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Abstract

This paper presents a new methodology for solving
control problems where hard contraints on the state
and/or the inputs of the system are present. This
is achieved by adding to the control architecture a
command governor which prefilters the reference to
be tracked, taking into account the current value
of the state and aiming at optimizing a tracking
performance index. The overall system is proved to
be asymptotically stable, and feasibility is ensured by
a weak condition on the initial state. linear loops, a
complete solution is developed for the latter. The
resulting on-line computational burden turns out to
be moderate and the related operations executable
with current low-priced computing hardware.

1. Introduction

In recent years there have been substantial theo-
retical advancements in the area of feedback control
of dynamic systems with input and/or state-related
constraints. For an account of related results see
[1] which also includes relevant references. Amongst
the various approaches, the developments of this pa-
per are more akin to the receding-horizon or predic-
tive control methodology [2]-{6]. Predictive control,
wherein the receding horizon philosophy is used, se-
lects the control action by also taking into account
the future evolution of the reference. Such an evo-
lution can be: known in advance as in applications
where repetitive tasks are executed, e.g. industrial
robots; predicted if a dynamic model for the reference
is given; or designed in real time. Indeed, the last in-
stance is a peculiar and important potential feature
of predictive control. In fact, taking into account the
current value of both the state vector and the refer-
ence, a virtual reference evolution can be designed on
line so as to ensure that the corresponding input and
state responses be admissible. We point out the rele-
vance of such an approach, being the feasibility issue
one of the most important problems in predictive con-
trol. In most cases, predictive control computations
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require the numerical solution of a convex quadratic
programming (QP) problem, which is computation-
ally formidable if, as in predictive control, on-line
solutions are required. In order to lighten compu-
tations, it would be thus important to know whether
and when it is possible to borrow from predictive con-
trol the concept of on-line reference management so
as to tackle constrained control problems without the
computational burden intrinsic to predictive control.
The main goal of the present paper is to address this
issue. As anticipated, in this direction there are no
contributions with the only exception of [4]-[6]. How-
ever, the problem of on-line modifying the reference
in such a way that a compensated control system can
operate within its linear dynamic range with no con-
straint violation has been recently addressed outside
the predictive control realm [7]-[9].

2. Problem Formulation

Consider the discrete-time linear time-invariant sys-
tem

z(t+1) = @z(t)+ Gu(t)
y(t) = Haz(t) 1)
c(t) = Hcz(t) + Du(t)

where: t € Zy := {0,1,...}; z(t) € R" is the state-
vector; y(t) € IRP the output that is desired to be
close to the set-point trajectory w(t) € R?; v(t) € IRP
the command input; and c(t) € R? a vector which is
required to belong to a specified constraintset C C R?

(2)

The problem that we wish to study is how to choose
the command sequence v{-) := {v(t)}52, with

v(t) = v(=(t), w(?)) )

so that y(-) can be possibly close to the set-point
sequence w(-) while ¢(-) fulfills the constraints (2).
The transformation (3) is referred to as the command
governor (CG). Eq. (1) can represent a linear time-
invariant system under state-feedback. We shall as-
sume that (1) is asymptotically stable and that there

ctyeC, VteZ,



exists a non empty bounded set W C IR such that,
Yw € W, the equilibrium state z,, := (I — ®)"'Gw
fulfills the constraints ¢, := H.zy + Dw € C, and
yields zero offset, y,, := Hz, = w.

3. Command Governor

Consider the pair state/set point (z(t},w(t)) at
time ¢. Introduce a virtual command
vt +kjt,p) =Yt wt), keZy,  (4)
where v € (0, 1), and g € IR? is a vector to be suitably
chosen in order to possibly drive with no constraint
violation the system state to @), as & — oo. The
idea is that if 2(t) = g, W, w(t) € W, p = w —w(t),
and v = 1, (4) defines a monotonically slowly-varying
sequence exponentially approaching w(t) from w. In
this way, one can compress the dynamic range of ¢(t)
in order to possibly satisfy the prescribed constraints.
In fact, taking an arbitrarily small § > 0 and defining

(5)

which will be assumed non empty, the following result
can be stated:

Ws :={weW |cy+E€C, V|l <6}

Lemma 1 Consider the system (1) with C convez
and W bounded. Then, given any pair of set points
@ and w(t), 0, w(t) € Ws, (4) drives (1) from an
equilibrium state z(t) = zy to the equilibrium state
Ty () with no constraint violation by setting p =
w—w(t) and v € (y5,1), Vi=0,...,p, wherey; >0
depends on W, 8, and the system (1).

