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A B S T R A C T

This paper presents two iterative algorithms for non-intrusive appliance load monitoring, which aims to
decompose the aggregate power consumption only measured at the household level into the contributions
of the individual electric appliances. The approaches are based on modelling the total power consumption
as a combination of jump linear sub-models, each of them describing the behaviour of the individual
appliance. Dynamic-programming and multi-model Kalman filtering techniques are used to reconstruct the
power consumptions at the single-appliance level from the aggregate power in an iterative way.

1. Introduction

Retrieving residential power consumptions at the single-appliance
level provides a useful starting point to design and assess the im-
pact of energy efficiency programs, design customized energy demand
management strategies, detect malfunctioning and increase consumers’
awareness on their consumption habits, to ultimately provide potential
savings and economic incentives, like replacing low-efficient devices or
deferring the use of some appliances to peak-off hours.

A possible solution to acquire information on end-use energy con-
sumption is to use smart appliances or to couple smart meters with
every appliance in the house. Alternatively, energy disaggregation algo-
rithms, also known as Non-Intrusive Load Monitoring (NILM), decompose
the aggregate power demand gathered from a single-point smart metere
into the individual consumption of each appliance. The advantages of
using disaggregation methods are clearly the reduction of intrusiveness
into consumers’ houses and lower costs for installation, maintenance
and replacement of the monitoring system.

The first algorithm for non-intrusive load monitoring was proposed
in Hart (1992), where a signal processing method is used to detect
on/off transitions of the appliances from the active and reactive power
in the total load. After detecting a transition, typical consumption pat-
terns of the individual appliances (commonly called signatures) are used
to detect which device has been switched on or off. Since the pioneering
work of Hart, several efforts have been spent to develop efficient meth-
ods for NILM, see Esa, Abdullah, and Hassan (2016), Zeifman and Roth
(2011) and Zoha, Gluhak, Imran, and Rajasegarar (2012) for a detailed
review on the subject. However, most of NILM algorithms available in
the literature focus on particular scenarios or are able to reach a high
level of accuracy only when specific assumptions are satisfied on the
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monitored appliances. For instance, the approaches in Giri and Berges
(2015), Hart (1992) and Yang, Soh, and Yap (2015) are tailored to
binary-state appliances, and thus they can be mainly used to detect if
an appliance is on or off. Methods in Chang (2012), Liang, Ng, Kendall,
and Cheng (2010) and Srinivasan, Ng, and Liew (2006) are based on the
analysis of the sub-harmonics of the 50∕60-Hz electric signal. However,
to capture this information, a high-frequency sampling rate (larger than
1 kHz) is needed. In Mejari, Naik, Piga, and Bemporad (2018) and
Suzuki, Inagaki, Suzuki, Nakamura, and Ito (2008), non-intrusive load
monitoring is formulated as an integer programming problem, whose
computational complexity increases with the number of appliances and
the number of operating modes per appliance. An optimization-based
approach is also proposed in Piga, Cominola, Giuliani, Castelletti, and
Rizzoli (2016), where a fitting quadratic error is minimized together
with a regularization term penalizing the switch of the operating
mode of the individual appliances. Since convex optimization is used
in Piga et al. (2016), its computational load is lower than (Suzuki
et al., 2008). However, Piga et al. (2016) requires to carefully trade
off between penalization of the mode transitions and minimization of
the fitting error. Approaches based on Factorial Hidden Markov Models
(FHMMs) are discussed in Bonfigli et al. (2017), Cominola, Giuliani,
Piga, Castelletti, and Rizzoli (2017) and Kolter and Jaakkola (2012).
The underlying idea of these methods is to describe the behaviour of
the individual appliances with an Hidden Markov Model (HMM), where
the hidden (i.e., not observed) states represent the different operating
conditions of the corresponding device. Such local HMMs are then
combined into a factorial hidden Markov model, which describes the
overall behaviour of the system. The most likely state sequence of
the FHMM describes the evolution of the configuration of the whole
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system over time, based on which the power demand of each appliance
is reconstructed. Methods using FHMMs have shown very promising
results in energy disaggregation problems. However, since the states
of the factorial hidden Markov model should describe all possible
combination of all appliance’s states, the computational complexity of
FHMM-based approaches is exponential with the number of appliances
and the associated operating regimes.

Many state-of-the-art NILM approaches requires a batch of data to
perform energy disaggregation. To overcome this limitation, in this
paper, two iterative algorithms for non-intrusive load monitoring are
proposed. The first algorithm proposed in the paper uses dynamic pro-
gramming, the second one is based on multiple-model Kalman filtering.
Both of them process the flow of total consumption data in an iterative
way, and thus they are suited for online monitoring of consumption
of individual appliances. To reduce the computational time required to
perform disaggregation, strategies for complexity reduction are further
proposed for both the presented approaches, so to decrease the number
of configurations of the devices evaluated at each time step. Differently
from many existing approaches, e.g., (Hart, 1992; Yang et al., 2015),
the methods presented in the paper can handle multi-state appliances.
Therefore, the proposed approaches allows not only for the detection
of on/off states of the devices, but also for the reconstruction of the
consumption pattern of the individual appliances. Additionally, the
proposed approaches do not require to use high-frequency sampling
devices, as they do not exploit information on the sub-harmonics of the
electric signal. Indeed, as shown by the experimental results reported in
the paper, energy disaggregation can be satisfactorily performed with
1 min power readings. Similarly to NILM methods using HMMs, the
proposed approaches rely on jump models to describe the behaviour
of each appliance. These models are learned from the appliance’s sig-
nature through the coordinate-descent optimization algorithm recently
proposed in Bemporad, Breschi, Piga, and Boyd (2018). Therefore, the
individual appliance is modelled through a finite collection of linear
sub-models, each one representing its behaviour at a specific operating
condition. Unlike most of existing disaggregation approaches, the be-
haviour of the appliances at different operating conditions is described
with static or dynamical linear sub-models, thanks to the flexibility
of the learning method in Bemporad et al. (2018). Indeed, the use
of dynamical sub-models is helpful in capturing transient behaviours,
by providing useful information for energy disaggregation of devices
that exhibit more complex consumption patterns than on/off and, thus,
enhancing the quality of the reconstructed consumption patterns.

The paper is organized as follows. After formalizing the energy
disaggregation problem in Section 2, Section 3 describes the training
algorithms used to estimate jump linear models for each appliance
based on its signature. The problems of learning static and dynamic
models are discussed. The two NILM algorithms are presented in Sec-
tions 4.1 and 4.2, along with heuristics to reduce their computational
complexity. In Section 5, the developed algorithms are tested against
the AMPd dataset (Makonin, Popowich, Bartram, Gill, & Bajic, 2013),
which contains power consumption readings in a residential house with
a time resolution of 1 min. Concluding remarks and directions for future
works are given in Section 6.

2. Problem formulation

Consider 𝑁 different electrical appliances available in a house and
connected to the electric power line. Let 𝑦𝑖(𝑡), with 𝑖 ∈ {1,… , 𝑁}, be the
power demand of the 𝑖th appliance at time 𝑡 and 𝑦(𝑡) be the household
aggregate power reading, i.e.,

𝑦(𝑡) =
𝑁
∑

𝑖=1
𝑦𝑖(𝑡) + 𝑒(𝑡), (1)

where 𝑒(𝑡) is a modelling error, accounting for additional appliances
connected to the line and measurement noise on the aggregate power
reading.

