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Abstract

For mobile robots equipped with incremental encoders
and one sonar sensor this paper presents wall-following
controllers that achieve global convergence, as well as
the fulfillment of constraints on the orientation of the
sonar and the velocities of the wheels. A sensor-fusion
approach for the estimation of the robot’s coordinates
is adopted by designing an Extended Kalman Filter
that combines ultrasonic and odometric data.

keywords: Mobile robots, wall-following, extended
Kalman filter, Lyapunov functions.

1 Introduction

To move around in the darkness by touching walls and
objects with our hands to understand where we are,
or learn how places where we have never been before
look like, is a natural behaviour. This skill, namely
the ability to follow object contours, is also required in
many applications of autonomous mobile robots, where
“hands” are typically ultrasonic, laser, or infrared sen-
sors, and “darkness” is the absence of more sofisticated
sensors, e.g. absolute positioning systems and artificial
vision devices.

For indoor environments, this ability is required for
three main tasks:

• Map building: In unknown environments, as the
presence of a new wall is detected, some explo-
ration algorithms command a wall-following in
order to collect data on orientation, position, and
length of the wall [1, 2, 3].

• Obstacle avoidance: The execution of a planned
path can be prevented by an unexpected obstacle.
When the path cannot be replanned, a simple
strategy consists in following the contour of the
obstacle by using distance sensors [4].

• Improvement of the position estimate: Posi-
tion and orientation estimates obtained by dead-
reckoning methods deteriorate as the length of
the travel distance increases, mostly due to un-
equal wheel diameters and uncertainty about the
effective wheelbase [5]. By planning the motion
of the robot along straight walls, the error can
be reduced by merging odometry with measure-
ments of distance [3, 6], thus arriving at a more
suitable strategy for map building applications.
This idea is useful also in unknown environments,
where the only straightness of the walls can be
exploited to reduce odometric errors [7].

In all three the situations, a sensor fusion which inte-
grates data from sensors of distance (e.g. sonars) and
velocity (typically incremental encoders) is necessary
[1, 8, 9, 10]. However, in order to accomplish this,
certain operating conditions must be taken into ac-
count in designing a wall following controller. Ultra-
sonic sensors, for instance, require that the difference
between the orientation of the surface of the receiver
and the wall is sufficiently small, typically no more than
10◦− 15◦ [11, 12, 13, 14, 15, 16]. Furthermore, satura-
tion nonlinearities of the motors put a constraint on the
velocity of the wheels, thus leading to a discrepancy be-
tween the velocities commanded by the controller and
the actual velocities of the robot and, consequently, to
a loss of information. Henceforth, the orientation and
the velocity constraints must be taken into account in
designing a wall following controller, if persistent sen-
sor fusion is desired.

For differential-drive mobile robots equipped with two
incremental encoders on the driving wheels and one ul-
trasonic sensor on a side, as the one depicted in Fig. 1,
this paper presents a pair controller/observer for wall
following. By using a Lyapunov argument, both con-
vergence and constraint fulfillment for all the starting
conditions which satisfy these constraints is proved.
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Figure 1: Wall Following Problem (WFP).

The control scheme is equipped with an on-line time-
scaling algorithm to enforce constraints on the velocity
commands generated by the controller, without deteri-
orating the convergence properties. Sensor fusion hap-
pens mostly at the observer level: an Extended Kalman
Filter (EKF) updates positions and orientation esti-
mates by merging velocity and distance measures, thus
making this designed controller suitable for map build-
ing applications.

The paper is organized as follows. In Section 2 we for-
mulate the wall following problem. Section 3 is devoted
to present a wall-following controller+observer which
guarantees constraints fulfillment and possesses global
asymptotical properties. Some experimental results are
finally reported in Section 4.