Proof. Suppose for now on that the plant is SISO
{(p = 1). By setting g = © — w, then v(t) = v*w +
(1 —~")w, and c(t} = é(t) + Hc(1 — v)L(t)Gu, where
L(t) := 4" Tio v @ and &(t) = v ea+(1—7")cu-
Now, if C is convex, then W; is convex, V6 > 0.
Because the system (1) is asymptotically stable, there
exist two positive reals m and A\, A < 1, such that,
for every z € R", ||®%z|| < mAt||z||, Vt € Z,. In
particular, if Apr, |Apr| < 1, denotes the eigenvalue
of ® with maximum modulus and ¢ an arbitrarily
small positive real, we can set A = |Ap|+ e <
1. Assume now p > 1, and A < v < 1. By
superimposing the effect of each component of r,
oft) = e(t) + 3 icy (1= 7) He (@ — 4" 1) (v — @)~ (I -
®)~1G;(w; — w;), where Gy is the i-th column of G
and w; the i-th component of the vector w. If C
is convex, then ¢(t) € C, Vt € Z4, provided that
v € [0,1]. Take v > A. Then, by asymptotical
stability of ®, Hc(®' —4* I)(yI —®) (I - ®)"!G; is
uniformly bounded with respect to v and ¢. Moreover
boundness of W implies

[W|:= sup [|&—w| <oo
17 w

W, weE

Thus Vi € Z4 exists a scalar 45, A < 5 < 1, such
that [|E@)]} = lle(t) — @) < 1225, (1 = v) He (@ -
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F I) (T — )~ (I = ®)~1 G| W] < 6 when 5 < 7 <
1. Because w,w € Wj, this ensures ¢(t) e C Vi € Z .
Notice that when ® = P~'AP, A diagonal, it is easy
to check that

a(yl - @)

Y5 i=1— == )
FH(I - @)1 G W]\ /1+ S5
where ¢ denotes the minimum singular value. 0

From now on, we will take

(6)

Define now the quadratic command selection index

I, w(t), v(-1t, w) 1= [lo(tlt, 1) — w(@)l3,+
S0 (e + Elt, 1) = w1, ™)

with ||z||3, := @'y, ¥, > 0 diagonal, ¥y = ¢ > 0,
and y(t + k|, u) the output response of (1) at t 4+ k
from the state z(t) at ¢ to the virtual command (4).
The sum in (7) accounts for the tracking performance,
the first term guarantees internal stability, as will be
proved later. Assuming that the minimizer exist, set

¥ € (75,1).

pe := arg in {J(2(2), w(t) v(:[t, )| e [t 1) C C}
(8)

Under such circumstances, we say that (z(t), w(t)) is
admassible, and the problem feasible. We next study
the consequences of (8) under the assumption that
the set point is kept constant, w(t) = w and the
problem is initially feasible. To this end we resort
to a Lyapunov function argument. Look first at

V(z(®) = min {J(z(t), w,v([t, p))| e(It, ) C C}
(9)

Let v(t) := v(t]t, g¢) = ps+w be the actual command
used in (1). Noting that by (4) v(t + 1 + kjt,u) =
v(t + 1+ kjt+ 1,yp), Vk € Z, Assuming that the
minimizer exist and equal g, (9) becomes

V(@) = lluellg, + ) - wllj,+

J(x(t+1)1wﬂu('|t+117ﬂt)) (10)

where 1, := (1 — 4?)1,. Taking into account that

JEt+ 1), w,v(-[t+1,vu)) >
Join {J(2(t + 1), w,v(jt+ 1, p)|e(-ft +1, 1) C C}

= V(a(t+1))
we find that along the trajectories of the system
V(e(t)) = V(z(t+1)) > [lpllf, +lly(t) —wll}, (11)

Hence V(z(t)), being positive and monotonically non-
increasing, converges as ¢ — co. Thus, summing both
sides of (11) from ¢ to oo, Z:?_—t[““z“?; + (@) —

w”iy] < oo.