The problem addressed in this paper is the following:

Energy disaggregation problem Given a sequence {𝑦(𝑡)}𝑇𝑡=1 of obser-
vations of the aggregate power signal, estimate the power demand 𝑦𝑖(𝑡)
of the individual appliances at each time sample 𝑡. The problem is also
known as non-intrusive appliance load monitoring. ■

3. Modelling appliance behaviour

The power demand of the 𝑖th appliance is described by 𝐾𝑖 sub-
models, with 𝐾𝑖 ∈ N being a finite natural number, each one represent-
ing the consumption behaviour of the device at a different operating
condition (or mode). Let 𝑠𝑖(𝑡) ∈ {1,… , 𝐾𝑖} be the active mode of the
𝑖th appliance at time 𝑡. The power consumption of the 𝑖th device is
modelled as

𝑦𝑖(𝑡) = 𝐗𝐢(𝑡)𝜽
𝐬𝐢(𝐭)
𝐢 + 𝑒𝑖(𝑡). (2)

where 𝜽𝐣𝐢 and 𝐗𝐢(𝑡) are the model parameter and the feature vector,
respectively, characterizing the power demand at mode 𝑗, and 𝑒𝑖(𝑡) is
an intrinsic modelling error. 𝑁 distinct datasets 𝑖 = {𝑦𝑖(𝑡)}𝑇𝑡=1, for 𝑖 =
1,… , 𝑁 , comprising consumption profiles of each device are assumed
to be available to estimate the parameter vectors 𝜣 𝐢 = (𝜽𝟏𝐢 ,… ,𝜽𝐊𝐢

𝐢 ),
𝑖 = 1,… , 𝑁 . The dataset 𝑖 consists of the power demand of the 𝑖th
appliance gathered over a short intrusive training period of length 𝑇 ,
where it is supposed that the power consumed by the 𝑖th appliance is
directly accessible during data acquisition, for instance, by switching
off all the other appliances. The length 𝑇 of the training period should
be as short as possible to reduce intrusiveness and costs, although long
enough to allow estimating 𝜣 𝐢, and it may be different for each device.

Two different classes of sub-models (2) are used to describe the
consumption pattern of the appliances at a given operating mode: (i)
static models and (ii) dynamical models.

3.1. Learning static models

In case static models are used, the feature vector is 𝐗𝐢(𝑡) = 1,
∀ 𝑡 = 1,… , 𝑇 . Therefore, the sub-model in (2) becomes the piecewise
constant signal

𝑦𝑖(𝑡) = 𝜽𝐬𝐢(𝐭)𝐢 . (3)

The parameter 𝜽𝐣𝐢 thus represents the power consumption of the 𝑖th
appliance when at mode 𝑗, with 𝑗 = 1,… , 𝐾𝑖.

Eq. (3) shows that the estimation of the parameters 𝜣 𝐢 requires also
to reconstruct the sequence of active modes 𝑆𝑖 = {𝑠𝑖(𝑡)}𝑇𝑡=1. Let 1() be
the indicator function of the logic condition , i.e.,

1() =

{

1 if  is true
0 otherwise.

(4)

The sub-model parameters 𝛩𝑖 and the mode sequence 𝑆𝑖 are jointly
estimated through the jump model fitting approach proposed by Bem-
porad et al. (2018), based on the minimization over 𝜣 𝐢 and 𝑆𝑖 of the
loss function

𝐽 (𝜣 𝐢, 𝑆𝑖) =
𝑇−1
∑

𝑡=1

(

𝓁
(

𝑦𝑖(𝑡), 𝑠𝑖(𝑡),𝜣 𝐢
)

+ 𝜆𝑖(𝑠𝑖(𝑡))1(𝑠𝑖(𝑡+1)≠𝑠𝑖(𝑡))
)

+ 𝓁
(

𝑦𝑖(𝑇 ), 𝑠𝑖(𝑇 ),𝜣 𝐢

)

, (5)

where 𝓁
(

𝑦𝑖(𝑡), 𝑠𝑖(𝑡),𝜣 𝐢
)

is a fitting cost penalizing the mismatch between
the measured and the model output. Among possible fitting costs, the
squared fitting error has been chosen

𝓁
(

𝑦𝑖(𝑡), 𝑠𝑖(𝑡),𝜣 𝐢
)

= 1
𝑇

(

𝑦𝑖(𝑡) − 𝜽𝐬𝐢(𝐭)𝐢

)2
. (6)

The term 𝜆𝑖(𝑠𝑖(𝑡))1(𝑠𝑖(𝑡 + 1) ≠ 𝑠𝑖(𝑡)) in (5) takes into account prior
assumptions on the switch between different modes, penalizing by a
factor 𝜆𝑖 ≥ 0 a temporal change of the operating condition from 𝑠𝑖(𝑡) to
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Algorithm 1 Learning static models

Input: Training data set 𝑖 = {𝑦𝑖(𝑡)}𝑇𝑡=1; number 𝐾𝑖 of sub-models;
initial mode sequence 𝑆0

𝑖 = {𝑠0𝑖 (1),… , 𝑠0𝑖 (𝑇 )}; parameters 𝜆𝑖(𝑗), 𝑗 =
1,… , 𝐾𝑖.

1. iterate for ℎ = 1,…

1.1. 𝜣𝒊
ℎ←arg min𝜣𝒊

∑𝑇
𝑡=1𝓁

(

𝑦𝑖(𝑡), 𝑠ℎ−1𝑖 (𝑡),𝜣𝒊
)

; (sub-model fitting)

1.2. 𝑆ℎ
𝑖 ← arg min𝑆𝑖

𝐽 (𝜣𝒉
𝒊 , 𝑆𝑖); (mode sequence fitting)

2. until 𝑆ℎ
𝑖 = 𝑆ℎ−1

𝑖 .

Output: Estimated model parameters 𝜣⋆
𝒊 = 𝜣𝒌

𝒊 and mode sequences
𝑆⋆
𝑖 = 𝑆𝑘

𝑖 .

a different mode 𝑠𝑖(𝑡 + 1). This reflects the hypothesis that each device
rarely changes its operating regime over time, which is a reasonable
assumption in energy disaggregation problems with power readings
taken at high-time resolution (e.g., 1 min).

The cost 𝐽 (𝜣 𝐢, 𝑆𝑖) in (5) is minimized through Algorithm 1, a
coordinate descent approach, originally proposed in Bemporad et al.
(2018), that alternates minimization with respect to the sub-model
parameters 𝜣 𝐢 (Step 1.1) and the mode sequence 𝑆𝑖 (Step 1.2). Since
the fitting cost 𝓁 is chosen as the quadratic function (6), Step 1.1 is
solved analytically by least squares, while Step 1.2 is solved by discrete
dynamic programming (DP). The initial mode sequences 𝑆0

𝑖 are chosen
randomly, and the values for the parameters 𝜆𝑖(𝑗) are set to 0 at the first
iteration, while for the following runs they are chosen as 𝜆𝑖(𝑗) = 0.9,
∀𝑗 ∈ {1,… , 𝐾𝑖}. Technical details on the implementation of Algorithm
1 can be found in Bemporad et al. (2018).

3.2. Learning dynamic models

Since some appliances exhibit a transient behaviour, their power
consumption patterns can be more accurately described by dynamical
sub-models instead of static ones. For instance, a transient behaviour
can be clearly observed in the consumption patterns of a fridge and
a heat pump , which show typical dynamics of second and first-order
Linear Time-Invariant (LTI) systems, respectively, as it can seen in Fig. 1.

Provided that the sequence of active modes 𝑆𝑖 in (2) is given,
the LTI dynamical sub-model associated to each mode can be esti-
mated through standard system identification techniques (Ljung, 1999).
Specifically, the power consumption 𝑦𝑖(𝑡) is modelled as (2), with
regressor 𝐗𝐢(𝑡) = [𝐗̃𝐢(𝑡) 1], where 𝐗̃𝐢(𝑡) consists of past output samples,
i.e.,

𝐗̃𝐢(𝑡) = [𝑦𝑖(𝑡 − 1) … 𝑦𝑖(𝑡 − 𝑛)], (7)

with 𝑛 ∈ N defining the dynamical order of the model. The parameters
𝜣 𝐢 are estimated by solving the simulation-error minimization problem

min
𝜣𝐢

𝑇
∑

𝑡=𝑛+1

(

𝑦𝑖(𝑡) − 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠𝑖(𝑡))
)2 , (8)

where 𝑦𝑖(𝑡) is the simulated output given by

𝑦𝑖(𝑡,𝜣 𝐢, 𝑠𝑖(𝑡)) = [𝑦𝑖(𝑡 − 1,𝜣 𝐢, 𝑠𝑖(𝑡 − 1)) … 𝑦𝑖(𝑡 − 𝑛,𝜣 𝐢, 𝑠𝑖(𝑡 − 𝑛)) 1]𝜽𝐬𝐢(𝐭)𝐢 . (9)

Because of the nested dependence of 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠𝑖(𝑡)) on the model param-
eters 𝜣 𝐢, the optimization problem in (8) is non-convex and solved
through Particle Swarm Optimization (Poli, Kennedy, & Blackwell,
2007). Since the sequence of active mode 𝑆𝑖 in (8) is actually not
known, Algorithm 1 is first run to estimate 𝑆𝑖 using static sub-models.

