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Abstract: The problem of satisfying input and state-
dependent inequality constraints in feedback control systems
is addressed. The proposed solution is based on predicting
the evolution of the constrained vector and, accordingly, se-
lecting on line the future reference based on both the current
state and the desired set-point changes. An analysis is pre-
sented so as to estabilish stability and offset-free properties
of the method when embodied in an LQ regulated system.
Finally, simulations are used to evaluate the achievable per-
formance.
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1. Introduction

The problem of determining a feedback control law ca-
pable of stabilizing a given plant in the presence of input and
state-related inequality constraints is one of the fundamen-
tal issues in control engineering. In this context even the
conceptually simple case of a linear plant with saturated in-
puts gives rise to challenging stability problems [6]. For the
discrete-time regulation problem, [7] showed that, under fea-
sibility conditions, zero terminal state receding horizon con-
trol [9] with input and state-related constraints yields a stable
feedback system. Under quite general conditions, [7] proved
in fact this to hold true even if the plant to be regulated
is nonlinear and time-varying. Extensions of similar results
to the continuous-time regulation problem are tackled in [11]
and discussed in [12]. Specific feedback regulation systems
for linear plants which avoid input saturations are treated in
[8] and [4]).

For 2-DOF (two degrees of freedom) control problems
with hard constraints, in recent years a great deal of interest
has been focussed on applying predictive control techniques
[19], [17), via the on-line use of a mathematical programming
solver [18], [16].

The present paper tackles the control problem with
constraints along the lines of predictive control but, unlike
the previous contributions, sidesteps the need of using a
mathematical programming solver by adopting a suitable on-
line management of the reference to be tracked. As shown
in [2], this considerably lightens the computational load and
at the same time gives indistinguishable performances. The
solution we provide can be also used in trajectory generation
problems ([5], [3], and [10]) wherein, given a control system,
the command waveform has to been chosen so as to achieve
the desired tasks and fulfil the prescribed constraints.

The paper is organized as follows. Sect. 2 describes
the on-line Predictive Reference Management (PRM). Sect. 3
analyses the stability of a particular feedback control system
embodying the proposed on-line PRM. Via simulation exper-
iments Sect. 4 shows that the proposed on-line PRM fulfils
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Fig. 1. Control system with PRM

input and state-dependent inequality constraints. Some con-
clusive remarks are finally presented in Sect. 5.

2. On-line Predictive Reference Management

Consider the control system depicted in Fig. 1 where
y(t) and u(t) are respectively the output and the input of the
plant, and z(t) is the state of the closed-loop system. Further,
c(t) = c(z(t), u(t)) is the constrained vector. The underlying
controller can implement any stabilizing (discrete/continuous
time, linear/nonlinear, causal/anticipative) control law de-
signed so as to make the output track the reference sequence
r(-) in the absence of constraints.

The reference governor constructs r(-) in such a way
that c(t) fulfils the constraints. As explained in detail below,
the selection of r(-) is based on the current state z(t). Two
possible operations are considered:

e Smoothing out (or filtering) a given set-point trajectory
w(-) to be tracked;

o Generate r(-) by choosing a suitable time-parameteriza-
tion of a given path in the output vector space. ~

The latter operation will not be treated here but will be
the subject of future papers. We now focus on the former.
We suppose that inside the reference governor a set-point
conditioneris inserted in order to threshold w(t) in such a way
that the output in steady-state will be capable of tracking the
resulting conditioned set-point trajectory while ¢(-) fulfils the
constraints.