Proposition 1 Consider the system (1) along with
the command governor (4), (5), (6), (8). Let the set
point at and after time t be constant and equal to w €
W, and (1) be fed by v(i) = p; + w, Vi > t. Suppose
that the pair (z(t),w) be admissible, the minimizer
Wi, 1 > t, exist, and 1, ¢y be positive definite. Then
the overall system results in an asymptotically stabie
behaviour in that

ci) €C, Vix>t (12)

and

lim y(¢) = lim v(?) = w (13)

1300 1—+00

at a rate faster than 1/i%.

Notice that (13) implies lim;_, o (i) = 2, and
lim;,00 i = 0. Moreover, we point out that the
argument used to prove Prop. 1 does not involve the
linearity of (1).

In order to proceed further, we introduce some
extra notation. We denote by c(-, @, u, w) the c-
variable response from state £ and command v(k) =
v*p + w. Then

M(t) = {peRF: c(,z(t), p,w(t)) CC} (14)
will be referred to as the admissible set. We next
specify the command governor that will be considered
from now on:

Command Governor (CG). Let v be as in (6).
Then at each t € Z define a virtual command of the
form

v* s + wit), M(t) is non empty

v(t + k|t) = { v(t + k[t — 1, s_1), otherwise (15a)

with p; chosen in accordance with (8), and set
o(t) = (o), w(t) = v(tl)  (15b)

The rationale for using the CG logic (15) stems
from Proposition 1 along with the following con-

siderations. Suppose that (z(0),w{0)) be admis-
sible. Hence po € M(0) is determined. Then,
v(0) = po + w(0) is applied to system (1). At

t = 1, if M(1) is non empty, we compute and ap-
ply v(1) = g1 + w(1). On the contrary, by definition
of v(k|0, o) v(1) = v(1]0, po) results in an admissible
command input in that the constraint ¢(1) € C is not
violated. Moreover, v(1|0, u¢) brings the state to z(2)
for which v(2) = v(2|0, po) is an admissible command
input. Thus, if we adopt the CG logic (15), the condi-
tion (2(0), w(0)) admissible ensures constraint satis-
faction at all future times. The other important issue
is the tracking performance achievable by (15). Next
theorem, whose proof exploits Lemma 1 and Propo-
sition 1, shows that (15) yields desirable asymptotic
performance properties provided that the set-points
be restricted to Ws.
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Theorem 1 (Conditional stability and offset-free be-
haviour) Consider the system (1) along with the com-
mand governor (15) with ys replaced byy™ = Ys—p, 1
being a arbitrarily small positive number. Let: the ini-
tial state x(0) at time 0 be admissible for some virtual
command sequence v(k| — 1,pu_1) = Y p_1 + w(-1),
w(—~1) € Ws; the set-point sequence be such that
w(t) € Ws, ¥t € Zy; and w(t) = w, Vt > 1 >
0. Then, the overall system results in an offset-free
asymptotically stable behaviour in that

c(i) € C, Vi >t (16)

and

(17)

fm ) = g o) =w
at a rate faster that 1/t%.

Proof. We show that there exists a finite time i,
i > 1, at which M({f) is non empty, and, hence,
(16)-(17) follow from Proposition 1. Suppose, by
contradiction, that such a ¢ does not exist. Then,
Vt >t M(t) is empty and v(t) = v{t|r, u,), where
7, —1 < 7 < 1, is the greatest integer at which an
admissible virtual reference was determined. Now,
v(t|T, r) = ¥~ "pr + w(r), and consequently, as ¢
increases, v(t) = w(r). Thus lim;_ e Z(t) = Tw(r)-
Consider the pair (2y(r),w). By Lemma 1, there
exists a virtual command which asymptotically drives
the system state from zy(r) to #,. This reference
gives rise to an evolution for the c-variable of the
form c(k) = ¢(k) + ¢1(k) with &(k) corresponding to
the steady-state c-response to the set point v*w(7)+
(1-+)we Ws,y~ <y<1,and ||&(k)]] <& —n.
Look now at the perturbed pair (£y(s) + #,w). The
evolution of the c-variable from the perturbed state
due to the previous virtual reference is given by
e(k) = &(k) + & (k) + é(k), where E(t) depends
linearly on Z. Then, there exists a positive € such
that ||ga(k)|| < n for all ||Z|| < €, and hence ||&1 (k) +
Z2(k)|| < 8. Consequently, (24 (r)+&, w) is admissible
for some Z. Therefore, there exists a finite time at
which (z(t), w) is admissible, and this contradicts the

assumption. O
Notice that the hypothesis of Theorem 1 are fulfilled
when 2(0) = ,(-1) is an equilibrium state and
p(-1) = 0.

