked based
on the position of infrared markers attached to a special suit. The
markers position was processed by the Motive software on a Windows
PC (Intel Core i9-7900X CPU with 16 GB RAM). Data from this PC were
continuously broadcast to a Linux PC (also Intel Core i9-7900X CPU
with 16 GB RAM), interfaced with the robot, and on which the motion
planning algorithms were implemented. Two tables, with surfaces at
the same level, were placed inside the cube: the manipulator was
located on the first table, while the human subject sat at the second
table, facing the manipulator.

The task to be executed by the human operator, for which the
reader can refer to Fig. 2, consisted of first picking up a 3D-printed
plastic screw from a container (Box #1) placed close by. Three dif-
ferent types of screws were present in the container, identified by
three different colors: gray, white, and olive. Each color corresponded
to another box on the table (Box #2, #3 and #4), in which the
screw had to be inserted. After inserting a screw, the operator would
pick up another, and continue repeating the task until the end of
the given time interval, equal to ten minutes. While the human per-
formed this task, the manipulator picked up 3D-printed cubes on the
same table, and placed them at given different locations. As the mo-
tions of human and robot shared the same workspace, safety was
ensured via SSM for all the employed algorithms. In the following,
the parameters of the HOMC and S-NMPC implementations are de-
scribed. The described experimental procedure was approved by the
Nazarbayev University Institutional Research Ethics Committee (NU-

IREC), and participant’s informed consent was obtained in writing.
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Fig. 2. In the shared workspace, it is possible to see the robot while it moves a cube
between given locations. It is also possible to see four boxes where the operator picks
up and places the screws. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Space occupancy representation of the robot, and of the human for the four
‘‘typical’’ configurations (𝜉) associated with the four discrete states 𝜉 ∈ N[1,4] of the
HOMC in the shown case study. Notice how each of these poses corresponds to the
human operator reaching the box of the same number in Fig. 2.

6.1. Human modeling and prediction

Given the locations of human and robot, the latter could never reach
the operator’s legs, and therefore these were not accounted for when
describing human space occupancy. The operator’s upper body was
instead covered by 𝑛ℎ = 14 spheres ℎ,𝑗 . Their radii 𝑅ℎ,𝑗 took values,
in meters, equal, from 𝑗 = 1 to 𝑗 = 14, to 0.19, 0.33, 0.18, 0.18,
0.15, 0.15, 0.15, 0.15, 0.13, 0.13, 0.14, 0.14, 0.19, and 0.17. As, given
the task description, the operator was expected to stop mainly at four
locations, it was decided to choose 𝑛𝜉 = 4 discrete states for the HOMC.
To obtain functions 𝑓 (⋅) and 𝑔(⋅), data were acquired from a human
participant while executing the above-described task without moving
robot, for a total duration of 10 min. The same human participant will
later execute the task with the moving robot. As 𝑛𝜉 was known, the
K-means clustering algorithm was used to group the measured human
poses into four clusters, based on the subset of  that identified the
Cartesian position of the participant’s right hand in the 𝑂 − 𝑥𝑦𝑧 frame.
This was done by first acquiring the samples of the right human hand
position, and then excluding those samples with a Cartesian velocity
8

higher than the average value, to focus on stationary poses. Once the
centroids of the clusters were determined and each data point was
labeled as belonging to a given cluster, the centroids could be used
to define 𝜉 = 𝑓 () by simply determining the discrete state 𝜉 ∈ N[1,4]
corresponding to the centroid that was closest to the measured human
hand position. For a given 𝜉 (four in total), the ‘‘typical’’ human pose
 = 𝑔(𝜉) was instead found as follows: first, the element-wise mean
value of  was calculated for the data cluster corresponding to 𝜉; then,
𝑔(𝜉) was determined as the actual value of  present in the data cluster,
which was the closest to the element-wise mean value in terms of mean
square error. The resulting four human poses are shown in Fig. 3,
where it is also possible to see the spheres used to over-approximate
the volumes occupied by human and robot.

These functions were used to build a HOMC with 𝑇𝑠 = 0.5 s
(equal to the S-NMPC sampling interval), which iteratively built the
tree of probabilistic transitions between the four activities, based on
past measured values on a window of 𝑛𝑚 = 6 time instants, and
predicting the possible human motions for 𝑁𝑠 = 6 instants ahead. For
a given human participant, the values of all parameters 𝜆𝑖 and 𝑖 of
the MTD model were obtained – based on the above-mentioned 10 min
of recorded data executing the described task without moving robot
– using the approach of Lèbre and Bourguignon (2008) mentioned in
Section 2.2. An available version of this algorithm could be directly
used, as it is implemented in the mtdlearn Python library.

When running the HOMC in real time, the 𝑛𝑠 most likely scenarios –
with 𝑛𝑠 ranging from 1 to 5 – were extracted, thus obtaining sequences
of predicted human poses (𝑘) for 𝑁 = 10 time instants, covering
the whole S-NMPC prediction horizon. For this purpose, one should
notice that, at each depth of the tree, the probability of a branch can
only decrease or remain unchanged due to the fact that the probability
assigned to each node is less than or equal to one by definition.
Therefore, at each step of the expansion, the node associated with
the branch with the highest probability is expanded, and a heap data
structure is used to store unexpanded nodes. The algorithm expands
the tree iteratively until 𝑁𝑠 steps in the future are reached, and the
node at the top of the heap corresponds to the branch with the highest
probability. The same calculations are repeated to determine the 𝑛𝑠
most likely scenarios. This procedure leads to considerable time saving
as compared to expanding the whole tree, whose number of nodes
increases exponentially with 𝑁𝑠, as 2𝑛𝑁𝑠

𝜉 − 1. Algorithm 1 describes
the scenario tree generation more in detail. An example of partially
calculated scenario tree for the simpler case 𝑛𝜉 = 𝑛𝑚 = 𝑁𝑠 = 3 can be
found in Fig. 4.