At each step t the reference governor builds a virtual
reference sequence {r(t + i]t)}2, which smoothly connects
over the future the output from its current value y() to the
desired w(t). Accordingly, the virtual reference pattern is
defined as follows

r(t+ilt) = A (y(8) + [ - A (O)]w(t) 1)
where t, 1 > 0 and A(?) € [0,1). For the sake of simplicity
the reference has been supposed to be scalar-valued.
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Let ¢(-|t) = {c(t + i|t)}2, be the hypothetical evolution
of the constrained vector corresponding to the use of the
reference pattern (1). It will be called the prediction of the
constrained variable for a given r(-|t) and z(t). Then, one
can compress the dynamic range of c(-|t) by choosing the
“time constant” A(t) so as to possibly keep c(-|{t) admissible.
In fact the closer A(t) to 1, the smoother c(-|t) will be and
the larger the resulting settling-time. The idea is to choose at
each t the time constant A(t) which gives the shortest settling
time while keeping c(-|t) admissible. The reference governor
strategy can be described in the following algorithm. At each
time step t:

1. Construct the reference pattern r(t+i[t) = w(t), Vi > 0
(i.e. X(t) =0);
M-1

2. Make a prediction car(-|t) := {c(t + i|t)};Z5" over an
M -step horizon by iterating the plant model and the
underlying controller fed by the selected reference pat-
tern;

3. Does car(-|t) fulfil the constraints?

(a) Yes: Use the current reference pattern as the actual
reference, compute u(t) to be given to the actuator,
and go to 5;

(b) No: Go to 4

4. Can other reference patterns corresponding to a larger
value of A(t) < 1 be constructed?

(a) Yes: Construct the reference pattern by increasing
the parameter A(t), and go to 2;

(b) No: Set r(t +ilt) = r(t +ilt — 1). Go to 5;
5. Stop

In the deterministic case, step (3a) ensures that the
constraints will be fulfilled at least for the next M steps.
Ideally M should be infinite. In practice the prediction
horizon M has to be finite. In fact, the shorter it is, the
lighter the computational burden. However, too small values
of M can lead the system into a “blind alley”, where no choice
of future reference patterns will avoid the violation of the
constraints. A rule of thumb is to set MT, (Ts=sampling
time) equal to the settling time of ¢(-) in the presence of
the prescribed constraints given that, because of set-point
conditioning, the constraints can be violated only during
transients.

Another issue is how many sequences the governor can
try before giving up and execute step (4b). Our solution is
to set up a grid G made up of ng values 0 =X < A1 <... <
Ang—1 suitably distributed on [0,1). The higher is ng the
better is the performance but the heavier the computational
burden.

Notice that if the underlying control law is linear, causal,
and with 1-DOF (for example a lead-lag or a PID controller)

Ru(t) = S[r(t) — y(?)]

where R and S are polynomials (in the unit delay operator d
or in the complex variable s), in the presence of the reference
governor the actual control law becomes

Ru(t) = S[1 = A(®)][w(?) — y(1)]

and hence the governor introduce a sort of “valve” on the
actual tracking error w(t) — y(t). This form is similar to
the control structure reported in [8] and [4], where the
valve, in contrast with our scheme, is operated taking only
into account the controller dynamics, just allowing input
constraints. Moreover the plant performance resulting from

the choice of A(t), which alters the originally designed closed
loop, is disregarded.

As will be clear from simulations results, the effect of
PRM is to slow down the overall closed-loop. This suggests
that the underlying control law be designed in a way to
ensure, without governor, a fast feedback system.

We finally point out that, even if the plant and under-
lying control law are linear, the resulting controller is nonlin-
ear. Indeed A(t) = A(z(t)) since it is chosen by a prediction
which depends on the current state z(t) and the prescribed
constraints.

3. Analysis

Although the strategy described so far can be applied

to nonlinear MIMO plants and any underlying stabilizing

control law, we now investigate how to use it in order to
control a discrete-time SISO linear time-invariant plant

{ (1 — d)A(d)y(t) = B(d)bu(t) @

(1 ~ d)A(d) & B(d) coprime

with 6u(t) := u(t) — u(t — 1). This can be described in the

f

orm { z(t+1) = ®z(t)+ Géu(t) (3)
y(t) = Hz(1)

where z(t), for example, collects input/output pairs. The

constrained vector is c(t) = Cz(t) + Déu(t) € R". We
consider the 2-DOF underlying control law

R(d)su(t) = —S(d)y(t) + I_ hr(t +1)

=0

(4)
which minimizes the quadratic performance index

J=3 At +i) —r@+ )P +plbu(t+ DI} (5)

