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Abstract 

In this paper we prove, in a constructive way, the equiv- 
alence between hybrid and piecewise afine systems. By 
focusing our investigation on the latter class, we show 
through counterexamples that observability and con- 
trollability properties cannot be easily deduced from 
those of the component linear subsystems. Instead, 
we propose practical numerical tests based on mixed- 
integer linear programming. 
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ability, piecewise linear systems, piecewise affine sys- 
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1 Introduction 

In recent years both control and computer science have 
been attracted by hybrid systems [l, 2, 13, 15, 161, 
because they provide a unified framework for describ- 
ing processes evolving according to continuous dynam- 
ics, discrete dynamics, and logic rules. The interest is 
mainly motivated by the large variety of practical sit- 
uations, for instance real-time systems, where physical 
processes interact with digital controllers. 
Several modeling formalisms have been developed to 
describe hybrid systems, as reviewed in [14]. It is ap- 
parent that the tools for the analysis of hybrid systems 
strongly depend on the adopted mathematical descrip- 
tion. 
Recently, Bemporad and Morari [5] introduced a new 
class of discrete-time hybrid systems called Mixed Log- 
ical Dynamical (MLD) systems. The justification for 
the MLD form is that it is capable to model a broad 
class of systems arising in many applications: Piece- 
Wise Affine (PWA) systems, linear hybrid dynami- 
cal systems, hybrid automata, some classes of discrete 
event systems, linear systems with constraints, etc. Ex- 
amples of real-world applications that can be natu- 
rally modeled within the MLD framework are reported 
in [4, 5, 61. 
The first result of this paper is to prove, in a construc- 
tive way, that MLD systems are formally equivalent 
to PWA systems. This result allows extending all the 
techniques developed for PWA models to the general 
MLD description of hybrid systems, therefore render- 
ing the PWA framework a useful companion for investi- 
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gating properties and designing algorithms. Although 
based on different arguments, this importance has also 
been pointed out by Sontag [20], who highlights the 
equivalence between Piecewise Linear (PWL) systems 
and interconnections of linear systems and finite au- 
tomata. 
Piecewise afine systems are described by the state- 
space equations 

z(t + 1) = Aix(t) + Biu(t) + fi 
Y(t) = Cix:(t) + Si 

7 [Eji;] E Xi 

(1) 
where {Xi}~=~ is a partition of the state+input set and 
fi, gi are suitable constant vectors. Each subsystem de- 
fined by the 5-tuple (Ai, Bi, fi, Ci, gi), i E { 1,2, . . . , S} 

is termed a component of the PWA system (1). If fi 
and gi are null, system (1) is referred to as piecewise 
linear. 
Despite the fact that PWA models are just a compo- 
sition of linear time-invariant dynamic systems, their 
structural properties such as observability, controllabil- 
ity, and stability are complex and articulated, as typical 
of nonlinear systems. 
The research into stability criteria for PWL systems 
has been motivated by the fact that the stability of each 
component subsystem is not enough to guarantee sta- 
bility of a PWL system [7] (and vice versa [23]). Very 
little research focused on observability and controlla- 
bility properties of hybrid systems, apart from contri- 
butions limited to the field of timed automata [l, 111 
and the pioneering works of Sontag [19, 201 for PWL 
systems. Needless to say, these concepts are fundamen- 
tal for understanding if and how well a state observer 
and a controller for a hybrid system can be designed. 
Controllability and observability properties have been 
investigated in [8, lo] for linear time-varying systems, 
and in particular for the so-called class of piecewise 
constant systems (where the matrices in the state- 
space representation are piecewise constant functions 
of time). Although in principle applicable, these re- 
sults do not allow to catch the peculiarities of PWA 
systems. 
In this paper we provide two main contributions to the 
analysis of controllability and observability of hybrid 
and PWA systems: (i) we show the reader that observ- 
ability and controllability properties can be very com- 
plex; we present a number of counterexamples that rule 
out obvious conjectures about inheriting observabil- 
ity/controllability properties from the composing linear 
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subsystems; (ii) we provide observability and controlla- 
bility tests based on Linear and Mixed-Integer Linear 
Programs (MILP) . 