6.2. Robot modeling

The joint angles of the robot, which constitute the state 𝜽, were
directly available for measurement via absolute rotary encoders (see Ki-
nova Inc. (2022)). The space occupied by the robot was covered by 𝑛𝑟 =
7 spheres 𝑟,𝑖, centered at the joints and end-effector positions, with
radii 𝑅𝑟,𝑖, from 𝑖 = 1 to 𝑖 = 7, equal, in meters, to 0.12, 0.12, 0.12, 0.12,
0.06, 0.06, and 0.10. The functions defining forward and differential
kinematics were constructed from the Denavit-Hartenberg parameters
(see, e.g., Siciliano et al. (2010)) provided by the robot manufacturer in
the user guide (Kinova Inc., 2022). Different values of 𝜽𝑔 were defined
in sequence, with the manipulator always moving – using the same
motion planning algorithm – from one goal configuration to the next,
as follows: (i) the robot would be driven, with downward orientation,
about 15 cm above a cube to be picked; (ii) 𝜽𝑔 would be changed so that
the robot end effector would move to actually pick up the cube; (iii) the
robot would come back to the previous location, now holding the cube;
(iv) the robot would move about 15 cm on top of the location where
the cube had to be placed, located about 90 cm far from the picking
location; (v) the robot would move close to the table and release the
cube; (vi) the robot would be moved back to the previous value of



Control Engineering Practice 142 (2024) 105769A. Oleinikov et al.

f
p
p
𝑛
i
t

𝜽
a

d
S

c

a
[

Algorithm 1: Construction of the scenario tree
Input: root node 𝑟𝑜𝑜𝑡, MTD model 𝑚𝑡𝑑, 𝑁𝑠, 𝑛𝑠
Output: array of most likely leaf nodes 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
initialize ℎ𝑒𝑎𝑝 as max heap with the 𝑟𝑜𝑜𝑡 node as the only
element;

set 𝑑𝑒𝑝𝑡ℎ = 0 ;
set 𝑝𝑟𝑜𝑏 = 1.0 ;
set 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 as an empty array ;
set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑟𝑜𝑜𝑡 ;
while 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠.𝑙𝑒𝑛𝑔𝑡ℎ < 𝑛𝑠 do

if 𝑑𝑒𝑝𝑡ℎ = 𝑁𝑠 then // the horizon is reached
append 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ; // add this node to
the results

else // expand the next node
for 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑚𝑡𝑑.𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑐𝑢𝑟𝑟𝑒𝑛𝑡) do

push 𝑐ℎ𝑖𝑙𝑑 to ℎ𝑒𝑎𝑝 ;
add 𝑐ℎ𝑖𝑙𝑑 as descendent of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ;

end
end
// pick a node with the largest probability
set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = pop top from ℎ𝑒𝑎𝑝 ;

end
return 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 ;

Fig. 4. An example of partially calculated scenario tree for 𝑛𝜉 = 𝑛𝑚 = 𝑁𝑠 = 3. The
irst three nodes marked ‘‘current sequence’’ are the observed states that are used for
rediction. Each node has the same number of children, equal to 𝑛𝜉 . Edges show the
robability of the next state given the previously-observed or predicted sequence of
𝑚 states. An example of a calculated probability of a branch is shown in red. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

𝑔 . Then, the whole sequence will be repeated for picking and placing
nother cube.

As for the bounds on joint variables introduced in Section 3.3, 𝛺 was
efined limiting each component of 𝝎 in the [−0.8, 0.8] rad/s interval.
et 𝛩 was instead defined by imposing, respectively (in rad), −2𝜋,

−2.25, −2𝜋, −2.58, −2𝜋, −2.10 and −2𝜋 as lower bounds, and 2𝜋, 2.25,
2𝜋, 2.58, 2𝜋, 2.10 and 2𝜋 as upper bounds on each component of 𝜽. The
onstraints in (10) were constructed to avoid collisions with the table,
9

s

0 0 1
]

𝑝𝑟,𝑖 ≥ 𝑅𝑟,𝑖,

as the table surface had the same height as the robot base, in which
the origin of the 𝑂 − 𝑥𝑦𝑧 frame was located. As for safety constraints,
the maximum human speed was set as 𝑣ℎ = 1.6 m∕s, the maximum
robot deceleration as 𝑎𝑟 = 5 m∕s2, the precision of the motion capture
system as 𝜖 = 0.02 m and the detection-reaction time of the robot as
𝑇𝑑𝑟 = 100 ms. The latter value was determined based on the fact that
the I-NMPC sampling interval was equal to 50 ms, and it is reasonable to
choose 𝑇𝑑𝑟 equal to twice this value. The parameters for the calculation
of the robot speed bounds in (12) based on the above-mentioned SSM
parameters were set as 𝛼 = 0.85 and 𝑑 = 0.21.

6.3. S-NMPC definition and implementation

The cost function of the S-NMPC law was defined by the following
parameters:

𝑄 = diag
([

20 20 15 15 10 10 10
])

,

𝑅 = diag
([

1.4 1.4 1.4 1.4 1.4 1.4 1.4
])

,

𝛾 = 2200 𝛽 = 6.0, 𝜌 = 105 and 𝑛𝑞 = 2, with the values of 𝛿(𝜎)ℎ defined
with respect to the location of the human right hand.

The overall motion planning scheme of Fig. 1 was defined using
the above-mentioned I-NMPC control law with sampling interval 𝑇̃𝑠 =
50 ms and prediction horizon 𝑁̃ = 10, corresponding to 500 ms, which
tracked the reference variables generated by S-NMPC using the same
parameters for cost function and constraints. The inner control loops of
the Kinova Gen3 robot would then generate the needed joint torques.

The described human-prediction and NMPC routines were run via
Robot Operating System (ROS). The NMPC controllers, obtained via
the acados (Verschueren et al., 2021) C-language code generation
tool, were implemented as separate C++ nodes in ROS. The S-NMPC
parameters were defined using the acados MATLAB interface, and
the nonlinear program into which the FHOCP was cast was solved
via sequential quadratic programming, using the interior-point HPIPM
solver (Frison & Diehl, 2020) with full condensing option to solve
each quadratic program. All calculations relative to the human motion
prediction via HOMC were implemented in Python in a single ROS
node. Every 50 ms, the joint velocity commands generated by the
S-NMPC/I-NMPC cascade were sent from the computer to the inner
control loop of the Kinova Gen3 robot via ROS-Kortex driver. The
joint positions and velocities of the robot were instead read via the
ROS-Kortex interface, also every 50 ms.

7. Experimental results

7.1. Performance with a human subject

The proposed S-NMPC scheme was implemented for real-time in-
teraction with human participants in cases 𝑛𝑠 = 1 (i.e., only accounting
for the most likely human prediction) and 𝑛𝑠 = 2, referred to in the
following as S-NMPC-1 and S-NMPC-2, respectively. As will be de-
scribed in Section 7.2, higher value of 𝑛𝑠 did not provide an acceptable
performance in practice, mainly due to the increase of computational
complexity. To compare them with other approaches, two additional
motion planning routines were implemented. In the first one, the S-
NMPC block in Fig. 1 was substituted by an NMPC planner with the
same structure and the same parameters (in terms of cost function
and constraints) as S-NMPC-1, but with the important difference that
no HOMC was used to predict the time evolution of the human pose,
which was instead set as constant and equal to the currently mea-
sured value. Assuming a constant human pose is probably the most

reasonable solution if one does not possess prediction tools such as the
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proposed HOMC-based method; indeed, solutions such as extrapolating
the current speed of the human sphere centers would not work for
prediction horizons corresponding to several seconds. This approach
assuming constant human pose, referred to in the following as NP-
NMPC, was first proposed by Oleinikov et al. (2021). The second
approach is a continuous SSM (CSSM) planner (Marvel, 2013; Marvel
& Norcross, 2017), in which both S-NMPC and I-NMPC are removed. In
CSSM the robot follows the path determined by the NP-NMPC planner
in the absence of the human (which approximately coincides with the S-
NMPC-1 and S-NMPC-2 paths in the same condition), and continuously
modulates the robot speed to satisfy condition (11). This method has
the advantage of using the non-conservative SSM condition (11), but
the disadvantage of not being able to change its path when the human
moves close to the robot. CSSM can be considered as an advanced
version of the fixed-path algorithms for safe pHRI used in industrial
practice.