2 Problem Formulation

Consider a differential-drive mobile robot whose coor-
dinates (x, y, θ) are related by the kinematic equations


ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω

(1)

where x and y denote the position in the Cartesian
space, θ the orientation (angle between the x-axis and
the axis or the robot), v and ω the linear and the an-
gular velocity of the robot, respectively. These depend
on the angular velocities ω1, ω2 through the relation

rω1 = v + eω
rω2 = v − eω

(2)

where r is the wheel radius, and e half the wheelbase
(distance between wheel contact points). We wish to
solve the following problem (see Fig. 1):

(WFP) Wall Following Problem. For the perfectly
straight and infinite wall described in the Cartesian

plane by the equation

(x− xm) sin γ − (y − ym)cosγ = 0 (3)

determine a feedback control law such that the mobile
robot (1) moves at a constant speed vdes along the wall
at a distance d0 from it.

In (3) (xm,ym) and γ are respectively a representative
point and the orientation of the wall, expressed in the
same Cartesian space chosen to describe the robot’s
position.

2.1 Ideal Wall-Following Problem (IWFP)
Assume that the coordinates (x, y, θ) are perfectly mea-
surable and the robot dynamics is negligible, in that
command inputs can be given at the velocity level.
A solution to the wall-following problem in this ideal
framework is provided by the control law


v = vdes

ω = −
k
(
d− d0

)
vdes cos (θ − γ)

− β tan(θ − γ)
(4)

where k and β are positive scalar and d is the dis-
tance of the mobile robot from the wall, i.e., d = (y −
ym) cos γ − (x− xm) sin γ. In fact, setting x1 � d− d0,
x2 � ḋ, the closed loop equation (1)-(4) have the form{

ẋ1 = x2
ẋ2 = −kx1 − βx2

(5)

Therefore, for any initial condition, it results d(t)→ d0,
ḋ(t)→ 0, and sin (θ(t) − γ)→ 0 as t→∞.

2.2 Real Wall-Following Problem (RWFP)
Consider the practical situation where the robot is
equipped with DC motors as velocity command actu-
ators, incremental wheel encoders as velocity sensors,
and a single sonar is mounted on the robot, as depicted
in Fig. 1. In this situation, the saturation nonlinearities
of the DC motors may prevent the use of large velocity
commands, while the encoder and sonar measures are
inevitably corrupted by the noise. Moreover, the sonar
can collect useful data only when the direction orthog-
onal to the reflecting surface lies within the beamwidth
of the receiver, thus allowing for the detection of the
wall only for restricted ranges of orientation. These as-
pects are not taken into account in the control law (4)
and the behaviour of the mobile robot may result quite
deteriorated.

To arrive at a satisfactory RWFP formulation, the
above aspects have to be translated into suitable re-
lations among the system variables. The beamwidth
leads to the following orientation constraint

|θ − γ| ≤ σmax (6)

where typically σmax ∈ [10◦, 15◦]. If Ωmax is the max-
imum allowable angular velocity of the wheels, i.e.,



|ω1| , |ω2| ≤ Ωmax, taking into account (2), the follow-
ing velocity constraints are obtained

|v ± eω| ≤ rΩmax (7)

Due to the measure errors, only an estimate (x̂, ŷ, θ̂) of
the coordinates (x, y, θ) is available by suitably relat-
ing the encoder and sonar measures. Suppose that the
measures are collected every Tc seconds and let ω(k)
and v(k) denote the angular and linear velocity mea-
sured at time kTc by the encoders, while z(k) indicate
the distance measured at time kTc by the sonar. Then,

an estimate (x̂, ŷ, θ̂) can be obtained through the fol-
lowing model consisting of the integration of (1) by
Simpson’s Rule




x(k) ≈ x(k − 1) +
Tc

2
(v(k) cos θ(k) + v(k − 1) cos θ(k − 1))

y(k) ≈ y(k − 1) +
Tc

2
(v(k) sin θ(k) + v(k − 1) sin θ(k − 1))

θ(k) ≈ θ(k − 1) +
Tc

2
(ω(k) + ω(k − 1))

(8)
and the expression of the distance of the sonar from
the wall

z(k) ≈ |(x(k) +Dx − xm) sin γ − (y(k) +Dy − ym) cos γ| .
(9)

The quantities Dx and Dy are the components ex-
pressed in the Cartesian space of the line segment join-
ing the sonar and the robot’s centerpoint, i.e. (see
Fig. 1)