2 Mixed Logical Dynamical (MLD) Systems 

The mixed logic dynamical (MLD) form was intro- 
duced in [5], based on the idea of transforming logic 
relations into mixed-integer linear inequalities [22, 171. 
The general MLD form is: 

x(t + 1) = Ax(t) + Blu(t) + BzS(t) + Bgz(t) (2a) 

y(t) = Cx(t) + D1u(t) + D&t) + Dgz(t) Pb) 
Ed(t) + Esz(t) 5 Elu(t) + Edx(t) + E5 PC) 

where x E lRnc x (0, l}np are the continuous and bi- 
nary states, u E lRmc x (0, l}me are the inputs, y E 
lRrc x {O,l}Pl the outputs, and 6 E (0, l}TL, z E Kc 
represent auxiliary binary and continuous variables re- 
spectively. All constraints on state, input, z and 6 vari- 
ables are summarized in the inequality (2~). Although 
the description (2) seems to be linear, nonlinearity is 
concentrated and hidden in the integrality constraints 
over binary variables. 
We assume that system (2) is completely well-posed [5], 
which in words means that for all x, u within a bounded 
set the variables 6, z are uniquely determined, i.e. there 
exist functions F, G such that, at each time t, 6(t) = 
F(x(t),u(t)), z(t) = G(x(t),u(t)) ‘. This allows as- 
suming that x(t + 1) and y(t) are a uniquely defined 
once x(t), u(t) are given, and therefore that x- and y- 
trajectories exist and are uniquely determined by the 
initial state s(O) and input trajectory U. 
The auxiliary variables are introduced when transform- 
ing propositional logic into linear inequalities. We refer 
the reader to [5] for a detailed exposition. 

3 Equivalence Between Hybrid and PWA 
Systems 

Consider a Piecewise Afine (PWA) time-invariant dy- 
namic system of the form (l), where x E ES”, y E IWP 
and u E lRm. We take into account constraints on the 
state and the input assuming that the state+input ad- 
missible set X C lRn+m is a convex and bounded poly- 
hedron. Moreover we suppose that Xi, i = 1,2,. . . , s 
form a polyhedral partition2 of X. 
PWA systems can be represented in the MLD form (2). 
The translation consists of defining logical 6i variables 
[ai = l] 4-b [[El E Xi] and imposing the exclusive- 
or condition @z=, [& = 11. For details, the reader is 
referred to [5]. 
Conversely, we will show in Proposition 1 that every 
MLD model (2) is equivalent to a PWA system. 

‘A more general definition of well-posedness where only the 
components of 6 and z entering (Za)-(2b) are required to be 
unique is given in [5]. 

2Each set X, is a (not necessarily closed) convex polyhedron 
s.t. xj n xj = 0, vi # j, up, xj = x. 

Proposition 1 Consider generic trajectories x(t), 
u(t), y(t) of a MLD system (2). Then there exist a 
polyhedral partition {Xi}&1 of the state+input space 
X and 5-tuples (Ai, Bij Ci, fi, gi), i = 1,. . . ,s, such 
that x(t), u(t), y(t) satisfy (1). 

Proof: In order to simplify the proof, without loss 
of generality we assume that the logical components xei 
of xe are also auxiliary variables, i.e. Vi = 1,. . . , n( 3j 
such that xei = Sj. This is not a restrictive assump- 
tion, as typically the state transition of logical states 
derives from a logic predicate involving literals associ- 
ated with components of 6(t) and xl(t), and the lat- 
ter can be expressed again as additional auxiliary vari- 
ables by simply adding the constraints Sj (t) < xei(t), 

-dj(t) 5 -Xei(t) in (2C). 

By well-posedness of system (2), given x(t), u(t) 
the vector d(t) is uniquely defined, namely d(t) = 
F(x(tL u(t)). M oreover, it only takes a value 6i within 
a set of (at most) 2TL values (corresponding to all pos- 
sible O-1 combinations). Let s be the number of valid 
combinations, i.e. the number of all different vectors 
6 E (0, l}Te satisfying constraints (2c) for some x(t), 

u(t), z(t). The idea is to partition the statefinput 
space by grouping in regions Xi all [ $:;I correspond- 
ing to the same binary vector C$ = F(x(t),u(t)). Let 
us fix S(t) E 6i. The inequalities (2~) define a polyhe- 
dron P in lRn+m+rc. By well-posedness of z(t), given a 
pair x(t), u(t) there exists only one value z(t) E IFYc 
satisfying (2c), namely z(t) = G(x(t),u(t)). As all 
the inequalities (2~) are linear, G is an affine function, 
namely 

Z(t) = KbiX(t) + KliU(t) + Ksi, VX(t), U(t) (3) 