Although all four planning methods could run in real time in the
presence of the operator, it would have been unfair to test each method
on a different sequence of human motions. As a consequence, several
human motions of the duration of ten minutes were recorded for the
described task, and later provided to all of the four methods. The
HOMC-based human prediction routine, when present, was also run in
real time. For each of these sequences, the performance of the robot
was measured with different metrics explained in the following.

The first metric is the average value of the sums of the FHOCP
stage costs at each sampling interval, based on the measured robot
and human poses, for a whole sequence of motions as described in
Section 6.2. This metric, referred to as 𝐽avg, expresses how well the
robot optimizes the given cost function on the actual motion. CSSM
did not optimize the same cost function in real time, and thus could
not be compared with the other algorithms via this metric.

The average time 𝑇avg that the robot took to move from a cube
location on one side of the human to a cube location on the other side
was used as second metric. This can correspond either to a pick-and-
place operation (from when a cube is grasped until when it is released),
or to the motion to reach the next cube after having released the
previous one. During this time interval the robot would reach three dif-
ferent values of 𝜽𝑔 in sequence (above the current cube location, above
the next cube location, and the next cube location itself). As 𝑇avg ≃
12 s for the NMPC controllers (as can be seen in the data presented
in the following of this section), a prediction horizon corresponding
to 5 s for reaching each value of 𝜽𝑔 turned out to be a reasonable
choice; consider also that, in case the human operator obstructed the
robot path, the NMPC planner could always decide to violate the soft
SSM constraints (which would be then imposed by I-NMPC as hard
constraints to guarantee safety) in order to achieve a feasible solution.
A third and closely related metric is the robot productivity for the
considered method, defined by Marvel (2013) as 𝑃avg ≜ 𝑇 ′

avg∕𝑇avg, where
𝑇 ′
avg is defined as for 𝑇avg, but without human presence. As slightly

different values of 𝑇 ′
avg were obtained for each planning method, 𝑃avg

was calculated based on that specific value to be totally fair, and to
exactly account for the loss of productivity with respect to using the
same algorithm without human.

Experiments were executed in which all four algorithms were run
for the same 12 motions of a single human participant. The results
are reported in Table 1, from which one can see that S-NMPC-1 and
S-NMPC-2 improved the average 𝐽avg compared to NP-NMPC of about
3.9% and 15.0%, respectively. This shows that the use of two scenarios
considerably improves the actual minimization of the cost function
compared to using only one scenario, or no predictions at all. As for
𝑇avg and 𝑃avg, it is immediately clear that all NMPC-based planners
outperform CSSM – for instance, a 26.4% improvement is observed
for S-NMPC-2 – thanks to their ability to re-plan the robot path as
well as its speed. In terms of 𝑇avg, with respect to NP-NMPC, using S-
NMPC-2 led to an improvement of about 4.3%, while using S-NMPC-1
10

caused a slight worsening of 0.3%. In terms of 𝑃avg instead, compared w
to NP-NMPC, S-NMPC-2 improved the performance only of 0.59% (due
to the fact that S-NMPC-2 was already faster to complete the task
without human compared to NP-NMPC), whereas S-NMPC-1 worsened
the performance of 0.6%. Overall, it is apparent that using one scenario
in this case study does not give any advantage in terms of 𝑇avg and
𝑃avg and a relatively small advantage in terms of 𝐽avg; using S-NMPC-2
improves these metrics, but the improvement is much lower than that
observed for 𝐽avg, which is indeed tightly related to the cost function
actually minimized by the planners.

It might be interesting to analyze the robot behavior when directly
using I-NMPC for regulation purposes, substituting the term in (25)
with ‖𝜻(𝑘𝜏 ) − 𝜽𝑔‖2𝑸. No stabilizing terminal constraint was inserted, as
ts satisfaction would not have been possible with the given prediction
orizon of only 500 ms. Even though such an approach did not provide
ny guarantees of closed-loop stability, the manipulator succeeded in
ompleting a number of pick-and-place tasks. The robot followed a
ath close to that observed with CSSM, with frequent stops. Due to the
bsence of a reference to track included in the state term in (25), the
obot would often approach the goal point with relatively high speed,
hus oscillating around it with decreasing amplitude before eventually
onverging. This behavior was still observed after tuning the I-NMPC
eights so as to minimize the observed value of 𝑇𝑎𝑣𝑔 . As a result, an

average time 𝑇 ′
𝑎𝑣𝑔 without human of 11.52 s was obtained, which is

considerably higher than the corresponding value for CSSM, equal to
8.79 s. In the presence of the human, average values of 𝑇𝑎𝑣𝑔 = 18.22 s
and 𝑃𝑎𝑣𝑔 = 63.86% were obtained. Notice that this value of 𝑃𝑎𝑣𝑔 , though
igher than the corresponding CSSM value of 55.14%, accounts for
erformance reduction with respect to an already much higher value
f 𝑇 ′

𝑎𝑣𝑔 . These results show that using I-NMPC alone is not preferable
o using CSSM, and that a long-term planner is necessary to properly
dapt the robot motion to that of the human.

In order to give an intuitive representation of the properties of
losed-loop stability and satisfaction of the SSM constraints, Fig. 5
hows the time evolution of the four motion planning algorithms for
he same initial condition and with a sequence of 100 s of human
otion. As can be seen in the figure, the distance to the goal – in

his case represented only for the robot end effector and thus equal
o ‖𝒑𝑟,7 − 𝛷fwd,7(𝜽𝑔)‖ – always converges to zero, before a new goal
onfiguration is set. The speed, here also represented in Cartesian
oordinates for the end effector, i.e., equal to 𝑣7, is shown to be always
pper bounded by the corresponding SSM limit from Eq. (12).