{
Dx = ∆y sin θ −∆x cos θ
Dy = −∆y cos θ −∆x sin θ

3 Global Solution to RWFP and Sensor Fusion

In this section we propose a solution to RWFP that
satisfies the contraints (6)-(7) and provides better es-
timates, thus overcoming the difficulties mentioned
above. We first consider the orientation constraint (6).
Then, a time-scaling algorithm will be proposed in or-
der to fulfill the velocity constraint (7). Finally, an
EKF merging the information provided by the incre-
mental encoders with the data coming from the sonar
will be employed for the estimation of the coordinates
(x, y, θ) of the robot.

3.1 Controller with Orientation Constraints
As mentioned above, sonars return significant measure-
ments if their orientation w.r.t. the wall satisfies the ori-
entation contraint (6). We modify the control law (4)
as follows:


v = vdes

ω = −
k(d− d0)

vdes
−
(
β0 + β1

∣∣d− d0∣∣) tan (θ − γ)
(10)

where β0, β1 are scalar gains.

Theorem 1 Consider the closed-loop system (1),(10),
and let β0 ≥ 0,

β1 �
k

vdes tanσmax
.

Then, for every initial condition (x(0), y(0), θ(0)) with
|θ(0)− γ| ≤ σmax, the RWFP is solved, in that

|θ(t) − γ| ≤ σmax, (11)

for all t ≥ 0, and

d(t)→ d0;

ḋ(t)→ 0;
θ(t)→ γ.

(12)

as t→∞.

Proof: By setting x1 � d−d0, x2 � ḋ, the closed-loop
equations (1),(10) have the form

{
ẋ1 = x2
ẋ2 = −k x1 cos θ − x2 (β0 + β1 |x1|)

(13)

The orientation constraint (11) induces the feasible set

S �
{[

x1
x2

]
: |x2| ≤ vdes sinσmax

}

By the particular value of β1, it follows that ẋ2 ≤ 0 for
x2 = vdes sinσmax, and ẋ2 ≥ 0 for x2 = −vdes sinσmax.
Thus, fulfillment of (11) for all t ≥ 0 is guaranteed for
all the initial conditions satisfying (11) at time t =
0. We wish to prove stability by applying LaSalle’s
Theorem [17]. For this purpose, let σmax < 90o and
consider the following function

V (x1, x2) � kx21 +
x22√
1−

x22
v2
des

and its derivative along the trajectories of the system

V̇ (x1, x2) = −
2x22 (β0 + β1 |x1|)√

1−
x22
v2
des


1 + p(x1, x2) + x22

2vdes

(
1−

x22
v2
des

)



(14)

where

p(x1, x2) =
k

2v2des (β0 + β1 |x1|)

x1 x2√
1−

x22
v2des

For all (x1, x2) ∈ S, it holds

(β0 + β1 |x1|)p(x1, x2) ≥ β0 + k |x1|
2− 3 sin2 σmax

2vdes sin σmax cosσmax

and hence p(x1, x2) > 0 for σmax ≤ 54◦. Since this
condition is satisfied by the adopted ultrasonic devices,
V̇ ≤ 0 for all (x1, x2) ∈ S. Since V is proper in S, and
therefore the trajectories of the system are bounded,
LaSalle’s Theorem guarantees that the origin is glob-
ally asymptotically stable in S if the origin is the unique



invariant such that V̇ = 0. To prove this, let us first
suppose that β0 > 0. In this case, V̇ = 0 iff x2 = 0.
Since on the x1-axis ẋ2 = −kx1 cos θ, only the origin
is invariant. If β0 = 0, then V̇ = 0 even when x1 = 0.
Also in this case it easily follows that the origin is the
unique invariant. 2

Remark 1 Theorem 1 does not provide a specific value
for β0. Indeed, simulations show that, for small values
of β0, the magnitude of the angular velocity is small
enough to avoid sudden rotations of the robot during
both steady state and transient operations. The latter
fact can be explained by the balance between the con-
tribution due to the position error (d−d0) and the one
due to the orientation error (θ − γ). However, simula-
tions also show that larger values of β0 guarantee better
robustness againts noise and model uncertainty. Thus,
the parameter β0 should be experimentally tuned for
the specific application. In our case, we have found
that β0 can be fixed in accordance with the formula
β0 = α β1, where α ∈ [0.05, 0.1].