The power consumption for a fridge and a heat pump estimated
using static and second-order dynamical models are plotted in Fig. 2,

along with the actual consumption profiles. The reported results show
the capabilities of dynamical models to reconstruct the transient of
the considered appliances. Similar performance is obtained for other
electrical devices.

4. Disaggregation algorithms

Once the models of each appliance have been estimated, the energy
disaggregation problem requires to detect the active mode 𝑠𝑖(𝑡) for
each appliance at each time instant from the aggregate reading 𝑦(𝑡).
In this section, two different algorithms for energy disaggregation are
described, which process data iteratively and thus are suited for an
online implementation.

In the following, the joint active mode 𝐬(𝑡) ∈ N𝑁 is the vector stacking
the appliances’ modes at time 𝑡, i.e., 𝐬(𝑡) = [𝑠1(𝑡), … , 𝑠𝑁 (𝑡)],  is
the set of all possible combinations taken by 𝐬(𝑡) and || indicates the
cardinality of , i.e., || = ∏𝑁

𝑖=1 𝐾𝑖.

4.1. Disaggregation based on dynamic-programming

The first algorithm for iterative energy disaggregation proposed in
this paper is based on the minimization of the loss function:

𝐽 (𝑡, 𝐬(𝑡)) = 𝓁(𝑦(1), 𝐬(1)) +
[ 𝑡
∑

𝜏=2
𝓁(𝑦(𝜏), 𝐬(𝜏)) + 𝜆(𝐬(𝜏 − 1))1(𝐬(𝜏) ≠ 𝐬(𝜏 − 1))

]

,

(10)

which penalizes, similarly to (5), the time switch of the joint mode, as
well as the fitting error

𝓁(𝑦(𝑡), 𝐬(𝑡)) =
(

𝑦(𝑡) −
𝑁
∑

𝑖=1
𝑦𝑖(𝑡,𝜣 𝐢, 𝐬𝑖(𝑡))

)2

on the aggregate power measurement 𝑦(𝑡). Since disaggregation should
be performed in real time, this formulation accounts for the fact that
only the aggregate readings up to time 𝑡 can be used to reconstruct the
active mode 𝐬(𝑡). The same assumption introduced in Section 3, namely
the hypothesis that the appliances rarely change their operating mode
over time, has been taken into account in penalizing transitions on the
joint mode. The parameter 𝜆(𝑑) in (10), with 𝑑 ∈ , is proportional to
the empirical probability of remaining in mode 𝑑 for two consecutive
time instants. Indeed, under the assumption that the appliances change
their modes independently from each other, the value of 𝜆(𝑑) is selected
as

𝜆(𝑑) = 𝑤
𝑁
∏

𝑖=1
𝜆𝑖(𝑑𝑖), 𝑤 > 0, (11)

where 𝑤 is a tunable parameter and 𝜆𝑖(𝑑𝑖) are the empirical probabili-
ties

𝜆𝑖(𝑗) =
∑𝑇−1

𝑡=1 1(𝑠𝑖(𝑡) = 𝑗 & 𝑠𝑖(𝑡 + 1) = 𝑗) + 1
∑𝑇−1

𝑡=1 1(𝑠𝑖(𝑡) = 𝑗) +𝐾2
𝑖

, 𝑗 = 1,… , 𝐾𝑖, (12)

with 𝑖 = 1,… , 𝑁 and 𝑗 = 1,… , 𝐾𝑖. Unlike the minimization of (5), the
cost (10) has not to be optimized with respect to the model parameters
𝜣 𝐢, that are known once the model of each appliance is learned as
explained in Section 3, but only with respect to the active mode
sequence {𝐬(𝜏)}𝑡𝜏=1.

The minimization of the cost 𝐽 (𝑡, 𝐬(𝑡)) in (10) is performed as de-
scribed in Algorithm 2. Specifically, for each possible joint mode ℎ ∈ ,
the value of 𝐽 (1, ℎ) is computed at Step 1, and the joint mode 𝐬(1) is
selected as the one minimizing 𝐽 (1, ℎ) over ℎ ∈  (Step 2). At time
𝑡 ≥ 2, the optimal costs 𝐽 ∗(𝑡, ℎ), for ℎ ∈ , are updated based on the
previously computed optimal costs 𝐽 ∗(𝑡−1, 𝑑) and the current aggregate
power measurement 𝑦(𝑡) (Step 3.1). The optimal joint mode 𝐬∗(𝑡) is
finally computed at Step 3.2.
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Fig. 1. Power consumption profiles of a fridge and a heat pump.

Fig. 2. Power consumption profiles: true (black), estimated with static sub-models (blue), estimated with dynamic sub-models (red). Black and red lines almost overlap. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Algorithm 2 Dynamic-programming based disaggregation
Input: Aggregate output readings flow 𝑦(1), 𝑦(2),…; model parameters

𝜣𝒊, 𝑖 = 1,… , 𝑁 ; parameters 𝜆(𝑑), 𝑑 ∈ .

1. 𝐽 ∗(1, ℎ) ← 𝓁(𝑦(1), ℎ); ℎ ∈ ;
2. 𝐬∗(1) ← arg minℎ∈ 𝐽 ∗(1, ℎ);
3. iterate for 𝑡 = 2,…

3.1. 𝐽 ∗(𝑡, ℎ) ← 𝓁(𝑦(𝑡), ℎ) + min𝑑∈ (𝐽 ∗(𝑡−1, 𝑑) + 𝜆(𝑑)1 (ℎ ≠ 𝑑)),
ℎ ∈ ;

3.2. 𝐬∗(𝑡) ← arg minℎ∈ 𝐽 ∗(𝑡, ℎ);

Output: Estimated joint mode sequence 𝐬∗(𝑡).

It is worth remarking that, in case static models are used, the
dynamic programming approach in Algorithm 2 provides the optimal
mode 𝐬∗(𝑡) minimizing the cost 𝐽 (𝑡, 𝐬(𝑡)) in (10), given the information
up to time 𝑡. If dynamical models are used, the fitting cost 𝓁(𝑦(𝑡), ℎ)
is computed by approximating the individual appliance consumptions
with the previous estimates 𝑦𝑖(𝑡 − 1),… , 𝑦𝑖(𝑡 − 𝑛). This implies that the
history up to time 𝑡 − 1 is embedded into 𝑦𝑖(𝑡 − 1),… , 𝑦𝑖(𝑡 − 𝑛), thus
leading to an approximation of the optimum of the objective function
𝐽 (𝑡, ℎ). The 𝑡th iteration of Algorithm 2 is further schematized in Fig. 3.
It is worth remarking that the update of the cost 𝐽 ∗(𝑡, ℎ) at Step 3.1
is recursively computed based on 𝐽 ∗(𝑡 − 1, 𝑑), 𝑑 ∈  and the new
observation 𝑦(𝑡), without the need to store and reprocess past data. This
makes Algorithm 2 suited for online disaggregation.

Note that, at each time step 𝑡, Algorithm 2 computes the “cost-to-
go” 𝐽 ∗(𝑡, ℎ) at mode ℎ for all possible values of ℎ ∈ , which requires
to evaluate the cost 𝐽 ∗(𝑡− 1, 𝑑) + 𝜆(𝑑)𝟏 (ℎ ≠ 𝑑) for all possible values of
𝑑 ∈  (Step 3.1). Thus, the computational complexity of Algorithm 2 in
detecting the joint mode 𝐬(𝑡) is 𝑂(||2). Since the number || of possible
combinations of the joint mode 𝑠(𝑡) increases exponentially with the
number of appliances 𝑁 and the number of operating conditions 𝐾𝑖,
𝑖 = 1,… , 𝑁 , the implementation of Algorithm 2 might not be practically
feasible in case of large 𝑁 and 𝐾𝑖, 𝑖 = 1,… , 𝑁 .

