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Abstract

Predictive controllers which are able to guarantee con-
straint fulfillment in the presence of input disturbances,
typically based on min-max formulations, often suffer
excessive conservativeness. One of the main reasons for
this is that the control action is based on the open-loop
prediction of the evolution of the system, because the
uncertainty due to the disturbance grows as time pro-
ceeds on the prediction horizon. On the other hand,
such an effect can be moderated by adopting a closed-
loop prediction. In this paper, closed-loop prediction
is achieved by including a free feedback matrix gain in
the set of optimization variables. This allows to well
balance computational burden and reduction of conser-
vat iveness.

1 Introduction

In almost all industrial applications the design of feed-
back control systems is complicated by the presence of
constraints, such as physical limits of actuators, safety
margins, limited manufacture tolerances. In order to
cope with this kind of control problems, in recent years
model predictive control (MPC) has been investigated
and successfully employed [1, 2, 3, 4, 5, 6]. The main
idea of MPC is to use a model of the plant to predict
the future evolution of the system and, accordingly,
select the command input. Prediction are handled ac-
cording to the so called receding horizon (RH) philos-
ophy: a sequence a future control actions is chosen,
by predicting the future evolution of the system, and
applied to the plant until new measurements are avail-
able. Then, a new sequence is evaluated so as to re-
place the previous one. Each selected sequence is the
result of an optimization procedure which takes into
account two objectives: (i) maximize the tracking per-
formance, and (ii) guarantee that the constraints are
and will be fulfilled-i. e., no “blind-alley” is entered.
Schemes developed for deterministic frameworks often
lead to either intolerable constraint violation or over-

conservative control action. In order to guarantee con-
straint fulfillment for every possible disturbance real-
ization within a certain set, it is clear that the control
action has to be chosen safe enough to cope with the

Figure 1: Problem formulation

effect of the worst disturbance realization [7, 8]. This
effect is typically evaluated by predicting the open-loop
evolution of the system driven by such a worst-case dis-
turbance. As investigated in [9], this inevitably leads to
over-conservative schemes, and the authors suggest to
conveniently exploit the control moves to moderate the
effect of the disturbance. This is achieved by perform-
ing closed-loop predictions. Because of the pursued rig-
orous min-max approach, the control scheme developed
in [9] is computationally demanding. In this paper, the
closed-loop predictive action is limited to include a con-
stant feedback matrix gain in the set of optimization
variables. The scheme therefore renounces some de-
grees of freedom which in principle are available within
a general min-max formulation. On the other hand, it
allows to well balance increased computational burden
and reduction of conservativeness, as testified by the
reported simulation results.

2 Problem Formulation

Consider the situation depicted in Fig. 1. The model of
the plant under consideration is described by the linear
difference equations

{

z(t+ 1) = Aoz(t) + Boua(t) + Ht(t)
y(t) = Ciyz(t)+ Doua(t) (1)

c(t) = Eoz(t) + Goua(t) + L&(t)

where z(t) G W is the state, Ua(t) c K@ is the
command input to the actuators, y(t) G W the out-
put which should track a desired reference r(t) 6 W,
c(t) c IR# is a vector to be constrained within the con-
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vex polyhedral set

C={ CC IR!: ACC<BC}, BCCEW, (2)

(’(t) ~ R’ the unknown disturbance input acting on the
system, and t c Z+ = {O, 1,...}.We assume that f(t)

&(t)GE, W c z+ (3)

where E is the hyperrectangle

and (,:, fy are given bounds. For the linear plant (1),
we assume that the linear precompensator

u.(t) = F@(t) + K)u(t) (4)

has been already designed without taking care of the
constraints, for instance through standard control tech-
niques such as LQG or PID control, to provide stabil-
it y and noise attenuation properties. By considering
u(t) c EW as a new input, the overall closed-loop sys-
tem can be rewritten as

{

z(t + 1) = Az(t) + Bu(t) + Hf(t)
y(t) = Cz(t) + DLL(t) (5)
c(t) = Ez(t) + Gu(t) + L$(t)

where A ~ A. +BOFO, B ~ BOKO, C ~ Co + DOFO,

D $ DoKo, E ~ EO + GOFO, G $ GoKO. Without loss
of generality, we can therefore assume that the linear
system (5) satisfies the following

Assumption 1 A is asymptotically stable.