3.2 Velocity Constraints
The control law (10) does not take into account the
physical constraints on the wheel velocities, that are
summarized in (7). These constraints can be satisfied
by on-line scaling the output of the controller as follows.
Set

ω = γωγ (15)

v = γvdes (16)

where ωγ is given by the r.h.s. of (10) and vdes < rΩmax
is the desired linear velocity. The idea is to select on-
line γ, 0 ≤ γ ≤ 1, in order to fulfill the prescribed
constraints (7). It is easy to show that by setting

γ � max
{
1,

∣∣∣∣vdes ± eωγrΩmax

∣∣∣∣
}−1

(17)

these are in fact satisfied. In order to investigate how
the introduction of (17) affects the asymptotical prop-
erties of the control scheme, let

τ �
∫ t
0

γ(σ)dσ.

Then, 

∂y

∂τ
= vγ sin θ

∂θ

∂τ
= ωγ

and hence (15)-(16) can be interpreted as a time-
varying time-scaling. Then, the same proof of Theo-
rem 1 can be repeated by expressing the dynamics of
the system in the new time-reference τ . In particular,

lim
τ→∞

ω(τ) = 0

Then, being vdes < rΩmax, there exists τf such that

γ(τ) = 1, ∀τ ≥ τf , ∀t ≥ Tf �
∫ τf
0 γ−1(σ)dσ. No-

tice that for t ≥ Tf , system (1) is driven by the un-
scaled controller (10), and hence the original asymp-
totical convergence properties proved in Theorem 1 re-
main unchanged.

3.3 Extended Kalman Filter (EKF)
Here, we propose an EKF for estimating the coordi-
nates (x, y, θ) of the robot. Let us introduce the vec-
tors

X(k) � [x(k), y(k), θ(k)]′

V (k) � [v(k), ω(k)]′

and denote by r(X(k) the distance of the sonar from
the wall, i.e.,

r(X(k)) � |(x(k) +Dx − xm) sin γ − (y(k) +Dy − ym) cos γ| .

Furthermore, let Ex(k) be a random vector (with zero-
mean and covariance matrix Qx(k)) which takes into
account noise and model uncertainties, and ξ(k) a ran-
dom variable (with zero-mean and covariance σ2r ) mod-
eling the noise affecting the sonar measurement.

For the resulting nonlinear model

{
X(k) = F (X(k − 1), V (k)) + Ex(k)
z(k) = r (X(k)) + ξ(k),

(18)

the equations of the EKF have the form

Px(k|k − 1) = Jx(k − 1)Px(k − 1|k − 1)J
′
x(k − 1) +

+ Jv(k)Pvr (k|k) +Qx(k)

Gx(k) =
Px(k|k − 1)H

′(k)

H(k)Px(k|k − 1)H ′(k) + σ2r
Px(k|k) = [I −Gx(k)H(k)]Px(k|k − 1)

X̂(k|k − 1) = F
(
X̂(k − 1|k − 1), V̂ (k|k)

)

X̂(k|k) = X̂(k|k − 1) +Gx(k)
[
z(k)− r(X̂(k|k − 1))

]

where Pvr (i|j) is the estimate of the covariance matrix
of V (k) at time i based on the information available at
time j, Px(i|j) the estimate of the covariance matrix
of X(k), X̂(i|j) the estimate of vector X , Gx(k) the
Kalman gain, and JV (k), JX(k), and H(k) the Jaco-
bian matrices of (8),

JX(k − 1) =
∂F (X,V )
∂X

|X=X(k−1),V=V (k)
JV (k) =

∂F (X,V )
∂V

|X=X(k−1),V=V (k)
H(k) = ∂r(X(k))

∂X

The filter is initialized by letting

Px(0|0) = V ar [X(0)]