Complexity reduction
A possible way of reducing the complexity of Algorithm 2 is to

embed the past history of the appliances into the last estimate of the
joint mode. Instead of evaluating the cost 𝐽⋆(𝑡−1, 𝑑)+𝜆(𝑑)1(ℎ ≠ 𝑑) for
all possible 𝑑 ∈ , Step 3.1 is thus approximated as

𝐽 ∗(𝑡, ℎ)← 𝓁(𝑦(𝑡), ℎ)+𝐽 ∗(𝑡−1, 𝐬∗(𝑡−1))+𝜆(𝐬∗(𝑡−1))1
(

ℎ≠𝐬∗(𝑡 − 1)
)

, ℎ ∈ 

(13)

where 𝐬∗(𝑡 − 1) is the estimate of the joint mode at the previous time
step 𝑡 − 1, given by

𝐬∗(𝑡 − 1) = arg min
ℎ∈

𝐽 ∗(𝑡 − 1, ℎ). (14)

Since at time 𝑡 only the past configuration 𝐬∗(𝑡 − 1) is considered and
𝐽 ∗(𝑡, ℎ) has to be evaluated for all possible ℎ ∈ , the approach resulting
from approximation (13), schematized in Fig. 4, leads to a reduction of
the computational complexity from 𝑂(||2) to 𝑂(||).

To further reduce the complexity of Algorithm 2, the cost 𝐽 ∗(𝑡, ℎ)
in Step 3.1 is not computed for all possible modes ℎ ∈ , but only for
ones satisfying at least one of the following conditions:

(1) at most one appliance changes its operating condition;
(2) all the appliances are in the operating condition corresponding

to their minimal consumption energy (namely, all of them are
off);

(3) only one appliance is on;
(4) the joint mode is equal to 𝑠∗(𝑡 − 1).

These assumptions are realistic in energy disaggregation problems with
high-time resolution (e.g., 1 min) power readings. Although (2)–(3)
consider the cases where at most one appliance is on, condition (1)
allows us to handle configurations where multiple appliances are con-
suming. When two devices are switched on simultaneously at time
𝑡, the operating mode of one of the two appliances cannot be cor-
rectly detected, as this configuration is not accounted for by (1)–(4).
Nevertheless, the actual operating mode is expected to be retrieved
at time 𝑡 + 1 thanks to condition (1). Since only the configurations
satisfying (1), (2), (3) or (4) are considered, the computational
complexity of the approach is further reduced and, in particular, it
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Fig. 3. Dynamic-programming based disaggregation: iteration at time 𝑡.

Fig. 4. Schematic of the approximation used to reduce complexity of dynamic-
programming based disaggregation from 𝑂(||2) to 𝑂(||). All the past history up to
time 𝑡 − 1 is embedded in 𝐬∗(𝑡 − 1).

Fig. 5. Schematic of the approximation used to further reduce complexity of dynamic-
programming based disaggregation from 𝑂(||), where only configurations satisfying
at least one of the conditions (1), (2), (3) or (4) are considered.

is upper-bounded by 𝑂
(

2 +
∑𝑁

𝑖=1 𝐾𝑖

)

. A schematic of the operations
performed at time 𝑡 is shown in Fig. 5.

4.2. Disaggregation via Kalman filtering

An alternative iterative approach is proposed, which is based on a
reformulation of energy disaggregation as a state estimation problem
for switching linear dynamical systems. Once the disaggregation prob-
lem is properly reformulated, it is then solved via multi-model Kalman
filtering (Bar-Shalom, Kirubarajan, & Li, 2002, Chapetr 11).

A state-space representation of the switching linear model repre-
senting the household power consumption over time is given by:

𝐱(𝑡 + 1) = 𝐀[𝐬(𝑡)]𝐱(𝑡) + 𝐁[𝐬(𝑡)] + 𝐰[𝐬(𝑡)](𝑡) (15a)

𝑦(𝑡) = 𝐂[𝐬(𝑡)]𝐱(𝑡) + 𝑣[𝐬(𝑡)](𝑡), (15b)

where 𝑦(𝑡) is the measured aggregate power, 𝐰[𝐬(𝑡)](𝑡) and 𝑣[𝐬(𝑡)](𝑡) are
the process and measurement noise, respectively, which are supposed
to be white and mutually independent. The noise terms 𝐰[𝐬(𝑡)](𝑡) and
𝑣[𝐬(𝑡)](𝑡) are assumed to be generated by zero-mean Gaussian distri-
butions with covariance matrices 𝐐[𝐬(𝑡)] and 𝑅[𝐬(𝑡)], i.e., 𝐰[𝐬(𝑡)](𝑡) ∼
 (𝟎,𝐐[𝐬(𝑡)]) and 𝑣[𝐬(𝑡)](𝑡) ∼  (0, 𝑅[𝐬(𝑡)]). Similarly to Section 4.1,
𝐬(𝑡) ∈  represents the joint mode at time 𝐭. The continuous state 𝐱(𝑡)
and the matrices 𝐀[𝐬(𝑡)], 𝐁[𝐬(𝑡)], 𝐂[𝐬(𝑡)] are properly defined based on
the static/dynamic models of each device estimated as in Section 3.
For example, in the case each appliance is described by static sub-
models (3), the state 𝐱(𝑡) is the collection of the individual appliances’
consumptions 𝐱(𝑡) = [ 𝑦1(𝑡) … 𝑦𝑁 (𝑡) ]′ and

𝐀[𝐬(𝑡)] = 𝟎𝑁,𝑁 𝐁[𝐬(𝑡)] =
⎡

⎢

⎢

⎢

⎣

𝜃𝑠1(𝑡)1
⋮

𝜃𝑠𝑁 (𝑡)
𝑁

⎤

⎥

⎥

⎥

⎦

𝐂[𝐬(𝑡)] = 𝟏′𝑁 ,

with 𝟎𝑁,𝑁 being a zero squared matrix of size 𝑁 , 𝟏𝑁 being a unitary
column vector of dimension 𝑁 and 𝟏′𝑁 indicating its transpose. The
time evolution of the mode 𝐬(𝑡) is described by a stationary Markov
Chain with transition probabilities 𝑃 (𝐬(𝑡) = ℎ|𝐬(𝑡−1) = 𝑑), with ℎ, 𝑑 ∈ .
These transitions probabilities are approximated from the results of
the training procedure described in Section 3.1, using the empirical
probabilities with Laplace smoothing:

𝑃 (𝑠𝑖(𝑡) = ℎ𝑖|𝑠𝑖(𝑡 − 1) = 𝑑𝑖) =
∑𝑇

𝑡=2 1(𝑠𝑖(𝑡) = ℎ𝑖 & 𝑠𝑖(𝑡 − 1) = 𝑑𝑖)+1
∑𝑇

𝑡=2 1(𝑠𝑖(𝑡 − 1) = 𝑑𝑖) +𝐾2
𝑖

, (16)

for 𝑖 = 1,… , 𝑁 . Under the hypothesis that the appliances change
their mode independently from each other, the transition probabilities
𝑃 (𝐬(𝑡) = ℎ|𝐬(𝑡 − 1) = 𝑑) are computed as

𝑃 (𝐬(𝑡) = ℎ|𝐬(𝑡 − 1) = 𝑑) =
𝑁
∏

𝑖=1
𝑃 (𝑠𝑖(𝑡) = ℎ𝑖|𝑠𝑖(𝑡 − 1) = 𝑑𝑖). (17)

Multi-model Kalman filtering techniques can be used to simultane-
ously estimate both the joint mode 𝐬(𝑡) and the continuous state 𝐱(𝑡)
of the dynamical system in (15). In this work, the first-order generalized
pseudo-Bayesian (GPB1) algorithm (Bar-Shalom et al., 2002, Chapter 11)
is employed. The main ideas behind GPB1 are summarized in the rest
of this section. Heuristics to reduce the computational complexity in
applying GPB1 to energy disaggregation problems are then described
at the end of Section 4.2.