Note that the generic expression for c(t) allows to take
into account possible actuator saturations, i.e. con-

straints on the original input u.(t), which, by (4), is
now a state-dependent vector.

The goal of this paper is to design a feedback control
law u(t) = ~ (z(t),r(t))such that the output y(t)tracks
the desired reference r(t) ~ JR’ while the vector c(t)
fulfils the constraints

c(t) e c, (6)

for all possible disturbance realizations ~(t)G E. Here-

after, we shall assume that

Assumption 2 C is a polytope

Note that assuming that C is bounded is not restric-
tive in practice, since usually inputs and states are of-
ten bounded for physical reasons. The following de-
velopments will be meaningful if, in addition, C has a
nonempty interior. Moreover, we shall assume that

Assumption 3 The matrix de-gain HYU ~ C’(I –

A)-l B has full rank, rank HVU = min{m, p}.

We adopt the following receding horizon control law.
Let

rwl
‘Ll(Nu – 2)

v+ . ~ ~N.777 (7)

1 v(O) j
be a vector of IV. free parameters of INm, and let F c

7 a free constant state-feedback gain, where Z is the
family of state-feedback gains

{
F= FE IRnxm:

(i) (A+ BF) asymptotically stable,
(ii) rank K(F) = min{n,p}

(8)
and K(F) is the closed-loop DC gain

K(F) ~ C(I– A– BF)-lB +D.

Notice that by Assumption 3,0 c 7. Hereafter, z(k, t)
will denote the state vector at time t + k, predicted
at time t,according to model (5), initial state z(t),

disturbance input sequence {~(j) }$~~, and by setting

‘u(k, t) =
{

v(k) +Fz(k, t) if 0<k<lVU-2
W + Fz(k, t) if k> NU–l

(9)

(similarly, the notation c(k, t)will be used for the pre-
dicted evolution of the constrained vector).

The use of closed-loop prediction (9) instead of the
more classical open-loop form produces benefits when
min-max approaches to cope with disturbances are
adopted [9]. The main reason is that closed-loop pre-
diction attempts to reducing the effect of disturbances,
while in open-loop prediction this effect is passively suf-
fered. As a result, open-loop schemes are conservative,
because the uncertainty produced by the disturbances
grows more and more as time proceeds on the predic-
tion horizon. In order to better underline this key as-
pect, consider the evolution of the constrained vector
due to (9)

t–1

c(k, t) = E(A + BF)kz(t) + ~ E(A + BF)kv(k) +
k=(l

t–I

Gv(t) + E(A + BF)kH&(t -1- k) + L&(t) (10)
k=o

It is clear that F offers some degrees of freedom to con-

trast the effect of <(t),by modifying the multiplicative
term (A+ BF)k. For instance, if F renders (A+ BF)
nilpotent, c(Ic, t) is only affected by the last n distur-
bance inputs ((k – n + 1), . . . . ~(k), with consequent, no
uncertainty accumulation. On the other hand, if F is
set to O (open-loop prediction) and A has eigenvalues
close to the unitary circle, the disturbance action leads
to very conservative constraints, and consequently to
poor performance. Fig. 2 shows this effect for different
gains F, selected by solving LQ problems with input
weights p = O, p = 1, and p == +w. The last one
corresponds to open-loop prediction (F = O).
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Admissible Ranges for c(k,t)
3 Constraint Horizons

-.
024681012 1416

Prediction time k

Figure 2: Admissible ranges for the constrained vector

c(k, t) for different feedback LQ gains F (input

weight p = O, l,+co).

In order to select the future input sequence (9), con-
sider the performance function

N.–1

J(v,F,r) ~ ~ Ilv(k)-wll;u+llw?)zf-dl;r+ml’
k=o

(11)

where IJr > 0 ,$U > 0 are symmetric weight matrices,

IIuI13, ~ u’4u, and y >0 is a fixed scalar. Since w repre-
sent the final constant input on the prediction horizon,

~, penalizes the predicted steady-s~ate tracking error;
while $U penalizes deviations from such a steady-state

input of the control moves. The weight T reflects the
desire of maintaining unchanged the original closed-
loo~ dynamics, for instance to m-eserve bandwidth and. .
sensitivity characteristics provided by the precompen-
sator. The performance function (11) is minimized in
the presence of the constraints

C(k, t) 6 c, b’ke z (12)

Notice that no feedback term is present in (11). Since,
by considering (10), the constraints (12) involved in the
minimization of (11) depend on the current state x(t),
feedback will be m-esent onlv when the constraints are
active. This should not be considered as a drawback,
since noise and unmodeled dynamics effects rejection
are taken into account by the precompensator.