X̂(0|0) = E [X(0)]

where V ar [X(0)] takes into account the degree of pre-
cision of the estimate E [X(0)] of the starting coordi-
nates of the robot. The performance of the EKF, is
depicted in Fig. 2.
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Figure 2: Estimate (—) provided by the EKF and
real (·−) orientation of the robot

3.4 Control law with EKF
Ultrasonic and velocity measurements are plugged into
the control law (10), (17) as follows:



v = γvdes

ω = −γ

[
k (z +∆y − d

0)

vdes
+
(
β0 + β1

∣∣z +∆y − d0∣∣) tan (θ̂ − γ)
]

(19)

where z represents the distance measured with the
ultrasonic sensor, and θ̂ is provided by the EKF. Notice
that, despite the estimates x̂, ŷ are not used in (19),
they are typically required by the higher level task for
which the proposed wall-following controller is adopted.

4 Experimental Results

The performance of the wall-following controller de-
veloped in the previous sections has been tested on
the mobile system U.L.I.S.S.E. (Unicycle-Like Indoor
Sonar Sensing Explorer) [18, 19] built in the Dipar-
timento di Sistemi e Informatica of the University of
Florence, Italy. It is a cylindrical robot with two driv-
ing wheels (r = 0.056 m, e = 0.189 m). The hardware
architecture is based on the 68HC11F1FN Motorola
microcontroller [20]. The robot is equipped with 5
sonar sensors (PID604142 Polaroid, [21]) evenly placed
around a 180◦ angle. Only one of the sonars has been
used in the current application.

For the wall following defined by xm = ym = 0,
γ = −90◦ and d0 = 0.5 m, the trajectories obtained
by using the control law (19) and the EKF developed
in Section 3.3 are reported in Fig. 3. The control pa-
rameters are: k = 0.25 s−2, β0 = 1.3 s−1, β1 = 26
m−1s−1, vdes = 0.08 ms

−1.
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Figure 3: Wall following from different starting positions,
control law (19)+EKF.
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Figure 4: Evolution of the coordinates: real (solid line)
and estimated (dashed-line)

4.1 Robustness vs. Initial Condition Errors
We investigated the robustness of the control law (19)
w.r.t. errors on the starting position and orientation
of the robot. In fact, these are often known roughly,
in particular when obtained as estimates after a previ-
ous run. Figures 4, and 5 show the evolutions of the
actual coordinates (solid line) and the corresponding
estimates (dashed line) provided by the EKF during a
wall following (xm = ym = 0, γ = −90◦, d0 = 0.5 m),
when the x(0) and y(0) are not known. Notice that
the initial error on the y-coordinate does not decrease
appreciably. In fact, the EKF is updated by the er-
ror between the predicted and the measured distance
of the robot from the wall. Moreover, the sensitivity
w.r.t. orientation and position errors is different: the
former directly affects the control action (19), the lat-

ter only acts through θ̂, and hence its effect is damped
by the EKF. Experimental results show that errors on
the starting orientation up to 10◦ − 15◦ (half of the
sonar beamwidth) can be tolerated, while larger er-
rors caused a “loss of contact” with the wall. However,
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Figure 5: Evolution of the θ-coordinate: real (solid line)
and estimated (dashed-line).
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Figure 6: Evolution of the θ-coordinate: real (solid line)
and estimated (dashed-line).

higher level strategies have been adopted [22] to reduce
the effect of the error on the starting conditions. Such
strategies consist in running the EKF while the robot
moves under open-loop commands, and switching the
wall-following control law on as the orientation error
has decreased to acceptable values. As an example,
Fig. 6 reports the correction of an orientation error of
approximately 30◦.

5 Conclusions

For the wall following problem we have presented a
control scheme for mobile robots which guarantees ori-
entation and velocity constraint fulfillment, global con-
vergence properties, and also gives an estimate of the
robot’s position by merging both odometry and ultra-
sonic measurements. We believe that the proposed so-
lution will serve as a component of more complex ar-

chitectures for map-building and indoor navigation.
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