To illustrate the prediction of the robot motion for one time instant
in the experiments, Fig. 6 shows, for NP-NMPC, S-NMPC-1 and

-NMPC-2, the human pose prediction (𝑘𝜏 ) for 𝜏 = 0, 2, 4, 6, 8, 10
represented as in Fig. 3) and the corresponding robot pose described
y 𝜽∗(𝑘𝜏 ). In the case of S-NMPC-2, two different scenarios 𝜎 = 1 and
= 2 are generated with the corresponding values of (1)(𝑘𝜏 ) and
(2)(𝑘𝜏 ), which in turn, through the FHOCP solution, generate 𝜽(1)∗ (𝑘𝜏 )

nd 𝜽(2)∗ (𝑘𝜏 ).
A video is provided as supplementary material with this paper to

rovide an overview of the behavior of the four implemented algo-
ithms on the Kinova Gen3 robot. A screenshot of the video is provided
n Fig. 7. To always show an actual operator interacting with the robot
n the video, it was impossible to replicate exactly the same human
otion for all four algorithms. Therefore, the video – whose data were
ot used to generate the results shown in the tables – only provides a
eneral idea of the behavior of each algorithm, and its content should
ot be intended as a proof of the superiority of S-NMPC-2 over the other
lgorithms. The human operator of the video is the same person shown
n Figs. 2 and 7, and is one of the authors of this paper. On the contrary,
he comparison between different algorithms reported in Table 1 was
ade on the same prerecorded human data (with a human operator

ho is not an author of the paper) and is therefore fair.
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Table 1
Comparison of the different algorithms via three different metrics. The values of 𝑇avg and 𝑇 ′

avg are expressed in seconds, while the values of 𝐽avg and 𝑃avg are dimensionless.

Motion Average

1 2 3 4 5 6 7 8 9 10 11 12

CSSM 𝐽avg – – – – – – – – – – – – –
𝑇 ′
avg = 8.79 𝑇avg 18.03 15.36 13.54 17.23 17.34 15.35 14.76 18.70 17.33 15.41 13.21 17.19 16.12

𝑃avg 48.73% 57.18% 64.87% 50.98% 50.68% 57.27% 59.55% 47.01% 50.72% 57.04% 66.52% 51.13% 55.14%

NP-NMPC 𝐽avg 2238.03 2081.21 1607.57 1717.43 1855.56 2315.04 1851.88 1824.67 2170.35 2160.86 1965.77 2143.24 1994.30
𝑇 ′
avg = 8.68 𝑇avg 12.47 13.13 11.66 12.30 12.49 12.62 12.04 12.30 12.63 12.39 12.26 12.40 12.39

𝑃avg 69.58% 66.06% 74.39% 70.54% 69.48% 68.76% 72.10% 70.57% 68.74% 70.07% 70.79% 70.00% 70.09%

S-NMPC-1 𝐽avg 1939.46 2141.78 1651.23 1787.38 1871.85 2138.20 1873.24 1868.26 1935.28 1944.26 1881.93 1957.65 1915.88
𝑇 ′
avg = 8.66 𝑇avg 12.29 13.33 12.06 12.55 12.30 12.75 12.04 12.27 12.64 12.32 12.26 12.38 12.43

𝑃avg 70.47% 64.94% 71.80% 69.00% 70.41% 67.93% 71.94% 70.58% 68.54% 70.30% 70.65% 69.98% 69.71%

S-NMPC-2 𝐽avg 1493.83 1517.41 1391.50 1674.12 1927.57 1932.25 1998.13 1670.72 1496.41 1945.01 1718.23 1576.85 1695.17
𝑇 ′
avg = 8.35 𝑇avg 11.78 12.12 10.78 11.52 12.50 11.81 12.12 11.76 11.84 12.50 12.14 11.46 11.86

𝑃avg 70.86% 68.88% 77.45% 72.47% 66.80% 70.72% 68.90% 71.00% 70.51% 66.78% 68.76% 72.89% 70.50%
Fig. 5. Time evolution from the experiments of end-effector Cartesian velocity,
corresponding SSM limit and distance of the end effector from its goal location in
the presence of the human operator.

Table 2
Average time for calculation of human position prediction (ms).

𝑁𝑠

1 2 3 4 5 6 7 8 9 10

𝑛𝑠

1 1.10 1.71 2.19 2.72 3.22 3.85 4.43 6.14 6.88 7.98
2 1.19 2.32 3.56 4.64 5.65 7.30 8.95 10.07 13.77 17.15
3 1.40 2.54 4.21 5.93 7.57 10.21 12.31 13.89 18.10 22.40
4 1.39 3.00 4.73 6.80 9.52 12.03 15.22 17.21 22.25 25.56

7.2. Computational complexity

In order to get a better insight into the computation time of the
different components of the developed algorithms, in this section the
time intervals needed (using the hardware described in Section 6) to
calculate the human pose prediction (via Algorithm 1) and the S-NMPC
solution are reported. Using S-NMPC-2, a sequence of robot configu-
rations was generated based on one of the human motions described
above, collecting a total of 2317 samples. Based on these configurations
𝜽(𝑘) and the related human poses (𝑘) at the same time instants,
human pose predictions and S-NMPC solutions were calculated offline
for a range of parameter values. Offline calculations allowed us to test
the devised methods on the same dataset (to allow a fair comparison),
and to avoid problems related to real-time execution (for example, if
the S-NMPC controller would require too much computation time).
11
Fig. 6. Prediction of human motion and corresponding optimal robot motion (possibly
for multiple scenarios) for the three implemented NMPC motion planners. These
predictions correspond to the FHOCP solution for the same time instant 𝑘 during the
experiments.

Fig. 7. Screenshot of the video provided as supplementary material, which shows
the robot behavior for the four algorithms (CSSM, NP-NMPC, S-NMPC-1, S-NMPC-2)
executed in the experiments.
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s

Table 3
Average S-NMPC calculation time (ms).

𝑁

1 2 3 4 5 6 7 8 9 10

NMPC

NP-NMPC 1.02 2.15 3.62 5.25 7.70 10.62 13.95 18.04 22.23 28.07
S-NMPC-1 1.03 2.13 3.65 5.31 7.80 10.51 13.76 17.85 21.68 27.92
S-NMPC-2 2.60 6.03 11.05 18.73 32.15 52.67 80.36 107.66 149.53 178.11
S-NMPC-3 4.29 10.89 23.35 47.31 91.44 144.56 207.43 286.19 378.27 497.89
S-NMPC-4 6.06 17.12 44.76 97.01 174.60 297.14 419.18 597.42 850.39 1171.98
w
w
d
c
f

i
a
t
R

The prediction of the human motion was obtained for a number of
cenarios 𝑛𝑠 ∈ N[1,4] and for a time horizon 𝑁𝑠 ∈ N[1,10]. The corre-

sponding results in terms of average computation time are reported
in Table 2. The computation time even for the most complex case is
equal to 25.56 ms, which is relatively low if compared with the sampling
interval 𝑇𝑠 = 500 ms. The fact that the prediction of the human motion
after 3 s (i.e., for 𝑛𝑠 > 6) did not provide any reliable information was
used to decide to avoid using higher values of 𝑁𝑠, which would have
increased the computation time without providing any advantages.