At each time t, the selection of the input u(t) proceeds
as follows.

[

argmintv, ~

(v(t),F(t))~ subjectto

7(v, F,r(t))

FeF
C(k, t) e c, Vk c z,

V{f(k)}y=o c E
(13)

Then, according to the receding horizon strategy de-
scribed above, we set

‘u(t) = ‘u(o, t). (14)

In this section we show that in the constrained op-
timization problem (13) only a finite number of linear
constraints suffices to ensure constraint fulfillment over
a seminfinite prediction horizon. To this end, we ex-
tend here results developed in [10] for the disturbance-
free case and two-degree-of-freedom input parameteri-
zations, by referring to the output admissible set theory

developed in [11, 7] for the regulation problem.

Consider the problem of fulfilling constraints (6) when
system (5) evolves from initial state z(O) and is fed by
the input sequence

u(t) =
{

v(t) if 0<t<lVu-2

w if t>lv u-l
(15)

The corresponding evolution of the constrained vector
is

t–1

c(t) = 13Atx(0) + ~ EAkBu(t – 1 – k) + Gu(t) +

k=o
t–1

E
EAkHf(t – 1 – k)+ Lf(t) (16)

?$=0

Since (6) must be fulfilled for all possible ~(t) c E, we
can replace BC in (2) by BC – maxte~ L& and, without
loss of generality, set L = O.

In order to obtain finite constraint representation, we
impose that the steady-state input vector w satisfies

“w&2{w’Rm:“kcuw+zBAk<B. – 6, V{((~)}:=O S =} (17)

where HCU ~ E(I – A)-lB + G, and d >0 is a fixed

arbitrarily small scalar.

Remark 1 The set W: might be empty for large d
and/or large disturbance set E. When W~ = 0 for all
positive 6, no feasible steady state exists. In this case,
for every constant input level w there exists a sequence
of disturbance inputs which produces constraint viola-
tion. The results develo~ed below are still valid for the
degenerate case W: = 0.

By letting

[

x(t)

z(t) + v(t)
w

u(t+N. –2)–w

) v(t) =

‘u(t) – w 1

the evolution c(t) in (16) of system (5) with input (15)
can be rewritten as a free evolution of the following
system

{

Z(t + 1) = Az(t) + 17g(t)

c(t) = Ez(t)
(18)
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Consider the following sets

{
.q$= .zEnln+N”m:

{
w e w&, ACz(k) < BC,

Vk=o ,.. . ,t, v{qk)}~~~ c s

and
(19)

(20)
t=o

where ,Zt is the set of initial states .z which gives rise
to evolutions which fulfil the constraints up to time t
for all possible disturbance realizations off, while ,2&

characterizes the pairs (initial state, input sequence)
fulfilling the same constraints over a semifinite horizon.
By proceeding as in [7, Theorem 4. 1], it is easy to prove

by recursion the following lemma:

Lemma 1 Let Zt = Zt+l. Then Z& = Zt.

Next theorem shows that the situation depicted
in Lemma 1 holds, i.e. Zm is finitely determined. The

proof is reported in [12], and is an extension of a result
in [10].

Theorem 1 There exists an index t“ such that Z?m =
,zt. .

Theorem 1 requires that the extra constraint (17) is
satisfied, in order to reduce the number of constraints
involved in the optimization problem to a finite num-
ber, as required by standard optimization tools. How-
ever, this effort would be nullified if the set W& were

described by an infinite number of linear inequalities.
In order to sidestep this difficulty, with desired accu-
racy we define an inner approximation of Wm which is
finitely generated. To this end, fix an arbitrarily small
c > 0 (e.g. e = 6), and define f ~ n + Nam such that,
W >t; ,

Then,

{ -[

z–1

c w e Rm : ACHCUW < BC —— max.; ~Ac

— —

_EAkH@ -6} = W:

is the desired inner approximation. In the sequel, con-

straint (17) will be replaced by the following

}
w e w:+~ (21)

In order to efficiently perform on-line optimization, we
are interested in finding the smallest integer t. such

that .ZW = .Zto. Such an integer can be determined off-
line by an algorithm, adapted by [11], which is reported
in [12].