Let 𝑡 be the set of available data up to time 𝑡, i.e., 𝑡 = {𝑦(1),… ,
𝑦(𝑡)}, 𝑡 ∈ N. At each time 𝑡, GPB1 approximates the state conditional
probability density function 𝑝[𝐱(𝑡)|𝑡] as:

𝑝[𝐱(𝑡)|𝑡] =
||
∑

ℎ=1
𝑝[𝐱(𝑡)|𝐬(𝑡) = ℎ,𝑡]𝑃 (𝐬(𝑡) = ℎ|𝑡)

=
||
∑

ℎ=1
𝑝[𝐱(𝑡)|𝐬(𝑡) = ℎ, 𝑦(𝑡),𝑡−1]𝑃 (𝐬(𝑡) = ℎ|𝑡)
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≈
||
∑

ℎ=1
𝑝[𝐱(𝑡)|𝐬(𝑡) = ℎ, 𝑦(𝑡), 𝑥(𝑡 − 1|𝑡 − 1),𝐏𝑥(𝑡 − 1|𝑡 − 1)]⋅

⋅ 𝑃 (𝐬(𝑡) = ℎ|𝑡). (18)

The idea behind this approximation is to embed the past information
𝑡−1 on the system into the state estimate 𝐱̂(𝑡−1|𝑡−1) computed at time
𝑡− 1 (using only information up to 𝑡− 1) and the associated covariance
matrix 𝐏𝑥(𝑡 − 1|𝑡 − 1).

By assuming that the initial state 𝐱(0) is Gaussian with mean 𝐱̂(0|0)
and covariance 𝐏𝑥(0|0), the probability density function

𝑝[𝐱(𝑡)|𝐬(𝑡) = ℎ, 𝑦(𝑡), 𝐱̂(𝑡 − 1|𝑡 − 1),𝐏𝑥(𝑡 − 1|𝑡 − 1)]

is Gaussian with mean 𝐱̂[ℎ](𝑡|𝑡) and covariance 𝐏𝑥[ℎ](𝑡|𝑡), where 𝐱̂[ℎ](𝑡|𝑡)
and 𝐏𝑥[ℎ](𝑡|𝑡) are the output of the Kalman filter associated with the
linear sub-model (15) for 𝐬(𝑡) = ℎ.

Thus, 𝑝[𝐱(𝑡)|𝑡] in (18) is a Gaussian mixture, with weights

𝛼[ℎ](𝑡|𝑡) = 𝑃 (𝐬(𝑡) = ℎ|𝑡), (19)

where 𝛼[ℎ](𝑡|𝑡) represents the probability of being at mode ℎ at time
𝑡, given the information up to time 𝑡. The weight 𝛼[ℎ](𝑡|𝑡) can be
equivalently expressed as

𝛼[ℎ](𝑡|𝑡) = 𝑃 (𝐬(𝑡) = ℎ|𝑦(𝑡),𝑡−1)

=
𝑝[𝑦(𝑡)|𝐬(𝑡) = ℎ,𝑡−1]𝑃 (𝐬(𝑡) = ℎ|𝑡−1)

∑

𝑗∈ 𝑝[𝑦(𝑡)|𝐬(𝑡) = 𝑗,𝑡−1]𝑃 (𝐬(𝑡) = 𝑗|𝑡−1)
, (20)

where 𝑃 (𝐬(𝑡) = ℎ|𝑡−1) is the probability of being at mode ℎ at time
𝑡 given the measurements up to time 𝑡 − 1, and it can be computed
iteratively as

𝛼[ℎ](𝑡|𝑡−1) = 𝑃 (𝐬(𝑡) = ℎ|𝑡−1) =
∑

𝑑∈
𝑃 (𝐬(𝑡) = ℎ|𝐬(𝑡−1) = 𝑑)𝛼[𝑑](𝑡−1|𝑡−1),

(21)

with 𝑃 (𝐬(𝑡) = ℎ|𝐬(𝑡 − 1) = 𝑑) given by (17), for all ℎ ∈ .
By embedding the past information 𝑡−1 into 𝐱̂(𝑡 − 1|𝑡 − 1) and

𝐏𝑥(𝑡 − 1|𝑡 − 1) as in (18), the conditional likelihood 𝑝[𝑦(𝑡)|𝐬(𝑡) = ℎ,𝑡−1]
of the aggregate output 𝑦(𝑡) can be approximated as

𝑝[𝑦(𝑡)|𝐬(𝑡) = ℎ,𝑡−1] ≈ 𝑝[𝑦(𝑡)|𝐬(𝑡) = ℎ, 𝐱̂(𝑡 − 1|𝑡 − 1),𝐏𝑥(𝑡 − 1|𝑡 − 1)]. (22)

Using the dynamical equations (15) and prior assumptions on the
distributions of 𝐱(0), 𝐰[ℎ](𝑡) and 𝑣[ℎ](𝑡), the approximated likelihood
in (22) is Gaussian with mean 𝐂[ℎ]𝐱̂[ℎ](𝑡|𝑡 − 1) and covariance 𝑅[ℎ] +
𝐂[ℎ]𝐏𝑥[ℎ](𝑡|𝑡 − 1)𝐂[ℎ]′, where

𝐱̂[ℎ](𝑡|𝑡 − 1) = 𝐀[ℎ]𝐱̂(𝑡 − 1|𝑡 − 1) + 𝐁[ℎ]
𝐏𝑥[ℎ](𝑡|𝑡 − 1) = 𝐀[ℎ]′𝐏𝑥(𝑡 − 1|𝑡 − 1)𝐀[ℎ] +𝐐[ℎ].

Summarizing, the weights of the Gaussian mixture 𝑝[𝐱(𝑡)|𝑡] in (18)
are calculated using (20) and (22). The state estimate 𝐱̂(𝑡|𝑡) and the
associated covariance 𝐏𝑥(𝑡|𝑡) are then chosen as the expected value and
covariance matrix of the random variable 𝐱 ∼ 𝑝[𝐱|𝑡], namely:

𝐱̂(𝑡|𝑡) =
∑

ℎ∈
𝐱̂[ℎ](𝑡|𝑡)𝛼[ℎ](𝑡), (23)

𝐏(𝑡|𝑡) =
∑

ℎ∈
𝛼[ℎ](𝑡|𝑡)

{

𝐏[ℎ](𝑡|𝑡) + [𝐱̂[ℎ](𝑡|𝑡) − 𝐱̂(𝑡|𝑡)][𝐱̂[ℎ](𝑡|𝑡) − 𝐱̂(𝑡|𝑡)]′
}

.

(24)

The active mode at time 𝑡 is finally selected as

𝐬∗(𝑡) = argmax
ℎ∈

𝛼[ℎ](𝑡|𝑡), (25)

and the final disaggregated power of each appliance is retrieved from
the estimated state 𝐱̂[𝐬∗(𝑡)](𝑡|𝑡).

Algorithm 3 summarizes the iterations of the Kalman filter based
disaggregation approach. If no prior on the initial mode probabilities
𝛼[ℎ](0|0) = 𝑃 (𝑠(0) = ℎ) is available, Algorithm 3 can be initialized
by setting 𝛼[ℎ](0|0) = 1

|| for all ℎ ∈ . This is equivalent to assume

Algorithm 3 Kalman filter based disaggregation
Input: Aggregate output readings flow 𝑦(1), 𝑦(2),…; models

𝐀[ℎ],𝐁[ℎ],𝐂[ℎ] and noise covariance matrices 𝐐[ℎ], 𝑅[ℎ], ℎ ∈ ;
prior on the initial state 𝐱̂(0|0), 𝐏𝑥(0|0), initial mode probabilities
𝛼[ℎ](0|0), ℎ ∈ .