The S-NMPC solution was calculated for the case without human
prediction (NP-NMPC) and for a number of scenarios up to four (S-
NMPC-4), using a prediction horizon 𝑁 ∈ N[1,10]. The resulting average
computation times are shown in Table 3. It is apparent that the compu-
tation time increases with 𝑁 and even more notably with the number
of scenarios. It is important to highlight that the cases NP-NMPC and S-
NMPC-1 have very similar computation time for the same value of 𝑁 ,
as a single evolution of the robot motion is calculated in both cases.
Calculating the NMPC law requires on average more time than predict-
ing the human motion via HOMC. A high value of 𝑁 was necessary
for S-NMPC to plan a reasonable robot motion that could reach the
goal point (sometimes violating the soft SSM constraints, which were
in any case enforced by I-NMPC), and this is why 𝑁 = 10 was chosen.
Also, the S-NMPC variants with three and four scenarios, due to their
computation time that often exceeded the sampling interval, could not
be used in real time without causing a considerable loss of performance
and the frequent inability of the robot to reach the goal configuration
in practice; this is the reason why, in Section 7.1, S-NMPC algorithms
more complex than S-NMPC-2 were not considered.

8. Conclusions and outlook

This paper has proposed an S-NMPC method for pHRI, based on
HOMC for human motion prediction. The closed-loop stability of the
system was guaranteed under suitable assumptions, and the effective-
ness of the approach was tested experimentally with actual human
participants. As a result, the implemented S-NMPC scheme with two
scenarios outperformed all other implemented schemes, i.e., S-NMPC
with one scenario, NMPC without human prediction, and continuous
SSM. This shows the potential of stochastic NMPC planners in pHRI.

The limitations of the proposed approach are mainly related to the
computational burden of the S-NMPC calculations, which made it im-
possible to use more than two scenarios in real-time implementations.
Although computational complexity is an inherent limitation of NMPC,
its improvement will be considered as future work, together with
implementations with multiple human participants in more realistic
manufacturing case studies. Another topic to be investigated is the
guarantee of stability based on assumptions on the human motion. In-
deed, at the moment no assumptions are made on how  can vary from
time 𝑘 to 𝑘+1; specific human prediction methodologies could be used
to provide probabilistic information on this variation, which could be
exploited by a specifically designed NMPC strategy. Furthermore, con-
sidering set terminal constraints rather than point terminal constraints,
or no terminal constraints at all with a sufficiently long prediction
horizon, might be helpful to further improve the performance of the
designed motion planning schemes.
12
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Appendix A. Proof of Theorem 1

After determining the optimal set of control sequences 𝝎̄∗(𝑘), one
can define sub-optimal sequences of inputs ̃̄𝝎(𝑘+ 1) and corresponding
states ̃̄𝜽(𝑘 + 1) for the next time instant, whose elements are defined,
for all 𝜎 ∈ N𝑠, as

𝝎̃(𝜎)(𝑘+𝜏 ) ≜

{

𝝎(𝜎̂)
∗ (𝑘𝜏 ), 𝜏 ∈ N[1,𝑁−1],

0 𝜏 = 𝑁.
(A.1)

and

𝜽̃(𝜎)(𝑘𝜏 ) ≜

{

𝜽(𝜎̂)∗ (𝑘𝜏 ), 𝜏 ∈ N[1,𝑁],
𝜽𝑔 , 𝜏 = 𝑁 + 1,

(A.2)

where 𝜎̂ ∈ N𝑠 is fixed, e.g., 𝜎̂ = 1. This set of sequences of control
inputs, together with the corresponding sequences of states, leads to
satisfying constraints (22a)–(22g), as one can immediately verify: in-
deed, these constraints do not depend on the human motion associated
with a specific scenario, which is why one can choose any 𝜎̂ ∈ N𝑠. On
the other hand, constraints (22h)–(22i) can always be satisfied. The
existence of the feasible solution associated with (A.1), (A.2) implies
the existence of an optimal solution at 𝑘 + 1.

Appendix B. Proof of Theorem 2

The optimal control move 𝝎(𝑘) obtained from (23) for a given
measured robot configuration 𝜽(𝑘) also depends on the whole set (𝑘)
of human motion predictions. In general, the applied control input
can be written as 𝝎(𝜽(𝑘),(𝑘)), or, using a more general notation for
time-varying systems, as 𝝎(𝜽, 𝑘). The closed-loop dynamics (7) will be
referred to as

𝜽+ = 𝑓 (𝜽, 𝑘) ≜ 𝜽 + 𝑇𝑠𝝎(𝜽, 𝑘), (B.1)

ith 𝝎(𝜽, 𝑘) again obtained as solution of (23). The set of values of 𝜽 for
hich a solution of the FHOCP (23) with prediction horizon 𝑁 exists is
enoted as 𝛩𝑁

MPC; this set is not time-varying, as all the imposed hard
onstraints are time-invariant, and thus a change in (𝑘) does not affect
easibility.

From Lyapunov theory (see, e.g., Theorem 2.32 in the book by Rawl-
ngs, Mayne, and Diehl (2017)) it is known that 𝜽 = 𝜽𝑔 is a uniformly
symptotically stable equilibrium of system (B.1) with domain of at-
raction 𝛩𝑁

MPC if there exists a function (Lyapunov function) 𝑉 (𝜽, 𝑘) ∶
𝑛𝜃 × N≥0 → R≥0 defined such that, if 𝜽 ∈ 𝛩𝑁

MPC,

𝛼 (‖𝜽‖ ) ≤ 𝑉 (𝜽, 𝑘) ≤ 𝛼 (‖𝜽‖ ), (B.2)
1 𝜽𝑔 2 𝜽𝑔
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𝑉 (𝑓 (𝜽, 𝑘), 𝑘 + 1) − 𝑉 (𝜽, 𝑘) ≤ −𝛼3(‖𝜽‖𝜽𝑔 ), (B.3)

where ‖𝜽‖𝜽𝑔 ≜ ‖𝜽 − 𝜽𝑔‖, whereas 𝛼𝑖(⋅) ∶ R≥0 → R≥0, 𝑖 = 1, 2, 3, are
∞ functions (i.e., for 𝑖 = 1, 2, 3, 𝛼𝑖(0) = 0, 𝛼𝑖(⋅) is strictly increasing
and unbounded above). As Lyapunov function candidate, consider the
optimal cost

𝑉 (𝜽, 𝑘) ≜ min
𝝎̄,𝜽̄

𝐽
(

𝝎̄(𝑘), 𝜽̄(𝑘),(𝑘)
)

, subj. to (22a)–(22i).

Determining 𝛼1(⋅)

From (13), (19), (21), and recalling that ∑𝑛𝑠
𝜎=1 𝑃

(𝜎)
𝑛 = 1 by construc-

tion, it is possible to obtain
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝐽 (𝜎)

(

𝝎̄(𝜎)
∗ (𝑘), 𝜽̄(𝜎)∗ (𝑘),(𝜎)(𝑘)

)

≥
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛

𝑁−1
∑

𝜏=0
‖𝜽(𝜎)∗ (𝑘𝜏 ) − 𝜽𝑔‖2𝑸 ≥

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 ‖𝜽(𝜎)∗ (𝑘|𝑘) − 𝜽𝑔‖2𝑸

=
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 ‖𝜽(𝑘) − 𝜽𝑔‖2𝑸 ≥ 𝜆min(𝑸)‖𝜽(𝑘)‖2𝜽𝑔 ≜ 𝛼1(‖𝜽‖𝜽𝑔 ).