4 On-Line Optimization Scheme

The closed-loop predictive control law developed in the
previous sections amounts to solving the nonlinear op-
timization problem (13)–(21). In this section, we at-
tempt to simplifying this for on-line implementation.
By exploiting results from Section 3, the constraints

c(Ic, t) E C, ‘dk ~ Z, are reduced to a finite number,
according to the following corollary of Theorem 1

Corollary 1 For all F E F there exist a jinite index

tO(F) such that fulfillment of constraints c(k, t) E C,
Vk = O,..., to(F), implies constraint fulfillment Vk E
z.

Moreover, we add some extra structure to the optimiza-
tion problem, by rewriting it in the cascaded form

arg min~ J(V(F), F, r(t))

sub j ect to
{

W&(F) # 0,
F~F,.

1{
arg minv J(V, F, r(t))

C(k, t) E c,
where V(F) A vi%e z,

subject to v{ f(k)}~=o g E

w e M& (F)
(22)

where the inner minimization with respect to V is a
quadratic program (QP). Notice that, by recalling (10),
the structure (22) is computationally more convenient
than a structure in which the inner minimization is per-
formed with respect to F. Moreover, in (22) the outer
minimization with respect to F is reduced to a scalar
optimization, by parameterizing the F by means of a
scalar parameter p ~ O. An effective way is to define
F(p) as the solution of the LQR problem for the pair
(A, B) and weight matrices R, pS, where R c W’”,
S E I%mxm are fixed matrices, (e.g. R = In, S = Ire).
Since, by Assumption 1, A is asymptotically stable, the
pair (A, B) is stabilizable, and hence a unique solution
P >0 exists of the following algebraic Rlccati equation

P – A’PA + A’PB(pS + B’PB)-lBP’A – R = O.
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Therefore,

F(p) A –(/AS’ + B’PB)-113’PA (23)

is well defined. The parameterization (23) enjoys the
following properties

(i) p+o * SP(A + ~~(p)) + {O}
(ii) p-++cc + F+O

where sp (A) denotes the set of the eigenvalues of matrix
A. Property (i) offers the way to reduce uncertainty
accumulation by moving the eigenvalues of (A + BF)
towards the origin, while (ii) consents to obtain small
feedback gains F, which leave the original system dy-
namics unchanged. Problem (22) can be then solved by

letting p A 10”, and by performing a bisection over a in
a given interval. This amounts to solving iV quadratic
programming (QP) probIems, where IV is the number
of bisection iterates. However, since the feedback gains
F(p) are determined on-line, for each selected gain F

the approximated set W#+’ (F) and Algorithm 1 should

be evaluated on-line. Moreover, since the constraint
horizon tO(F(p)) could not be arbitrarily bounded a pri-

ori, the overall on-line computational complexity could

not be bounded a priori as well, which renders difficult
to implement the proposed scheme in real-time appli-
cations. In alternative, we suggest a look-up table for
F of the form

F E $N ~ {(), F(pl),. ... F(pl)}, },

Pk ~ 10[”-++(”+– -
~)1,~=1 ,...,1–1 (24)

where a–, a+ are given bounds. The resulting on-line

computations amount to solving N QP problems of or-
der lVUrn with at most q max~ {t. (F(pk )) } linear con-

straints.

Note that different look-up tables could be set up, for
instance by sampling Youla-Kucera parameterizations.

Remark 2 The proposed control scheme amounts to
a multicontroller configuration, where a finite set of
controllers is switched according to the optimization
criterion (22). From this point of view, the resulting
switching control law has connections with the scheme
proposed in [13].

5 Main Results

Assumption 4 For the initial state x(0) problem (22)
is feasible, in that there exists at least one pair (V, F)
satisfying the constraints in (22).

The following results are obtained for set-point track-

ing problems, i.e. for references r(t) which are con-

st ant, or become constant, after a finite time. Lemma 2
proves that the value of the performance index (11)

attained at the minimizer (V(t), F(t)) is a Lyapunov
function, Lemma 3 shows convergence properties of

the optimal input sequences, and Theorem 2 charac-

terizes the asymptotic convergence of the command in-

put u(t), and consequently the steady-state behaviour
of system (5).