1. iterate for 𝑡 = 1, 2,…

1.1. update 𝐱̂[ℎ](𝑡|𝑡),𝐏𝑥[ℎ](𝑡|𝑡), ℎ ∈ , using linear Kalman
filter;

1.2. compute the likelihood 𝑝[𝑦(𝑡)|𝐬(𝑡) = ℎ,𝑡−1], ℎ ∈ , as
in Eq. (22);

1.3. update 𝛼[ℎ](𝑡|𝑡), ℎ ∈ , as in Eq. (20);
1.4. 𝐬∗(𝑡) ← argmaxℎ∈ 𝛼[ℎ](𝑡|𝑡), ℎ ∈ ;
1.5. compute 𝐱̂(𝑡|𝑡) as in Eq. (23);
1.6. compute 𝐏𝑥(𝑡|𝑡) as in Eq. (24);

Output: Estimated sequence of joint mode 𝐬∗(𝑡) and optimal state
𝐱̂[𝐬∗(𝑡)](𝑡|𝑡).

that the initial mode 𝐬(0) has a uniform probability distribution. The
𝑡th step of Algorithm 3 is further schematized in Fig. 6. Note that, at
each iteration 𝑡, the computations in Steps 1.1–1.3 can be recursively
performed based on 𝐱̂(𝑡−1|𝑡−1),𝐏𝑥(𝑡−1|𝑡−1) and the new observation
𝑦(𝑡), without the need to store and reprocess past data. Thus, like
Algorithm 2, also Algorithm 3 is suited for online disaggregation.

Since Step 1.1 of Algorithm 3 should be performed for each ℎ ∈ ,
it requires || Kalman filters to run in parallel. As the number || of
possible joint modes 𝐬(𝑡) increases exponentially with the number of
appliances 𝑁 and the number of corresponding operating conditions
𝐾𝑖, 𝑖 = 1,… , 𝑁 , the approach is limited to disaggregation problems
with few devices and with a small number of operating regimes for
each appliance.

Complexity reduction
To reduce the computational complexity of Algorithm 3 and, thus,

the computational time needed to disaggregate energy, Step 1.1 (which
requires to run || Kalman filters in parallel) is performed at time 𝑡 only
for the modes ℎ′ in  satisfying at least one of the following conditions:

(1) The probability 𝛼[ℎ′](𝑡|𝑡 − 1) = 𝑃 (𝐬(𝑡) = ℎ′|𝑡−1) is larger than a
threshold 𝜀, i.e.,

𝛼[ℎ′](𝑡|𝑡 − 1) ≥ 𝜀.

A possible value for 𝜀 is 1∕||;
(2) all the appliances are in the operating condition corresponding

to their minimal consumption energy (namely, all of them are
off);

(3) only one appliance is on;
(4) the joint mode is equal to 𝑠∗(𝑡 − 1).

Conditions (2)–(4) are equal to conditions (2)–(4) already used
in Section 4.1 to reduce the computational complexity of the dynamic
programming based approach. Condition (1) allows us to discard the
configurations which are predicted to be “unlikely”. The operations to
be performed at time 𝑡 are summarized in Fig. 7.

5. Experimental tests

The proposed disaggregation algorithms are tested against the AM-
Pds dataset (Makonin et al., 2013), which consists of the power read-
ings of a house located in Canada, and it comprises the consumption
profiles of 19 appliances, recorded over a year (from April 1, 2012
to March 31, 2013) at one-minute time resolution. The goal of the
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Fig. 6. Kalman filter based disaggregation approach: iteration at step 𝑡.

Fig. 7. Scheme of the reduced-complexity KF-based approach reporting the operations performed at step 𝑡.

test is to assess: (𝑖) the capabilities of the proposed disaggregation
algorithms in reconstructing the end-use power consumption from the
aggregate readings; (𝑖𝑖) their robustness against modelling errors and
against changes in the consumer behaviour due to seasonality; (𝑖𝑖𝑖) their
performance with respect to state-of-the-art disaggregation methods;
(𝑖𝑣) their computational complexity. When iterating Algorithm 2, the
hyper-parameter 𝑤 in (11) is set to 100. In running Algorithm 3 the
covariance matrices 𝐏𝑥(0|0), 𝐐[ℎ] and 𝑅[ℎ] are chosen as diagonal
matrices with non-zero entries equal to 1000, 10 and 800, respectively.
The initial parameter 𝐱̂(0|0) is a zero vector and the initial probabilities
𝛼[ℎ](0|0) are set to 1

|| , for all ℎ ∈ . The threshold 𝜀 characterizing
condition (1) (Section 4.2) is equal to 1

|| .
All tests are carried out on a MacBook Pro 2.8 GHz-Intel i7 in

MATLAB R2018b.

5.1. Learning appliance behaviour

The data collected over the first 14 days (from April 1, 2012 to April
14, 2012) are used to construct training sets 𝑖 of length 𝑇 = 20160,
𝑖 = 1,… , 𝑁 , needed to estimate the models for the individual devices.

As discussed in Section 3, in the training phase it is assumed to have
access to the consumption patterns of the individual appliances.

The following appliances are modelled: cloth dryer (CDE); dish-
washer (DWE); fridge (FGE); heat pump (HPE) and basements plugs
& lights (BME). First, static models (3) for each of the considered
devices are estimated. The following parameters 𝜽𝐣𝐢 are obtained by
using Algorithm 1.

CDE ∶
[

2.2 4586.6
]

,

DWE ∶
[

0.6 753.3
]

,

FGE ∶
[

1.1 135.5
]

,

HPE ∶
[

30.7 1769.1
]

,

BME ∶
[

7.2 343.9
]

.

As discussed in Section 3.1, these parameters represent the estimate
of the power consumption of the individual appliances at different
operating regimes. For the fridge and the heat pump, second-order
dynamical models are also estimated. Results regarding the quality of
the estimated dynamical models have been already presented in Fig. 2.
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5.2. Performance metrics

Disaggregation is performed on a dataset 𝑇 of length 𝑇 (disjoint
from the training sets 𝑖, 𝑖 = 1,… , 𝑁) which consists only of the
aggregate power readings. The length 𝑇 of the dataset 𝑇 is equal to
129600, which corresponds to 90 consecutive days of observations (from
January 1, 2013 to March 31, 2013). The available end-use profiles
are employed only as ground-truth data to assess the quality of the
disaggregated consumption patterns, which is measured with respect
to the following metrics:

1. The 𝐹 -score 𝐹𝑠 (Batra et al., 2014)

𝐹𝑠𝑖 = 2
𝑃𝐶𝑖 × 𝑅𝐶𝑖
𝑃𝐶𝑖 + 𝑅𝐶𝑖

, (26)

where the indexes 𝑅𝐶𝑖 and 𝑃𝐶𝑖 in (26) are the so-called recall
and precision, and they are defined as

𝑅𝐶𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
, 𝑃𝐶𝑖 =

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

,

where 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 are respectively: the number of events
correctly classified when the appliance is on (true positive); the
number of events classified as on when the appliance is actually
off (false positive); the number of events classified as off when
the appliance is actually on (false negative). The score 𝐹𝑠𝑖 mea-
sures the capability of the disaggregation method to correctly
classify the on/off state of the 𝑖th appliance. Since multiple-state
appliances are used, 10 W is selected as a threshold to claim
whether the appliance is on or off. The threshold is set to 50 W
for the heat pump, as its estimated low-level power consumption
is 33.7 W (see Section 5.1);

2. The Estimated Energy Fraction Index (EEFI)

EEFI𝑖 =
∑𝑇

𝑡=1 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠∗𝑖 (𝑡))
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠∗𝑖 (𝑡))
, (27)

which represents the fraction of energy assigned to the 𝑖th
appliance. This index is compared with the Actual Energy Fraction
Index (AEFI)

AEFI𝑖 =
∑𝑇

𝑡=1 𝑦𝑖(𝑡)
∑𝑁

𝑖=1
∑𝑇

𝑡=1 𝑦𝑖(𝑡)
, (28)

which indicates the actual fraction of energy consumed by the
𝑖th appliance. A similar value between EEFI𝑖 and AEFI𝑖 indi-
cates that the contribution of the 𝑖th device on the total power
consumption is correctly estimated.

3. The Relative Square Error (RSE)

RSE𝑖 =
∑𝑇

𝑡=1(𝑦𝑖(𝑡) − 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠∗𝑖 (𝑡)))
2

∑𝑇
𝑡=1(𝑦𝑖(𝑡))2

. (29)

The RSE𝑖 index provides a normalized measure of the mismatch
between the actual and the reconstructed consumption pattern
for the 𝑖th appliance.