S.t. F(x(t), u(t)) = 6i 

and P c Rn+m+rc is a polyhedral set of dimension 
less than or equal to n + m (for instance if n = 1, 
m = 0, T, = 1, P would be a segment in lR2). By 
substituting (3) in (2a)-(2b), we obtain x(t+ 1) = (A+ 
B3K4i)x(t)+(Bl +&Kli)U(t)+ (&6i+B3K5i), y(t) = 
(C+&K4i)x(t) + (01 +&K4i)u(t)+ (D3K5i +D,Si), 
which, by suitable choice of Ai, Bi, Ci, fi, gi, i = 

kiii + (E3Kli - E1)u < (Es - E3Ksi _” E2Si)) 
, S, corresponds to (1) for Xi = { [’ ] : (EaKdi - 

W 

Remark 1 We stress the fact that the proof is based 
on a constructive argument. In particular, the matrices 
Kii, K4i and K4i involved in formula (3), can be de- 
rived either from direct insight or automatically from 
the inequalities (2~). Further details are reported in 
[31. 

4 Observability 

In this section, we consider observability of MLD sys- 
tems (2), or equivalently PWA systems in view of 
Proposition 1. 
Denote by y(t,s,u) the output evolution at time t 

starting from the initial condition x(0) = x and driven 
by the input u(t), t = 0, 1, . . . . We extend the definition 
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of observability given in [12,18] to non-autonomous hy- 
brid systems of the form (2) 

Definition 1 Let X(0) c lKPc x (0, l}ne be a set of 
initial states, and U C IRmc x (0, l}me a set of inputs. 
The MLD system (2) . zs incrementally observable in T 
steps on X(0) and U or simply incrementally observ- 
able if there exist two norms 11 . Ila (on IPPc+~() and 
11 . I/b (on Rpc+pt ) and a positive scalar w such that 
Vxl,xz E X(0) and ‘d input sequences {u(t)}~~ol c U 

T-l 

c IlY(t,xl,u) - Y(t,x2>~)llb > 41x1 - x2lla (4) 
t=o 

Remark 2 The parameters T and w appearing in Def- 
inition 1 admit a practical interpretation. The scalar w 
can be viewed as an observability measure3 for an in- 
crementally observable system. For fixed initial states 
xi and x2, the larger w, the more different the trajec- 
tories y(t, xi, u), y(t, x2, U) (from now on, we will write 
in short yl(t), yz(t)). H ence, in practice, one would fix 
a minimum observability level W,in and require that 
W 2 Wmin. If this condition is not fulfilled, we classify 
the system as practically unobservable. Practical unob- 
servability also arises if Definition 1 is satisfied only for 
large T. Therefore, it is sensible to fix an upper bound 
T Tnaz on T and define an MLD system as practically ob- 
servable when it satisfies Definition 1 with T < T,,,. 
n 
4.1 Observability Counterexamples for PWA 
Systems 
Definition 1 was formulated for the general class of hy- 
brid systems described by the MLD form (2), or equiv- 
alently the PWA form (1). One might expect to ex- 
ploit the structure of PWA systems to derive results 
about observability similar to those holding for linear 
systems. Below we show some counterexamples which 
undermine these hopes, even in the simpler case of au- 
tonomous PWL systems. 
We first show that for PWL systems the time of observ- 
ability T is not related to the order n of each subsystem, 
and therefore that if a PWL system is incrementally 
observable nothing can be said, in general, about the 
minimum T such that Definition 1 holds. 
Then, we show examples where observability proper- 
ties of a PWL system cannot be directly inferred from 
the observability properties of its linear subsystems. In 
fact, we will show that unobservable subsystems can 
be composed to build an observable PWL system, and 
vice versa that the composition of observable subsys- 
tems can become unobservable. 

4.1.1 A PWL system incrementally observ- 
able with T arbitrarily large.: Consider the fol- 
lowing system 

3More precisely, one should use ti = sup{w > 
0 s.t. (4) holds} as observability measure. 

Figure 1: State space plane: z(t + 1) - x(t) normalized 
vector field 

where E > 0 is fixed and set 

X(0) = { [ $i] E lR2 : 6 < Xl(O) < l} (6) 

Then y(t) = l.ltxi(0), Vt < T where T A ,zsg,ti , b-1 
and r.1 denotes the least upper integer. Moreover, 
y(T + 1) = 0.9x2(0) and therefore two initial states 
Xl = [z::], x2 = [:::I, with 212 # 222, are indistin- 
guishable for T 2 !?. By Definition 1, system (5) is 
incrementally observable in T + 2 steps. We can ren- 
der T arbitrarily large by choosing smaller and smaller 
values of E (intuitively, the smaller the initial condition 
xi(O), the longer the time required for the output to 
overpass 1 and switch dynamics). By setting E = 0 in 
(5) and (6), it follows that the system (5) becomes in- 
crementally observable on-X(O) only in infinite steps, 
in the sense that for each T there exist initial states in 
X(0) that can be observed only after T > 5! steps. 