Determining 𝛼2(⋅)

The basic idea is to find a subset of a neighborhood of 𝜽𝑔 in which all
hard state constraints are satisfied. In this subset, an explicit expression
for the control action should be defined such that 𝜽 = 𝜽𝑔 at the next
time instant, i.e., 𝝎 = 𝝎𝑔 ≜ 1

𝑇𝑠
(𝜽𝑔 − 𝜽). The above-mentioned subset

should be defined such that 𝝎 = 𝝎𝑔 can be applied satisfying both
the input constraints and the SSM constraints (in the last case, with
zero value of the slack variables). This will allow us to define an upper
bounding function in this subset, which will be then extended to the
whole set 𝛩𝑁

MPC.
Set 𝛺 introduced in Section 3.3, which defines the input constraint

(22e), is by definition a compact set that includes the origin in its
interior. It is thus possible to determine a value 𝑑𝜔 ∈ R>0, such that

(𝝎, 𝟎, 𝑑𝜔) ≜
{

𝝎 ∈ R𝑛𝜃 ∶ ‖𝝎‖ < 𝑑𝜔
}

⊂ 𝛺, (B.4)

here in general (𝒗, 𝒗̄, 𝜌) is the open ball of radius 𝜌 in the Euclidean
pace defined by the input vector 𝒗, and centered at 𝒗 = 𝒗̄. Moving to
he two hard state constraints, one can notice that both (22f) and (22g)
an be expressed as depending on 𝜽, since 𝒑𝑟,𝑖 = 𝛷fwd,i(𝜽). Thus, one can
efine 𝛩̃ ⊂ R𝑛𝜃 as the set of values of 𝜽 that satisfy both conditions (22f)
nd (22g). From the considerations in the paragraph after Eq. (10), it
mmediately follows that 𝜽𝑔 ∈ 𝛩̃. Moreover, given Assumption 1, there
xists 𝑑𝜃 ∈ R>0 such that, if 𝜽 ∈ (𝜽,𝜽𝑔 , 𝑑𝜃), then applying 𝝎𝑔 leads
o satisfying constraint (22h) with 𝜀𝑖𝑗 = 0. Another set is introduced
n the robot state space, i.e., (𝜽,𝜽𝑔 , 𝑑𝜃), where 𝑑𝜃 = min(𝑑𝜃 , 𝑑𝜔𝑇𝑠).
rom the definitions of the previously introduced sets it follows that,
f one chooses 𝜽 ∈ (𝜽,𝜽𝑔 , 𝑑𝜃) ∩ 𝛩̃, then applying 𝝎𝑔 satisfies both
𝑔 ∈ (𝝎, 𝟎, 𝑑𝜔) and constraint (22h) with 𝜀𝑖𝑗 = 0. The stage cost
ssociated with state 𝜽 ∈ (𝜽,𝜽𝑔 , 𝑑𝜃) ∩ 𝛩̃, input 𝝎𝑔 and to a generic
uman pose  can be written (with a slight abuse of notation and not
onsidering any specific scenario 𝜎), based on (13), (14) and (15) as

(𝜽,𝝎𝑔 ,) = ‖𝜽 − 𝜽𝑔‖2𝑸 +
‖

‖

‖

‖

1
𝑇𝑠

(𝜽𝑔 − 𝜽)
‖

‖

‖

‖

2

𝑹
+ 𝛾𝑒

−2𝛽
𝛿2ℎ

‖𝜽−𝜽𝑔‖2

≤
(

𝜆max(𝑸) +
𝜆max(𝑹)

𝑇𝑠

)

‖𝜽 − 𝜽𝑔‖2 + 𝛾𝑒
−2𝛽

𝛿2min
‖𝜽−𝜽𝑔‖2

≜ 𝛼̃2(‖𝜽‖𝜽𝑔 ), (B.5)

with 𝛿min as defined in (17). Notice that the portion of stage cost that
accounts for the violation of the SSM constraints is not present, as
13

e

applying 𝝎𝑔 satisfies these constraints by construction. In (B.5), the
case 𝜽 ≠ 𝜽𝑔 in (16) was taken into account: if 𝜽 = 𝜽𝑔 , then, again
according to (16), the term multiplying 𝛾 is equal to zero, and the
upper bound expressed by 𝛼̃2(‖𝜽‖𝜽𝑔 ) (which is a ∞ function) is still
valid. Assuming to solve the FHOCP (23) with 𝑁 = 1 from 𝜽 ∈
(𝜽,𝜽𝑔 , 𝑑𝜃)∩𝛩̃ with generic human pose (𝑘), the only feasible solution,
nd thus coinciding with the optimal one, would be that corresponding
o 𝝎(𝜎)

∗ (𝑘|𝑘) = 𝝎𝑔 for all 𝑛𝑠 scenarios. This leads to 𝑉 (𝜽, 𝑘) ≤ 𝛼̃2(‖𝜽‖𝜽𝑔 )
for 𝑁 = 1. However, with the same initial condition 𝜽 ∈ (𝜽,𝜽𝑔 , 𝑑𝜃)∩ 𝛩̃
nd human pose (𝑘), but with 𝑁 > 1, the optimal value of the cost
unction cannot be worse than for 𝑁 = 1, and therefore 𝑉 (𝜽, 𝑘) ≤
̃2(‖𝜽‖𝜽𝑔 ) holds for any positive value of 𝑁 . To determine an upper
ound valid also for 𝜽 ∈ 𝛩𝑁

MPC⧵(𝜽,𝜽𝑔 , 𝑑𝜃), one can proceed by defining

𝛼̂2(𝜈) ≜max
𝝎̄,𝜽̄

𝐽
(

𝝎̄(𝑘), 𝜽̄(𝑘),(𝑘)
)

subj. to 𝜽 ∈ ̄(𝜽,𝜽𝑔 , 𝜈) (B.6)
and to (22a)–(22b)

ith ̄(𝜽,𝜽𝑔 , 𝜈) ≜
{

𝜽 ∈ R𝑛𝜃 ∶ ‖𝜽 − 𝜽𝑔‖ ≤ 𝜈
}

defined as a closed ball
ith a generic radius 𝜈 ∈ R>0. Since both 𝑓 (⋅, ⋅) and 𝐽 (⋅, ⋅, ⋅) are contin-
ous in their arguments and 𝛺 is a compact set, similarly to Proposition
.7(ii) in the book of Grüne and Pannek (2017) one can conclude that