4. The 𝑅2 coefficient;

𝑅2
𝑖 = 1 −

∑𝑇
𝑡=1(𝑦𝑖(𝑡) − 𝑦𝑖(𝑡,𝜣 𝐢, 𝑠∗𝑖 (𝑡)))

2

∑𝑇
𝑡=1(𝑦𝑖(𝑡) − 𝑦𝑖)2

(30)

with 𝑦𝑖 =
1
𝑇
∑𝑇

𝑡=1 𝑦𝑖(𝑡). As the RSE𝑖 index, also 𝑅2
𝑖 measures the

match over time between estimated and actual end-use power
profiles.

The above metrics provide increasing levels of information on the
end-use power consumptions. Indeed, the 𝐹 -score only gives an indi-
cation on the capabilities of the disaggregation approach in detecting
whether a device is on or off, while the EEFI𝑖 index provides in-
formation on the power consumed by each appliance. This is more

Table 1
Achieved 𝐹 -scores 𝐹𝑠. Results of the dynamic programming (DP)-based algorithm, the
multi-model Kalman-filtering (KF)-based algorithm and their versions with reduced
computational complexity.

DP KF
algorithm algorithm

Complete Reduced Complete Reduced

Clothes dryer 99.6% 99.6% 90.0% 90.1%
Dishwasher 99.0% 99.0% 89.4% 89.5%
Fridge 98.3% 98.4% 75.9% 76.0%
Heat Pump 99.9% 99.9% 85.3% 85.3%
Basement 94.6% 94.9% 94.6% 94.5%

Table 2
Relative Square Errors 𝑅𝑆𝐸 and 𝑅2 coefficients. Results of the dynamic programming
(DP)-based algorithm and its version with reduced computational complexity.

DP DP with
algorithm reduced complexity

𝑅𝑆𝐸i 𝑅2
𝑖 𝑅𝑆𝐸i 𝑅2

𝑖

Clothes dryer 14.4% 85.4% 13.4% 86.4%
Dishwasher 43.9% 55.0% 43.4% 55.5%
Fridge 20.4% 70.5% 21.6% 68.8%
Heat Pump 1.8% 97.9% 1.7% 98.0%
Basement 11.6% 85.6% 8.6% 89.3%

Table 3
Relative Square Errors 𝑅𝑆𝐸 and 𝑅2 coefficients. Results of the multi-model
Kalman-filtering (KF)-based algorithm and its version with reduced computational
complexity.

KF KF with
algorithm reduced complexity

𝑅𝑆𝐸i 𝑅2
𝑖 𝑅𝑆𝐸i 𝑅2

𝑖

Clothes dryer 10.5% 89.3% 23.6% 76.0%
Dishwasher 31.2% 68.0% 46.5% 52.4%
Fridge 22.9% 67.0% 24.2% 65.0%
Heat Pump 1.4% 98.3% 7.2% 91.5%
Basement 11.6% 85.7% 10.8% 86.6%

informative than the 𝐹 -score to design customized feedbacks and de-
mand management strategies. Finally, the RSE𝑖 and 𝑅2

𝑖 indexes measure
the quality of the reconstructed single-appliance power consumption
trajectories over time, which is crucial to retrieve information about
consumptions during peak hours.

5.3. Numerical results

The aggregate power readings 𝑦(𝑡) forming the validation dataset
𝑇 is constructed by summing up the power consumptions of the five
appliances specified in Section 5.1.

Estimated end-use profiles
To compare the performance of the proposed approaches and assess

their robustness with respect to modelling errors, the aggregate read-
ings 𝑦(𝑡) of dataset 𝑇 are corrupted by a fictitious zero-mean Gaussian
noise with standard deviation 4 W. Furthermore, the unmodelled con-
sumption patterns of bedroom, garage and dining room are added on
top of 𝑦(𝑡).

The obtained values of the performance metrics are provided in
Tables 1–3, and in Figs. 8 and 9, while the disaggregated signals are
plotted in Figs. 10–19. For the sake of visualization, only a portion
of the disaggregated profiles is reported in the figures. The obtained
results show that the dynamic-programming approach is more accurate
in detecting on/off states of the appliances (see Table 1) and that
both the dynamic-programming and the Kalman-filter-based approach
accurately estimate the fraction of energy consumed by each appliance
(see Figs. 8–9, where the EEFI and the AEFI indexes are compared).
This good performance is mainly due to an accurate estimate of the
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Fig. 8. Dynamic-programming-based approach. Actual Energy Fraction Index [%] (black); Estimated Energy Fraction Index (EEFI) [%] by complete version (red) and simplified
version (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Multi-model Kalman-filtering-based approach. Actual Energy Fraction Index [%] (black); Estimated Energy Fraction Index (EEFI) [%] by complete version (red) and simplified
version (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Cloths dryer: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

disaggregated trajectories over time (as shown in Figs. 10–19, and
quantified in terms of the RSE and 𝑅2 indexes in Tables 2–3). It is
interesting to note in Tables 1–3 that the reconstructed consumption
patterns retrieved with the Kalman-filter-based approach are more
accurate than the ones obtained with the DP-based method, due to
the use of dynamic models to describe the appliances’ behaviour.
Furthermore, by comparing Tables 1 and 2, it can be noticed that the
simplified version of the DP-based approach might even outperform the

complete version of the algorithm. Indeed , because of conditions (1)–
(4) (see Section 4.1), the simplified approach a-priori discards some
configurations which are unlikely to happen in practice. On the other
hand, the results obtained with the simplified version of the KF-based
approach are always less accurate than the ones achieved with the
complete version of the approach, but the use of the simplified KF-based
algorithm guarantees a substantial reduction of the computational time
required for disaggregation, as shown at the end of the section.
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Fig. 11. Dishwasher: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 12. Fridge: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. Heat Pump: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 14. Basement plugs & lights: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Cloths dryer: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 16. Dishwasher: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 17. Fridge: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 18. Heat Pump: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 19. Basement plugs & lights: True (black) vs estimated (red) power demands. Black and red lines are almost overlapped. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Effect of seasonality on the disaggregated profiles

To assess how changes in the consumer behaviour due to seasonality
affect the performance of the proposed methods, disaggregation is ad-
ditionally performed over a new dataset ̃𝑇 , which comprises readings
collected over 3 months (from June 1, 2012 to August 31, 2012). The
obtained results are then compared with the ones obtained disaggregat-
ing 𝑇 (constituted by measurements collected from January 1, 2013
to March 31, 2013). For a fair comparison, the aggregate readings build
from 𝑇 are not corrupted by fictitious noise. The 𝐹 -scores and the 𝑅2

indexes obtained for the different datasets are reported in Tables 4–5
and in Tables 6–7, respectively. As shown by the 𝐹 -scores in Tables 4–5,

changes due to seasonality do not significantly influence the capability
of the methods in reconstructing the on/off states of the different
devices. On the other hand, seasonality influences the accuracy of the
reconstructed consumption patterns. Nonetheless, the achieved 𝑅2 in-
dexes reported in Tables 6–7 for 𝑇 and ̃𝑇 are generally comparable,
with differences depending mainly on the accuracy of the individual
appliances models in describing their consumption in each season.

Comparison with state-of-the-art disaggregation methods
The performance of the proposed approaches are then compared

with two state-of-the-art disaggregation algorithms implemented in
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Table 4
Achieved 𝐹 -scores 𝐹𝑠. Results of the dynamic programming (DP)-based algorithm and
its version with reduced computational complexity obtained disaggregating over 𝑇
(Winter) and ̃𝑇 (Summer).

DP DP
algorithm reduced complexity

Summer Winter Summer Winter

Clothes dryer 99.7% 99.6% 99.7% 99.6%
Dishwasher 99.1% 99.1% 99.4% 99.0%
Fridge 98.1% 98.4% 98.4% 98.4%
Heat Pump 99.7% 99.9% 99.9% 99.9%
Basement 97.7% 94.6% 98.1% 94.9%

Table 5
Achieved 𝐹 -scores 𝐹𝑠. Results of the multi-model Kalman Filter (KF)-based algorithm
and its version with reduced computational complexity obtained disaggregating over
𝑇 (Winter) and ̃𝑇 (Summer).