4.1.2 An incrementally observable PWL 
system whose components are unobservable: 
Consider the system 

xl(t) if xl(t) > x2(t) 

x2(t) if xl(t) F x2(t) 
O’b) 

whose component subsystems are unobservable. The 
evolutions of the state-space trajectories are depicted 
in Fig. 1. 
Let X(0) c Sector 1 U Sector 2 depicted in Fig. 1 be 
a bounded set of admissible initial states. If x(0) lies 
in Sector 1, we have y(0) = xi(O) and the first compo- 
nent of the initial state is immediately observed. How- 
ever, since [i y]“[E$ii] = [t51($~2[O)] and X(0) is 
bounded, there exists a finite time T > 1 such that the 
state enters Sector 2. Then, y(T) = Txi(O) + x2(0) 
and the second component x2(0) can be determined 
as well from the output knowledge. Mutatis mutan- 
dis, the same rationale applies when the initial state 
lies in Sector 2. Then the system is incrementally ob- 
servable in !i? steps on X(0). Note however that the 
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system is not incrementally observable on initial sets 
X(0) intersecting Sectors 3 or 4. Consider in fact an 
initial state that lies in Sector 3 (or 4). From Fig. 1, it 
is clear that the state trajectory never crosses the line 
Xl = x2. Therefore the evolutions will be governed by 
the first (the second) component of (7), thus implying 
the unobservability of the first (second) coordinate of 
the initial state. 

4.1.3 An unobservable PWL system whose 
components are observable.: Consider the system 

Y(t) = 
XI (t) if XI (t) > x2(t) 

x2(t) if xl (t) 2 x2(t) 

whose components are observable. We partition again 
the state space as in Fig. 1. If the initial state lies in 
Sector 3, by direct calculation one has y(0) = Q(O) 
and y(t) = 0, Vt > 0. Indeed, the state evolution for 
t > 0 is x(t) = [“lio)] if t even, [ sl~o)] if t odd, and 
xi(O) < 0. Since the same rationale can be applied for 
initial states lying in Sector 4, it can be concluded that 
the system is not incrementally observable on X(0) = 
Sector 3 U Sector 4 (although it is easy to verify that 
the system is still incrementally observable on X(0) = 
Sector 1 U Sector 2). 

4.2 An Observability Test for Hybrid Systems 
The purpose of this section is to derive an observability 
test for hybrid systems in the MLD form (2). In fact, 
the observability condition formulated in Definition 1 
can be difficult to check, and thus one needs compu- 
tationally tractable tests. Before stating Theorem 1, 
where we show that for MLD systems the incremental 
observability in T steps on X(0) and U is reduced to the 
solution of a Mixed Integer Linear Program (MILP), we 
need some preliminary results. 

Proposition 2 The MLD system (2) is incrementally 
observable if and only if there exists a scalar w > 0 
such that 

min 
Zl E X(O), x2 E X(O) 

51 > 0 03) 
u(t) E z-4, t = o,... ,T - 1 

T-l 

51 f c IIy1(t) - y2(t)llco - 'WIIZl - Q111. (9) 
t=o 

Proof: The proof easily follows from the fact that 
all the norms in finite-dimensional Euclidean spaces are 
equivalent. n 
The minimization problem (8) is in general nonconvex. 
Anyway, the use of the norms ]I . ]lo3 and ]I . ]]I allows 
us to formulate it as an MILP problem. To this pur- 
pose we need a technical lemma. In the sequel [x]i will 
denote the i-th element of vector x. 

Lemma 1 Let X(0) be bounded. For two vectors x1, 
x2 in X(O), it holds 11 Xl -x2ll1 = cy&l -X2]i-q4, 
along with the inequalities x1 - x2 < (A4 - m)‘(l, - cl), 
Xl - x2 1. lTln + (m - M - ClJP, s 2 (M - m)‘j& 

s 2 (m-M)‘p, s < xl-x2-(m-M)‘(l,-p), ands > 
x1 -x2 - (M - m)‘(l, - p), where ~1 E (0, l}“, [M]i = 
max,eX(0) xi, [m]i = min,ex(o) xi, i = 1,. . . ,n and o 
is a small tolerance (e.g. the machine precision). 