𝛼̂2(𝜈) is continuous and monotonically non-increasing (with, in general,
𝛼̂2(0) ≠ 0), and easily claim that 𝑉 (𝜽, 𝑘) ≤ 𝛼̂2(‖𝜽‖𝜃𝑔 ). Again following

he arguments in Proposition 5.7(ii) by Grüne and Pannek (2017), one
an show that a suitable ∞ upper-bounding function, as needed in
B.2), can be defined by combining 𝛼̃2(⋅) and 𝛼̂2(⋅), as

2(‖𝜽‖𝜃𝑔 ) ≜ ‖𝜽‖𝜃𝑔
(

𝛼̃2(‖𝜽‖𝜃𝑔 ) + ‖𝜽‖𝜃𝑔 𝛼̂2(𝑑𝜃)∕𝑑𝜃
)

(B.7)

f ‖𝜽‖𝜃𝑔 ∈ [0, 𝑑𝜃), and as

2(‖𝜽‖𝜃𝑔 ) ≜ ‖𝜽‖𝜃𝑔
(

𝛼̃2(𝑑𝜃) + 𝛼̂2(‖𝜽‖𝜃𝑔 )
)

(B.8)

f ‖𝜽‖𝜃𝑔 ≥ 𝑑𝜃 .

etermining 𝛼3(⋅)

The optimal solution of (23) at time 𝑘 associated with (𝑘) provides
equences of control inputs for all scenarios 𝜎 ∈ N𝑠 as 𝝎(𝜎)

∗ (𝑘𝜏 ), 𝜏 ∈

[0,𝑁−1] and corresponding robot configurations 𝜽(𝜎)∗ (𝑘𝜏 ), 𝜏 ∈ N[0,𝑁],
ith all 𝜽(𝜎)∗ (𝑘𝑁 ) = 𝜽𝑔 . These sequences, together with (𝑘), determine

he value of 𝑉 (𝜽, 𝑘). At time 𝑘+1, one can employ the set of suboptimal
equences defined by (A.1) and (A.2), for a fixed 𝜎̂ ∈ N𝑠. These
uboptimal sequences, together with (𝑘 + 1), will be associated with
cost value 𝑉 (𝑓 (𝜽, 𝑘), 𝑘 + 1). As the latter constitutes an upper bound

or the optimal cost 𝑉 (𝑓 (𝜽, 𝑘), 𝑘 + 1), uniform asymptotic stability will
e proven if one can determine 𝛼3(⋅) such that

𝑉 ≜ 𝑉 (𝑓 (𝜽, 𝑘), 𝑘 + 1) − 𝑉 (𝜽, 𝑘) ≤ −𝛼3(‖𝜽‖𝜽𝑔 ). (B.9)

(𝜽, 𝑘) is composed of the sum of the optimal stage costs in (20),
amely
(𝜎)
∗ (𝑘𝜏 ) ≜ 𝑒(𝜎)𝜃∗ (𝑘𝜏 ) + 𝑒(𝜎)𝜔∗(𝑘𝜏 ) + 𝑒(𝜎)𝜑∗ (𝑘𝜏 ) + 𝑒(𝜎)𝜀∗ (𝑘𝜏 ). (B.10)

nalogous terms for 𝑉 (𝑓 (𝜽, 𝑘), 𝑘 + 1) are defined as
(̃𝜎)(𝑘+𝜏 ) ≜ 𝑒(𝜎)𝜃 (𝑘+𝜏 ) + 𝑒(𝜎)𝜔 (𝑘+𝜏 ) + 𝑒(𝜎)𝜑 (𝑘+𝜏 ) + 𝑒(𝜎)𝜀 (𝑘+𝜏 ). (B.11)

ne can rewrite 𝛥𝑉 defined in (B.9) as

𝑉 =
𝑛𝑠
∑

𝜎=1

𝑁
∑

𝜏=1
𝑃 (𝜎)
𝑛 𝓁(𝜎)(𝑘+𝜏 ) −

𝑛𝑠
∑

𝜎=1

𝑁−1
∑

𝜏=0
𝑃 (𝜎)
𝑛 𝓁(𝜎)

∗ (𝑘𝜏 ), (B.12)

n which 𝑃 (𝜎)
𝑛 and 𝑃 (𝜎)

𝑛 are the normalized probabilities associated with
generic scenario 𝜎 ∈ N𝑠 in (𝑘) and (𝑘 + 1), respectively. In

he following, 𝛥𝑉 is split into several terms as 𝛥𝑉 =
∑𝑁

𝜏=0 𝛥𝑉𝜏 , with
ach 𝛥𝑉 including the sum of all stage costs in (B.12) associated with
𝜏
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time 𝑘 + 𝜏 | 𝑘. A sufficient condition implying the existence of 𝛼3(⋅)
s 𝛥𝑉0 ≤ −𝛼3(‖𝜽‖𝜽𝑔 ), and 𝛥𝑉𝜏 ≤ 0 for 𝜏 ∈ N1,𝑁 . In the remainder

f the proof, it will be shown that Assumptions 2 and 3 imply these
nequalities.

The first term to be analyzed is

𝑉𝑁 =
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝓁(𝜎)(𝑘+𝑁 ). (B.13)

or all scenarios, one has that 𝜽̃(𝜎)(𝑘+𝑁 ) = 𝜽(𝜎̂)∗ (𝑘𝑁 ) = 𝜽𝑔 (see (22c) and
(A.1)) and 𝝎̃(𝜎)(𝑘+𝑁 ) = 0 (see (A.2)). Therefore, the terms in (B.11) are
as follows: 𝑒(𝜎)𝜃 (𝑘+𝑁 ) = 0 (see (13)); 𝑒(𝜎)𝜔 (𝑘+𝜏 ) = 0 (see (14)); 𝑒(𝜎)𝜑 (𝑘+𝜏 ) = 0,
again as 𝜽̃(𝜎)(𝑘+𝑁 ) = 𝜽(𝜎̂)∗ (𝑘𝑁 ) = 𝜽𝑔 (see (15) and (16)); finally, 𝑒(𝜎)𝜀 (𝑘+𝜏 ) =
0 (see (18)), as Assumption 1 guarantees the satisfaction of the SSM
constraints with zero speed. This immediately proves that condition
𝛥𝑉𝑁 ≤ 0 is satisfied.