Lemma 2 Let r(t) z r, Vt > t. 6 Z+, and let

t(t) ~ J(V(t), F(t), r(t)) the value attained by the per-
formance Index at the minimizer (V(t), F(t)). Then,
Z(t) is a monotonically non-increasing nonnegative se-
quence, Vt ~ t,.

Proofi Let t > t. and consider the one-step shifted
version V1 (t) of V(t), defined as

v,(t) ~ [w’(t–l) W’(t–1) vjvv_,(t -l) . . . ‘u~(t -1)],
(25)

and let F1 (t) A F(t – 1). At time t, V1 (t) is fea-
sible for the inner optimization problem in (22), and
hence J(V(FI (t)), FI (t), r) < J(V1 (t), FI (t), r). More-
over, feasibility of V1 (t) implies feasibility of FI (t)

for the outer optimization. Then, J(V(t), F(t), r) <
J(V1(t), Fl(t), r) < J(V(t – 1),F(t – 1), r), or, equiva-
lently, L(t) < L(t – 1). ❑

Note that the parameterization of F proposed in (23)
and the quantization of F in (24) do not affect the
proof of Lemma 2. In order to prove further results for
set-point tracking problems, we assume that the gains
F(t) are indeed selected according to (24) and that the
further constraint

p(t)> p(t– 1), ()–1) = o (26)

is added in the optimization procedure (22), where

p(t) e {pk}f=;l is the parameter which characterizes
the selected optimal gain F(t). Under these assump-
tions, clearly there exists a finite time tm such that

Lemma 3 Under the hypothesis of Lemma 2
and (21), (26), V(t)–V(t+l) -+ O andv, (t)–w(t) + O,
vi = 1 ivu.>. ..>

ProoE See [12]. ❑

Theorem 2 Under the same hypothesis of Lemma 3,

lim u(t) = w. Q arg
Wfi~~Fm) llK(F~)w - rlljrt+cc

ProoE See [12]. ❑

Remark 3 The results presented here show that the
input u(t) generated by the proposed predictive con-

troller converges to the vector w, which provides the

smallest set-point tracking error in steady-state. How-

ever, WT depends on the asympotic gain Fm, which is

related to the set-point r, the constraint set C, and the

disturbance set E.
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input u(t) output y(t) and reference rft)

r 1 1.5 ~
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Chin F(f)

1[ I

i..,
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time steps r

Figure 3: ll~(t)[]~ <0.08.

6 Simulation Tests

Consider the following second order linear system

[
1.6463

Z(t + 1) =
1 -0”:8661~(’)+ [i 1~(’)+~(’)

y(t) =

[

0.1404 0 ] z(t)+’<(t) ‘ ‘
c(t) = –2.6238 2.9045 ] z(t),

(27)

The response of the constrained variable c(t) is under-

dumped and has an initial under-shoot. The predictive

control law developed in the previous sections is applied

in order to constrain c(t) within the interval

c = [–1.5)4],

and make the output y(t) track the constant reference
r(t) a 1. The parameters of the controller are ~U = 1,
$, = 0.1, N. = 4, ‘y = 0.001, 6 = 10-6, 6 = 10-8,
tO = 16, with a matrix-gain look-up table (24) built by
choosing a– = —4,a+=4, N=12, R=12, S=l.

Fig. 3 shows the resulting trajectories when system (27)
is affected by independent randomly generated distur-
bances ll~(t) 11~ <0.08. In Fig. 4 are depicted the ad-
missible ranges for the constrained vector c(k, t) for the
LQ gains l?(p~ ) in the look-up table. Note that without
the closed-loop mechanism (i.e. F = O), no feasible se-
quence of control moves would have been found at t = O
from the initial state z(O) = [0 O]’. For instance, from
Fig. 4 it is clear that the zero input sequence is unfea-
sible, since it violates the lower constraint for k z 7.

.,I J
(,2 .(,” [<, ,2,4,,

prc’kl(<m [(me k

Figure 4: Admissible ranges of the constrained vector

c(k, t) for different feedback LQ gains F(p~ ),
p = 10-4 ,. ... 104, +Co.

The simulation results reported hereafter were obtained
on a Pentium 200 running Matlab 5.1 + Simulink 2.0,
with no particular care of code optimization. The stan-
dard Matlab QP. M routine was used for quadratic op-
timization. The average time required to evaluate a
control move u(t) was 0.37 s.
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