Proof: The proof is omitted for brevity, and is 
reported in [3]. w 

Theorem 1 Let X(0) be bounded and consider the fol- 
lowing optimization problem: 

J’ = 

t=o \z=l / 
subject to (2), the inequalities in Lemma 1, and 

l+t > yl(t) - yz(t), t = O,... , T - 1 (lob) 

&et 2 yz(t) - yl(t), t = O,... ,T - 1 (1Oc) 

Then the MLD system (2) is incrementally observable 
in T steps on X(0) and U if and only if, for some 
w > 0, it holds J’ 2 0. 

Proof: We start by proving necessity. 
Inequalities (lob) and (10~) imply that et > 
m=i=l,... .p Ibl(t) - Y2(t)lil = Ill - Yz(t)ll,. BY 
Lemma 1, 11x1 - 22]]i = cy=“=,[xi - XZ]~ - 2[s]i, and 

therefore J* 2 CL-,,’ llvl(t) - y2(t)llm - ~11x1 - ~111. 
In view of Proposition 2, the condition J* 2 0 follows 
from the incremental observability of system (2). 
To show sufficiency, let 51 be defined as in Proposition 
2. Then 

5; = min Jl x1 E X(O), z-2 E X(O) (11) 

subject to constraints (2) and let z;, xz denote the ini- 
tial states that minimize (11). The variables {ct}TZ;‘, 
p and s are defined as ct g Ily(t,xr) - y(t,x;)Iloo, 
[S]i k I[Xi-X~]il, i = 1,. . . ,7L, [pIi k 1 if [Xi-Xs]i < 0, 
or 0 if [xi - xi]i > 0, i = 1,. . . , n, and are feasible for 
problem (lOa). Thus, by optimality, J; 2 J* > 0, 
which proves incrementally observability. n 
Theorem 1 is also helpful for designing an algorithm 
that checks the practical observability of an MLD sys- 
tem (see Remark 2). The procedure is summarized in 
the following steps: 
Algorithm 1 

1. Choose wmin and T,,, (sea Remark 2); 
2. Set T=l and w=w,;~; 
3. Solve the MILP (10a); 
4. If J' > 0, stop: The system is (practically) 

observable; 
5. If J' < 0, increase T; 

6. If T > Tmaz, stop: The system is practically 
unobservable; 

7. co to step 3. 



Remark 3 When the sets X(O), U are polytopes, the 
optimization problem (10) becomes a MILP in I”(1 + 
r, + m,) + 3n continuous variables and T(re + me) + n 
integer variables. It is well known that, with the excep- 
tion of particular structures, MILPs involving O-l vari- 
ables are NP-complete, which means that in the worst 
case the solution time grows exponentially with the 
number of integer variables [17]. Despite this combina- 
torial nature, several algorithmic approaches have been 
proposed and applied successfully to medium and large 
size application problems [9], and branch and bound 
methods were shown to be the most successful. 
In case the observability horizon T becomes large, solv- 
ing such an optimization can become computationally 
intractable. This has to be expected, because of the 
nip-complete nature of the observability problem it- 
self over finite horizon [20]. Consider for instance the 
autonomous case (no input). By looking more closely 
at the MILP (lOa), the main reason for the complexity 
is the presence of integer variables b(t). Indeed, deter- 
mining the optimal sequence 6(O), . . . , s(t) corresponds 
to finding the sequence of the switching of linear dy- 
namics which leads to the worst case for observability. 
Nevertheless, by exploiting the equivalent PWA struc- 
ture of hybrid systems, in [3] we propose an algorithm 
which, although still exponential in the worst case, 
checks the observability of PWA systems with consid- 
erably less computation burden than Algorithm 1. The 
idea is to adopt tools developed for formal verification 
of hybrid systems [6], where basically a set-reachability 
problem is solved through the exploration of all possible 
evolutions of the hybrid system from the set of initial 
states X(0). We remark that checking observability is 
simpler than verification, as the search does not pro- 
ceed further as long as the system is found observable. 

