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Abstract

A method based on conceptual tools of predictive con-
trol 1s described for solving tracking problems wherein
pointwise-in-time input and/or state inequality con-
straints and model uncertainties are present. It con-
sists of adding to a primal compensated system a non-
linear device called Predictive Reference Filter (PRF)
which manipulates the desired trajectory in order to
fulfill the prescribed constraints. Provided that an
admissibility condition on the initial state is satis-
fied, the control scheme is proved to fulfill the con-
straints and be asymptotically stable for all the systems
whose impulse-response and step-response descriptions
lie within given uncertainty ranges.

1 Introduction

In recent years there have been substantial theoreti-
cal advancements in the field of feedback control of
dynamic systems with input and/or state-related con-
straints. The main goal of the present paper is to ad-
dress this issue by laying down guidelines for synthe-
sizing reference filters based on predictive control ideas
[6]. A reference filter is a nonlinear device which is
added to a primal compensated control system. The
latter, is designed so as to perform satisfactorily in the
absence of constraints. Whenever necessary, the filter
modifies the input to the primal control system so as
to avoid violation of the constraints. Hence, the action
is finalized to let the primal control system operate lin-
early within a wider dynamic range. Preliminary stud-
ies along these lines have already appeared in [1}, [2].
For approaches arising form different perspectives see
[3] and [4]. This paper extends the results obtained
in [2] by considering system uncertainties. These are
modeled in terms of both impulse-response and step-
response interval ranges. The filtering action is oper-
ated on-line by performing a scalar quadratic optimiza-
tion for the worst-case system. A simulation example
is presented so as to exhibit the results achievable by
the method.
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2 Problem Formulation

Consider the following asymptotically stable linear sys-
tem! L e8

z(r+1) = ®z(r)+ Gy(r) i
y(r) = Hez(r)+ Dg(r) (1)
e(r) = Hex(r)+ Dg(r)

along with a desired output reference r(r) € IR?. Sys-
tem (1) can possibly represent a plant under robustly
stabilizing feedback, where z € R” collects both plant
and controller states, ¢ € IR? is the reference input, y
the output, and ¢ € R? the vector to be constrained
within a given set C. By the set-membership inclu-
sion £ € §, we mean that system (1) has parametric
uncertainties. The following

{@(r+1) = ®i(r) + Gg(r) @
o(r) = He&(r)+ Deg(7)

will be referred to as the nominal system % € S. As
discussed later, the uncertainty is modeled in terms
of interval ranges of the step-response and impulse-
response coefficients. We wish to design a predictive
reference filter (PRF), a device which transforms the
desired reference r in an actual reference g so as to have
possibly constraints fulfilment for all possible plants
inside the family S. Filtering is operated on-line in
a predictive manner: at time 7 a wirtual reference
sequence g(7 + t|7) is selected in such a way that the
corresponding predicted evolution c(t+ 7|7, X, g(-)) lies
within C, for all £ > 0, and for all systems £ € §.
Then, accordingly to a receding horizon strategy, the .
first sample of the virtual sequence is applied at time
7, g{r) = g(7|7), a new selection being carried out at
time 7+ 1.

Assumption 1 The set C is a convex polytope.

W. L o.g. we assume that C has the form

C={ceR?: ¢ < B} (3)

1The results presented in this paper can be extended to time-
varying linear systems



In fact, in general one has a set of constraints A.c < Be.
These can be rewritten in the form (3) by defining a
new vector ¢* = A.c and, accordingly, new matrices
Hr = AH., D = A.D,.

Several criteria [1}-[3] can be adopted in order to select
the class of virtual references. For reasons that will be
clearer soon, we restrict upon the following scalarly-
parameterized structure

glt+rlr)=g(r = 1)+ pflr(r) —g(r—1)], ¥¢ 20 (4)

where the free parameter 3 € R is selected along with
the optimization criterion

5o { arg min|lg(r|r) — r(7)|?

subject to c(t + 7|7, Z, 9(r{7)) €C, ¥Vt > 0, VX € S

5
A parameter § or equivalently a virtual sequence {g(g—g
7|7} }2, satisfying (4)-(5) will be referred to as admis-
sible.
Assumption 2 (Feasible Initial Condition) At ti-
me 7 = 0 there exists an admissible virtual reference
sequence {g(t[0)}5Zo = 9(0).
As an example, Assumption 2 is satisfied for an equi-
librium initial state 2(0) = (I — ®)~'Ggo.

2.1 Models of Uncertainty

Model uncertainty can be described in various ways.
In our case, frequency domain descriptions are not
convenient because of the time-domain strategy on
which the PRF design is based. State space realization
uncertainties could be adopted. However, if this is the
case, the effect of matrix perturbations on the predicted
evolution become cumbersome to compute. E. g., a
free response of the form (& + ®)*z(0) gives rise to
prediction perturbations which are nonlinear in the
uncertain parameter &. On the contrary, uncertainties
on the step-response or impulse-response coeflicients
provide a practical description in many applications
and turn out to be reasonably simple to compute
predictions. In this paper, both step-responses and
impulse-responses perturbations will be jointly used.

The impulse response H; from g to ¢ can be expressed
as sum of a nominal impulse response

t =

o[ HPG if t>0
D. if t=0

and an uncertainty flt, with range intervals H, €
[H7,Hf],t = 0,1,...,N — 1. We suppose that the
model set S satisfies the following asymptotic stability
assumption.

Assumption 3 There erist a matric M € RY*P and
a scalar X, 0 < A < 1, such that for all plants T € §

[HY | < MUIN (6)
holds for allt > N

The positive real X € [0, 1) is related to an upperbound
for the dominant poles of all plants ¥ € §. Similarly,
we describe impulse-response uncertainties for ¢ > N
as

|BY| < BN, E € RTP (7)

for each component ij, it =1,...,¢,5=1,...,p.

In the same way, the step-response from g to ¢ can
be expressed by means of a nominal response W; =
Z—:lo H.®*G + D, along with range intervals

Wt € [Wt_ s Wt+] (8)

fort=0,1,...,N — 1. For t > N, the same specifica-
tions (7) can be expressed as

|Wi7 — W2, < BYX (9)

i=1,...,9,7=1,...,p. Despite these two formula-
tions are seemingly equivalent in that

g W if t=0
PEY Wi— Wiy if £>0

it turns out that they can be conveniently considered
in a cooperative fashion.

3 From Infinite to Finite Number of
Constraints

The optimization criterion formulated in (5) involves
an infinite number of constraints, arising from the semi-
infinite horizon prediction. In order to compute (5), we
need to reduce the constraints to a finite number. This
can be made possible by introducing some additional
hypothesis.

Assumption 4 (Set-Point Conditioning) ForallT >

0 the reference vector r(t) belongs to a bounded and
conver set R.

Assumption 4 amounts to assuming that either the
class of references to be tracked is bounded, or a
clamping device is inserted in the PRF mechanism. In
practice, this is not a restriction since bounds on the
reference will be dictated by the physical context of the
application.

Assumption 5 Forall >0, g(—7) € R.

Lemma 1 Provided that Assumptions 4 and 5 are
satisfied, g(r) € R, V7 > 0.

Proof: As shown in next Sect. 6, the domain Dg =
{8: B~ < B < BT} (possibly B~ = —o0, Bt = +00)
given by (28) is convex. Since § = 0 is admissible
by construction, then the optimal 3(r) will be always
comprised within 0 and the unconstrained minimizer
1. By this, g{r) lies on the segment whose vertices are
g(r — 1), (7). By convexness of R, the result follows
by induction. [}
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