4. Command selection index computation

We now concentrate on finding the analytical form
of the command selection index (7) in terms of the
vector u for the system (1). Let &, (k) be the state of
a linear system which generates v(k), &(k + 1) =
véy (), &(0) = p, v(k) = & (k) + w(t). Define
(k) := z(t + k|t, pn) — Ty (t)- Recalling that z,,¢) =
(I—®)"'Guw(t), then E(k+1) = ®&(k)+G&, (k), and
e(t+ kit, p) == y(t + k|t, p) — w(t) = HE(k). Defining

&(k) = [€, (k) &'(k)]’ and
A::[‘gp g],c::[om H



one has £(k+1) = AE(k), e(t+klt, p) = CE(k), £(0) =
[ 2(0)'). Then, setting J(p) := J{(z(t), w(t), v(-|t, p))

J () Iellz, + S llcAke))3,
k=0

1y p + £(0)' £E(0)
where £ = L’ solves the Lyapunov equation
L=ALA+ Oy C (18)

Then, denoting by L;,.,,j,:5,) the submatrix of £
obtained by extracting the entries £; ; for ¢; <i <14,
and j; < j < jg, and setting n := dim z(¢), we have

J(p) = p'Asp+2Bpu+ Cy

where

Aj Yy + E(l:p,l:p) > Yy >0

By ﬁ(lrp,p+1:p+n)[£(t) — Ty ()]

Cs = [2() = 2u)] Lipt1ptn ptip+n) [B(E) — Tu(s)]

Notice that if the constraints are non active, the
minimizer equals y; = —A;lBJA In this case the
CG builds v(t) as a linear combination of the desired
trajectory w(t) and the state.

5. Reduction to a finite constraint number

Because we require that c(t+kjt, u) € C, Vk € Z .,
one has to minimize the quadratic functional J(u)
with an infinite number of constraints. We shall
transform this into a finite constraint problem by
adopting the approach in [8] by proving that AM(¢)
can be determined by a finite number of constraints.

Let cy(s) = Hey(s) + Dw(t) be the steady-state
value taken on by the c-vector corresponding to a
constant command v(t + k|t) = w(t). The evolution
¢(-|t, u) over the prediction horizon can be written
as E(k + 1) = Af(k): C(t + klt,ﬂ) — Cw(t) = ch(k)!
€0) = [ # x(t)'—:ciu(t) ],) where C. := [D H,].
In general £(0) is not completely observable from
c(t + klt,u) — cw(e)- In order to proceed further,
we operate a canonical observability decomposition,
getting a new (possibly reduced) state

& =8¢, & e R™

and correspondingly the system

Elk+1) = AL.(k)
c(t+klt,p) —cw@y = Cobolk) ,
&) = S[a =) =z ]

Let us introduce the sets

Xi(w) = {& € R™ : ¢(h,&,w) € C Vh < k}(20)

Xoo (U)) = lll’nk_>°o Xk. (21)

where c(h, &, w) is the c-variable response from state

&,. Note that Xeo(w) C Xps1(w) C Xe(w), and at

least 0,, € Xeo(w). Next lemmas are required to
establish next Theorem 2.

b
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Lemma 2 C bounded implies that Xy (w) is uniformly
bounded w.r.t. k, k> mn,—1, and w € Ws.