5 Controllability 

We introduce the following definition of controllability 
for MLD systems. 
Definition 2 Let X(0) and Xf be nonempty sets of 
initial and final states, respectively. The MLD sys- 
tem (2) is controllable in T steps from X(0) to Xf if, 
VXO E X(O), there exists an admissible input sequence 
{u(t)}~=&’ yielding 

x(T) E Xf (12) 
If X(0) and Xf are singletons (i.e. X(0) = {x0} and 
Xf = {z}), Definition 2 reduces to a classical control- 
lability notion [21]. Anyway, letting X(0) be a general 
set, we take into account also the case of incompletely 
specified initial conditions. Moreover, in many situa- 
tions, the control specifications demand to drive a sys- 
tem into a set of safe states Xf [6]. It is apparent that 
Definition 2 embraces also this scenario. 

5.1 Controllability counterexamples for PWA 
systems 
Analogously to the observability notion, we specialize 
the controllability definition to PWL systems. Again, 

4 

3 

2 

1 

0 

-1 

-2 

-3 

d 
‘-4 -3 -2 -1 0 1 2 3 4 

Figure 2: State-space for system (13), whose components 
are completely controllable: Region III is not 
reachable from ~0 

through some counterexamples, we will show that this 
property cannot be inferred from the controllability of 
the component subsystems. 

5.1.1 An uncontrollable PWL system 
whose components are controllable.: Consider 
the system 

[Z](t+ 1) = [?A] [Z](t) + 

+ y u(t), x1(t) > x2(t) 

Hi I+ u(t), x1(t) L x2(t) 
(13) 

whose components ([:A], [:I) ([:;I, [A]) are com- 
pletely controllable. Let xo = [ !$:I be the initial 
state, and consider the partition of the state space de- 
picted in Fig. 2. The Sectors I, 11, 111, IV are ob- 
tained by intersecting the lines xi = max{xie, 220) , 
22 = max{xis,x2s}. It is easy to verify that only the 
Sectors I, II, IV are completely reachable from xc, 
while III is not reachable. For instance, the point 

= (-2,3) can be reached from x0 = (2, -1) by 
ziplying the input u(O) = 4, ~(1) = -4, but no in- 
put can steer x0 to the origin. In general, the PWL 
system (13) is controllable to 0 from x0 if and only if 
0 E IUIIUIV, where we point out that Sectors I- 
IV depend on x0. Therefore, xo is controllable to the 
origin if and only if x01 < 0,x02 < 0. 

5.1.2 A controllable PWL system whose 
components are uncontrollable.: Consider the 
system 

[2]@+1) = [;Y][z:]<t,+ 

+ 
iH 

i u(t) if x2(t) - 1 > xl(t) > x2(t) 
1 u(t) if xl (t) 5 22(t) 

whosecomponents ([A:], [A]) ([A!], [y]) areuncon- 
trollable. The three regions in which the state space 
is partitioned are depicted in Fig. 3. It is easy to ver- 
ify by inspection that every initial state in X(0) = IK;” 
can be controlled to any other state in at most three 
steps. This is, for instance, the situation depicted 
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-3 

-4 
-4 -3 -2 -1 0 1 2 3 4 

Figure 3: State-space for system (14), whose components 
are uncontrollable 

in Fig. 3 where the point xf = (0.5,O) is steered 
from x0 = (2, -1) by applying the input u(O) = 2.5, 
u(1) = u(2) = -1.5. 

5.2 Controllability Tests for Hybrid Systems 
In this section we discuss numerical tests for checking 
the controllability of an MLD system. We first notice 
that Definition 2 can be translated into the following 
Mixed-Integer Feasibility Test (MIFT) 

f 40) E X(O), 

I 
z(T) E XI 
z(t + 1) = Ax(t) + &u(t) + B&t) + &z(t) (14) 

I Ezh(t) + E3z(t) 5 &u(t) + E4z(t) + E5 

t=O,l,... ,T 

The feasibility test (14) is called a verification problem 
in the hybrid system literature. Unfortunately, solv- 
ing the MIFT for large T becomes prohibitive. In fact, 
each problem (14) is NP-complete which means that 
in the worst case the required computation time grows 
exponentially with T. Despite this strong theoretical 
limitationa verification algorithm for the general class 
of MLD systems under the assumption that both X(0) 
and Xf are polyhedra was proposed [6]. This proce- 
dure is based on a sequence of linear and mixed-integer 
linear programs and can be adopted as a numerical con- 
trollability test. Various other verification techniques 
have been proposed in the literature [l, 21. 

6 Conclusions 

In this paper we illustrated, through a number of coun- 
terexamples, the complexity of observability and con- 
trollability properties of PWA and hybrid systems. Af- 
ter proving the equivalence between PWA and hybrid 
MLD systems, we exploited this equivalence to derive 
observability and controllability tests which are numer- 
ically appealing. 
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