The next considered term is the sum of all

𝛥𝑉𝜏 =
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝓁(𝜎)(𝑘+𝜏 ) −

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝓁(𝜎)

∗ (𝑘𝜏 ), 𝜏 ∈ N[1,𝑁−1], (B.14)

which is further split for convenience as 𝛥𝑉𝜏 = 𝛥𝑉𝜏,𝜃 + 𝛥𝑉𝜏,𝜔 + 𝛥𝑉𝜏,𝜑 +
𝛥𝑉𝜏,𝜀, with each sub-term containing the portions of stage costs related
to the same subscript 𝜃, 𝜔, 𝜑 or 𝜀. The first sum of sub-terms is
𝑁−1
∑

𝜏=1
𝛥𝑉𝜏,𝜃 ≜

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜃 (𝑘+𝜏 ) −

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜃∗ (𝑘𝜏 ). (B.15)

As 𝜽̃(𝜎)(𝑘+𝜏 ) = 𝜽(𝜎̂)∗ (𝑘𝜏 ) by construction and ∑𝑛𝑠
𝜎=1 𝑃

(𝜎)
𝑛 = 1, the first inner

sum on the right-hand side of (B.15) equals 𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ). Thus, ∑𝑁−1
𝜏=1 𝛥𝑉𝜏,𝜃 ≤

0 can be obtained by imposing ∑𝑁−1
𝜏=1 𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ) ≤

∑𝑁−1
𝜏=1

∑𝑛𝑠
𝜎=1 𝑃

(𝜎)
𝑛 𝑒(𝜎)𝜃∗ (𝑘𝜏 )

or, equivalently,
𝑁−1
∑

𝜏=1

(

1 − 𝑃 (𝜎̂)
𝑛

)

𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ) ≤
𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜃∗ (𝑘𝜏 ). (B.16)

As for 𝜏 ∈ N[1,𝑛𝑞 ] all state evolutions coincide, and thus 𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ) = 𝑒(𝜎)𝜃∗ (𝑘𝜏 )
for all 𝜎 ∈ N𝑠, the sums in both sides of (B.16) only have to be
imposed for 𝜏 ∈ N𝑛𝑞+1,𝑁−1, as all other terms cancel each other. By
also recalling the formulation of 𝑃 (𝜎)

𝑛𝑛 introduced in Assumption 2, a
condition equivalent to (B.16) is

(

1 − 𝑃 (𝜎̂)
𝑛

)

𝑁−1
∑

𝜏=𝑛𝑞+1
𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ) ≤

𝑛𝑠
∑

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛 ⋅

𝑁−1
∑

𝜏=𝑛𝑞+1

𝑛𝑠
∑

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛𝑛 𝑒(𝜎)𝜃∗ (𝑘𝜏 ). (B.17)

Since
(

1 − 𝑃 (𝜎̂)
𝑛

)

=
∑𝑛𝑠

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛 by definition, (B.17) is equivalent to

∑𝑁−1
𝜏=𝑛𝑞+1

𝑒(𝜎̂)𝜃∗ (𝑘𝜏 ) ≤
∑𝑁−1

𝜏=𝑛𝑞+1
∑𝑛𝑠

𝜎=1
𝜎≠𝜎̂

𝑃 (𝜎)
𝑛𝑛 𝑒(𝜎)𝜃∗ (𝑘𝜏 ). As in general 𝜆min(𝑸)

‖

‖

‖

𝜽(𝜎̂)∗ (𝑘𝜏 )
‖

‖

‖

2

𝜽𝑔
≤ 𝑒(𝜎)𝜃∗ (𝑘𝜏 ) ≤ 𝜆max(𝑸) ‖‖

‖

𝜽(𝜎̂)∗ (𝑘𝜏 )
‖

‖

‖

2

𝜽𝑔
regardless of the value

of 𝜏, it is now possible to see that (26) in Assumption 2 implies
∑𝑁−1

𝜏=1 𝛥𝑉𝜏,𝜃 ≤ 0. The second sum of sub-terms is
𝑁−1
∑

𝜏=1
𝛥𝑉𝜏,𝜔 ≜

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜔 (𝑘+𝜏 ) −

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜔∗(𝑘𝜏 ). (B.18)

By following the same rationale used to analyze 𝛥𝑉𝜏,𝜃 , one can show
that 𝛥𝑉𝜏,𝜔 = 0 for 𝜏 ∈ N[1,𝑛𝑞−1], in which the control input is the same for
all scenarios, and therefore (27) in Assumption 2 is needed to impose
∑𝑁−1

𝜏=1 𝛥𝑉𝜏,𝜔 ≤ 0. The third sum of sub-terms is
𝑁−1
∑

𝜏=1
𝛥𝑉𝜏,𝜑 ≜

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜑,𝜎̂ (𝑘

+
𝜏 ) −

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜑∗ (𝑘𝜏 ), (B.19)

where 𝑒(𝜎)𝜑,𝜎̂ (𝑘
+
𝜏 ) is the value of 𝑒(𝜎)𝜑 (𝑘+𝜏 ) in which the state value 𝜽̃(𝜎)(𝑘+𝜏 ) =

𝜽(𝜎̂)∗ (𝑘𝜏 ) corresponds to the suboptimal sequence (a single sequence
corresponding to scenario 𝜎̂), whereas the human motion predicted at
14
time 𝑘 + 1 comprises of 𝑛𝑠 different scenarios 𝜎. This is why the first
inner sum in the right-hand side of (B.19) cannot be represented as
a single term only related to scenario 𝜎̂, as was done for the previous
two sums of sub-terms. Regardless of the values of the probabilities 𝑃 (𝜎)

𝑛
and 𝑃 (𝜎)

𝑛 , recalling that the values of 𝑒(𝜎)𝜑∗ (𝑘𝜏 ) and 𝛿(𝜎)ℎ∗ (𝑘𝜏 ) (and similarly
𝑒(𝜎)𝜑,𝜎̂ (𝑘

+
𝜏 ) and 𝛿(𝜎)ℎ,𝜎̂) are both non-negative and inversely proportional to

one another, it is possible to see that (28) in Assumption 3 implies
∑𝑁−1

𝜏=1 𝛥𝑉𝜏,𝜑 ≤ 0. The fourth sum of sub-terms is
𝑁−1
∑

𝜏=1
𝛥𝑉𝜏,𝜀 ≜

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜀,𝜎̂ (𝑘

+
𝜏 ) −

𝑁−1
∑

𝜏=1

𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝑒(𝜎)𝜀∗ (𝑘𝜏 ). (B.20)

Similarly to the third sum of sub-terms, one can see that (29) in
Assumption 3 implies ∑𝑁−1

𝜏=1 𝛥𝑉𝜏,𝜀 ≤ 0.
One can conclude by analyzing 𝛥𝑉0. Its expression can be inferred

from (B.12) as

𝛥𝑉0 = −
𝑛𝑠
∑

𝜎=1
𝑃 (𝜎)
𝑛 𝓁(𝜎)

∗ (𝑘0) ≤ −𝑒(𝜎̃)𝜃∗ (𝑘0), (B.21)

where 𝜎̃ is an arbitrary scenario value. The inequality in (B.21) is
obtained by recalling that ∑𝑛𝑠

𝜎=1 𝑃
(𝜎)
𝑛 = 1 and that the initial robot state

is the same for all scenarios. More in detail, as this state is equal to
𝜽(𝑘), then 𝛥𝑉0 ≤ −𝜆min(𝑸)(‖𝜽(𝑘)‖𝜽𝑔 ) ≜ −𝛼3(‖𝜽‖𝜽𝑔 ), which concludes the
proof.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.conengprac.2023.105769.
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