Proof. Consider X,,,_1(w) and a generic &, € Xpn,_1{w).
By (19), denoting with © the observability matrix
of the pair (4,,C,), ©6, = R, where the vector
R € R?° has the form

C(O,Eo,'w) Iq

R =

C(no - i’EO:w)

Consider n, linearly independent rows of ©. Form
with these a new matrix @, and collect the respective
n, components of R to form a vector R. Then &,
©-1R. Being C and W;s bounded, exists a bounded
set R independent of w such that R € R. Then
©~!R is bounded. Hence X,,_y(w) is uniformly
bounded with respect to w € Ws. By definition (20),
Ap(w) C X1 (w), Vb > 1, — 1, Yw € Ws. m]

b Feo()w
I

Lemma3 Vé > 0 3k = 1}(7,5) > 0 such that
Xy (0) = A (w) = Yo (w), Yw € Ws.

Proof. Let k > n, — 1 and & € Ax(w). Then,
being c(k,&,, w) —cy = C'OA’;&,, for some a1, A1 € R,
ay > 0, max(JAm],7) < A1 <1

lle(k, €0, w) = cull < erAfllEol-

By Lemma 2, ||é,|| is bounded. Then 3k > n, — 1
such that ||lc(k, &, w) — cul] < agdk < &, Yk > k.
Thus Yw € W;, c(k,&,w) € C, Yk > k, and hence
Xp(w) C Xoo(w). Being Xoo(w) C Ap(w), Xeo(w) =
A;. In particular e(k+1,&,,w) € CVE, € X (w), or

€0 € Xjyq (w) which gives A7, (w) = Xp(w) °

Theorem 2 For all 2(t) € R" and for all w(t) €
Ws, M(t) can be determined by a finite number k of
constraints.

Proof. Lemma 3 shows the existence of a number
kE < k such that X (w(t)) = Xg(w(t)). Because
p € Mty & Sl «'(t) — x:u(t)]' € Xoo(w(?)), then
pE M) & S (D) - o) € Xpw(t), or
equivalently, c(k, z(t), u, w(t)) € C, Vk < k. 0
We are interested in determining the minimum % such

that X (w) = Xk (w). To this end, we introduce the
following lemma.

‘Lemma 4 For allw € Ws, if Xg(w) = X1 (w) then

Koo (W) = X (w)

Proof. We shall prove by induction that Xj(w)
Xey1(w), Yk > k. For k = k this is true by
assumption. Assume that X, ,_;(w) = Xgp,(w)
and let £, € A%, (w). For some p € R?, z € R", we
have &, = S[u' =’ — 2!,]’. Being

w)

7. _ TH
clk+h I,S[ Oz + Gi + w) — ],

c(k + h, &, w) (22)



then S -

TH -
e + G+ w) — ., ] € Xipn-1(w)
Xgypn(w). Thisand (22) imply that e(k+h+1,&,, w) €
C, and hence X, (w) C Xz py (w). Then, Xz p 4 (w)
= Xgop(w). Finally Xoo(w) = (Vi_, Xe(w) = Xg(w)
[m}

From now on we shall assume that C is a set of the
form

C={ceR?:gi(c) <0, Vi=0,1,...,m} (23)
with

(i) € bounded and convex

(i) ¢::R? > R continuous, ¥i=0,...,m.

(24)
Lemma 5 Suppose C is defined as in (23)-(24). Then

(i) C is compact
(i) Nk is compact

where
N = {[ gv ] ER™ : weWs, & EXk(w)}.
(25)
Proof. (i) follows at once because C is bounded

and closed. Because F,(1)w is a linear function of
w, Ws is closed; moreover, being W bounded, W is
compact, ¥4 > 0. Let

I (w) := {& € R™ : c(k, &, w) € C} (26)

Being the function c(k, -, w) linear in its argument &,
and C closed, then Ir(w) is closed. Since Xg(w)

ﬂ?:o I;(w) it follows that Xy (w), Yk > 0, and X (w)
are closed. By Lemma 2 being X, (w) bounded,
Xoo(w) is compact. Hence N, is compact. o

The following algorithm [8] can be used to find the
index

k= rgg{k| X (w) = Xoo(w)}, Yw € Ws

(27)

Algorithm 1:
1. k«0
2. Let

gj = max[ w' 6; ]’{gj(c(k + 1)5» w))}

subject to {

3.1fG; <0,¥j =0,...,M, then let k° < k and
stop

4. k+—k+1

w € W

gi(c(h, &, w)) <0,
Vh=0,...,k, Vi

0,....M
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v

Fig. 1. Robot model.