KF KF
algorithm reduced complexity

Summer Winter Summer Winter

Clothes dryer 93.2% 90.0% 93.4% 90.1%
Dishwasher 92.8% 89.4% 92.9% 89.5%
Fridge 73.1% 75.9% 73.0% 76.0%
Heat Pump 92.2% 85.4% 92.2% 86.0%
Basement 97.8% 94.6% 97.7% 94.5%

Table 6
𝑅2 coefficient. Results of the dynamic programming (DP)-based algorithm and its
version with reduced computational complexity obtained disaggregating over 𝑇
(Winter) and ̃𝑇 (Summer).

DP DP
algorithm reduced complexity

Summer Winter Summer Winter

Clothes dryer 83.4% 85.1% 84.5% 86.4%
Dishwasher 32.4% 57.0% 76.6% 55.4%
Fridge 70.6% 71.2% 70.2% 68.8%
Heat Pump 82.4% 97.9% 95.8% 98.0%
Basement 73.0% 85.9% 81.9% 89.3%

Table 7
𝑅2 coefficient. Results of the multi-model Kalman Filter (KF)-based algorithm and
its version with reduced computational complexity obtained disaggregating over 𝑇
(Winter) and ̃𝑇 (Summer).

KF KF
algorithm reduced complexity

Summer Winter Summer Winter

Clothes dryer 87.5% 89.1% 72.3% 76.3%
Dishwasher 68.6% 69.1% 62.2% 55.9%
Fridge 66.3% 67.1% 66.3% 65.5%
Heat Pump 94.6% 98.3% 88.8% 91.8%
Basement 78.8% 86.2% 77.7% 86.6%

Table 8
Achieved 𝐹 -score 𝐹𝑠. Comparison between the results of the dynamic programming
(DP)-based algorithm, the multi-model Kalman filter (KF)-based method and the 2-
states Factorial Hidden Markov Model (FHMM) and Combinatorial Optimization (CO),
implemented in (Batra et al., 2014).

DP KF CO FHMM

Clothes dryer 99.6% 90.1% 92.6% 95.7%
Dishwasher 99.0% 89.5% 93.3% 88.5%
Fridge 98.4% 76.0% 94.9% 92.6%
Heat Pump 99.9% 86.0% 99.5% 99.9%
Basement 94.9% 94.5% 85.7% 90.7%

the NILMTK toolkit (Batra et al., 2014) Specifically, the proposed
approaches are compared with (𝑖) the method for exact inference over
Factorial Hidden Markov Models (FHMMs) with Gaussian probability of
emission and (𝑖𝑖) combinatorial optimization. The FHMM and the sig-
natures of each appliance are learned from the same datasets {𝑖}5𝑖=1

Table 9
𝑅2 coefficient. Comparison between the results of the dynamic programming (DP)-based
algorithm, the multi-model Kalman filter (KF)-based method and the 2-states Factorial
Hidden Markov Model (FHMM) and Combinatorial Optimization (CO), implemented in
(Batra et al., 2014).

DP KF CO FHMM

Clothes dryer 84.4% 76.3% 96.8% 98.5%
Dishwasher 55.4% 55.9% 8.3% 47.5%
Fridge 68.8% 65.5% 0% 24.0%
Heat Pump 98.0% 91.8% 92.1% 97.1%
Basement 89.0% 86.6% 0% 45.3%

Table 10
Average CPU time, in milliseconds, required to disaggregate the total power consump-
tion at a given time instant. Results of the dynamic programming (DP)-based algorithm,
the multi-model Kalman-filtering (KF)-based algorithm and their versions with reduced
computational complexity.

DP KF
algorithm algorithm

Complete Reduced Complete Reduced

CPU time [ms] 0.006 0.006 0.451 0.166

used to train the jump models employed in the proposed approaches.
Disaggregation is then performed on 𝑇 , without corrupting the ag-
gregate readings. Table 8 shows the achieved 𝐹 -scores, by considering
only the simplified versions of the algorithms proposed in the paper.
The reported 𝐹 -scores show that the proposed algorithms perform
comparably to state-of-the-art disaggregation methods in term of on/off
state recognition. The lower values of 𝐹𝑠 obtained for the fridge and
the heat pump with the Kalman filter based approach can be attributed
to the use of dynamic models to describe the consumption behaviour
of these appliances. Nonetheless, both the DP-based and the KF-based
approaches perform generally better than the considered state-of-the-
art methods in reconstructing the appliances’ consumption patterns. In
particular, by looking at the 𝑅2 indexes reported in Table 9, it can
be noticed that both the proposed methods significantly outperform
combinatorial optimization and FHMM in reconstructing the patterns
for the fridge and the basement plugs and lights.

Computational complexity
The average CPU times required to compute the disaggregated

signals at each time instant are reported in Table 10. Both the complete
and the reduced-complexity DP-based approaches take 6 μs to perform a
disaggregation step. Thus, in the considered application, the simplified
method does not lead to improvements in terms of CPU time, because of
the overhead time required to check conditions (1)–(4). On the other
hand, the simplified KF-based approach is about 3× faster than the
complete version. These results show the potentiality of the proposed
algorithms for big-data processing, thanks also to their iterative nature.
Compared with the approach in Piga et al. (2016), which in average
takes around 3 minutes to disaggregate one-day consumption records,
the proposed approaches take less than 8 milliseconds to disaggregate
the same data record. Furthermore, the complete versions of the KF-
based approach and the DP-based method require around 59 seconds
and 0.7 s to disaggregate three months of data, respectively, with
the CPU time required to disaggregate 𝑇 dropping to 22 seconds
when the KF-based approach with reduced complexity is used. Instead,
the 2-state FHMM and combinatorial optimization (Batra et al., 2014)
disaggregate three months of data in 20 seconds and 3 seconds on av-
erage, respectively, thus making the presented approaches competitive
with state-of-the-art methods in terms of computational complexity.
Nonetheless, it has to be remarked that, because of the recursive nature
of the proposed algorithms, they are suited for real-time implementa-
tion. Furthermore, the complexity of their simplified versions does not
increase exponentially with the number of appliances and the number
of operating modes.
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6. Conclusions

In this paper two iterative algorithms for real-time energy disag-
gregation have been presented, along with heuristics to reduce their
computational complexity. Both the proposed algorithms use jump
linear models, prior estimated from the devices’ signatures, to describe
the behaviour of the individual appliances.

Differently from many existing disaggregation approaches, the pro-
posed methods can handle multiple-state devices, thus enabling the
reconstruction of the appliances’ consumption patterns rather than
simply detecting on/off states. The proposed methods further allow
the estimation of appliance-level consumptions from readings with a
time resolution between 1 second and 1 minute, without the need
to analyse the sub-harmonics of the 50∕60-Hz electric signal. There-
fore, the proposed approaches do not require high-frequency sampling
devices. If 1 min data are not available, the proposed methods are
expected to return satisfactory results, provided that the models of
the individual appliances are identifiable (i.e., the different operating
modes can be distinguished from the consumption patterns) and that
the devices are characterized by different consumption profiles, so
that the contribution of the individual appliances is detectable from
the aggregate data. It is worth remarking that this limitation is in-
trinsic to all existing disaggregation approaches. Another strength of
the proposed methods is their computational efficiency that, combined
with the iterative nature, makes them suited for big data processing.
The main advantage of the proposed methods over existing ones is
their recursive nature, which allows to process aggregate readings in
real-time instead of requiring a batch of data to disaggregate power.

At the moment the approaches are not tailored to handle changes
in the appliances behaviour at the different operating conditions, as
the jump models describing the individual devices are not updated
when disaggregation is performed. This limits the performance of the
proposed approaches for long-term usage, where it is expected that the
model of the appliances change due to multiple factors, e.g., the aging
of the device. To overcome this limitation, future research is devoted
to the integration of real-time identification into the disaggregation
algorithms, so to simultaneously reconstruct the disaggregated signals
and recursively update the jump sub-models describing the individ-
ual appliances, without the need to recalibrate the models through
intrusive experiments.

As a final remark, it is worth further stressing that algorithms for
energy disaggregation allow consumers to obtain additional real-time
information without replacing available appliances in the house and
without installing costly sensing and communication infrastructures. Of
course, the algorithms proposed in this paper for energy disaggregation
would possibly lose their interest in the future, if residential houses
are endowed with smart and interconnected plugs (or appliances).
However, at least in the near future, this solution is likely to be still
too costly, thus legitimizing research towards energy disaggregation
methods.
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