5. Go to step 2

This algorithm stops when the minimum k such that
X (w) C Xeg1(w), Yw € Ws, is found.

Theorem 3 Let w(t) € W;s and z(t) € R" be re-
spectively the desired set-point and the system state
at time t. Let C be given as in (23)-(24). Let k° as
in (27) be determined by Algorithm 1. If the vector p
fulfils the k° 4 1 constraints

e(k,z(t), p,w(t)) €C, Yk =0,...,k, (28)
then the virtual command v(t + klt, p) = v¥p + w(2)
yields a c-evolution c(-|t, p) C C.

We have reduced a quadratic programming problem
with an infinite number of constraints in one with
a finite number of constraints. Notice that when
C is a polytope, the constraints become linear and
k° can be easily computed by standard optimization
routines. When the plant is SISO, the constraints
are due to saturating actuators (¢ = u is the input
of the plant), and C = [C~,C*]), the minimization
procedure becomes trivial, as shown in [6].

6. An example

The method developed in the previous sections is
used to control the differentially driven mobile robot
depicted in Fig. 1 (mass M, inertial momentum J
w.r.t. C, track 2¢). Two DC gearhead motors (gear
ratio p, motor constant kr, leak resistance R) drive
independently the active wheels (radius r, inertial
momentum Jy), and receive a voltage (Vi and V;
respectively) which cannot exceed the battery level.
Call v the linear velocity of the mobile robot, 8 it
heading in the planar work-space, V; = V, + Vi,
V_ = Vo — V4. Newton’s and Kirchhoff’s laws give

pkpr v
R[(M7? +2J,)s + Br? + 28] + 2p%k2 *

v =

pkrer

0= -
sR[(Jr? + 2J,e2)s + Br? + 23e?] + 2p%kle?s v




uf1) - motor voltages ¥(t) - velocity and heading
0.8

P
10 — 0.8 2
" a—] /
4] v 0.4/ ~
-10 0.2 /

0 02 0.4 02

1) - optimizati .
o2 K1) - optimization param.

0.4

] ¥(t) - generated command

0 ,~'~
o2/ sl £
0412 /
y p’
-0.6L. [}
] 0.2 0.4 ! 02 04

Fig. 2. Response with the command governor.

where 8, B, B are friction coefficients. Simulations
have been carried on the following model

0.0655

0.0124s + 2.8355 *
3 0.00655 v
~ 5(0.0000635s + 0.02835)

(29)

(30)

Decoupled feedback loops have been designed in order
to track with zero offset the desired set-point trajec-
tory vq and 64

vV — Vg4

V+ =
V_

—k,
—ko(6 — 04)

(31)
(32)

Eqgs. (29)-(30) are coupled by the physical constraint

Vil <12V, ¢ = 1,2 (33)
With the prescribed set-points vg = 0.2ms™!, §; =
7/4 (33) would be violated, and hence a command
governor has been implemented (y = [v 0], u =
Vi Vo), w = [vg 64]"). The continuous-time over-
all system (29)-(32) is sampled every Ty = 5ms and a
zero-order hold is used. Fig. 2 depicts the trajecto-
ries that result when the CG (¢, = 0.011, ¢y = I5)
1s activated. The system behaviour has been sim-
ulated in 26s with Simulink on a 486DX2/66 com-
puter, using Matlab 4.0 standard QP routines. We
chose ¥ = 0.95 and § = 2.5. Algorithm 1 found
k° = 37. Even if the tracking performance could dete-
riorate, simulation times could be drastically reduced
by performing scalar on-line optimization, by setting
4 = Vi, where v is a scalar minimization parameter,
and %, is a fixed vector (e.g. %, = w). Notice that
the governor proposed by [9] is based on a scalarly
parameterized command.

7. Conclusions

The command governor problem, viz. the one of
on-line designing, given the reference to be tracked, a
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command sequence in such a way that a compensated
control system can operate in a stable way with
satisfactory tracking performance and no constraint
violation, has been addressed by exploiting some
ideas originating from predictive control.

Though some related encouraging indications have
been provided by simulations [6], an important future
research topic is stability and performance robustness
of the command governor against exogenous distur-
bances and modeling errors.
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