=0

p > 0, assuming that {r(t + i)}{2, is bounded and known.
The resulting control law will be referred to as LQ control
with preview. It consists of the control law (4) where R(d),
S(d) are polynomials satisfying the Diophantine equation

(1 - d)A(d)R(d) + B(d)S(d) = E(d)/E(0), (6)

with S(d) of minimum degree and E(d) is a strictly Hurwitz
polynomial which solves the spectral factorization problem

B@EW™) = B@B(™) + 41 ~DADAETIA ~ 7))

<

and
(o]

V(d) =) wd =

B(d)
E(O)E@)

The solution of the LQ control problem with preview in
the form (4) is given in [14] and [13]. Since the transfer
function from r(t) to y(t) for the system (2), (4), is given by
B(d)B(a~!
E(d)B(d~1)’

We shall show how PRM together with LQ guarantees
constraints fulfilment, stabilizing properties, and zero-offset
in steady-state. Weak assumptions are made on the initial
plant state. We consider the case in which the desired
trajectory is comstant for ¢ > ty. The reference pattern
considered is

(8

zero-offset results.

u(t) At) =0

. A (6)y()+

rt+ilt) = +01 E),\ygu) ®]w(t) 0 < At) £ Amaz ®)
r(t +ilt—1) Alt) =1

At —h) Myt —h) +
+[1 = A(t = B)' M w(t — h)

(10)
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where § > 0, b = h(z(t)) = t — th and tp = maxee<e{t* :
A(t*) < 1}. The PRM algorithm is slightly changed as

follows:

o Let t3 such that A(t1) < 1 and #; > t,. Lemma 1 will
show that such a ¢, exists finite. The time step t; is not
required to be known a priori

o Define a value for the ezpected settling time Np. For
example set N, = 1000.

o “If t > t; + Np and find A(#) = 1, A(t) = 1 until
lz(t)—zw| < TII'E%WT (8, zw, Cr and ¢; will be defined
later). Thereafter, set A(t) = 0”. This rule will be
further modified to improve the tracking performance.

In practice, choosing a high value for Np, this modified PRM
algorithm will not differ from the original. PRM embodied
in LQ with preview gives the control law

{ Su(t) Fz(t) + o(t) B
o) = V(u(t—h)+[VQ) - V@l b)

where V(1) := A"+ (¢t — h)V(A(t — k)). The closed loop can

be described as

z Prz Gv
{48 2 g iond (12)

where ®p := ®+GF and Cp := C+DF. Define X(r(:[t)) :=
{z € R" : c(k+tt) € C Vk > 0} where {c(k + t|t)} is
the predicted evolution of the constrained vector obtained by
(11)—(12) initialized at z(t) = z. In the following, given w €
R, we denote T := (I —®r) GV (1)w, cw := Crzw+ Dy,
and vy := V(1)w which are respectively the values for z(t),
¢(t) and o(t) in steady-state when r(-|t) = w Vi > 0. Then,
chosen an arbitrary small “tolerance” § > 0, define the
admissible set-point set

Ws:={weR: B(cw,8) CC}

(11)

Assume that z(0) is a vector such that, in the absence of
constraints, is reachable from a generic steady-state state
vector, and such that

3geR,hk>0,1€[0,1),® € W; s.t.

z(0) € X(r(-| - 1)),

r(i] = 1) 1= XHhHg 4 (1 - X )

(13)

For example, (14) is satisfied for z(0) = z (b = 0,
§=Hzo, A=0,and w = w).

In the sequel we shall assume that W;s is bounded. It
can be shown that if C is bounded and the dc-gain from w to
c is nonzero this is always verified. However, this assumption
entails no loss of generality in that all sequences w(-) to be
tracked are uniformly bounded.

Lemma 1 Consider plant (8) controlled by (11) with z(0)
as in (14). Suppose w(t) = w Vt > ty, and C conver and
bounded. Then 3ty > t., such that A(t1) < 1.

Proof. Define to := max[{—-1} | J{t: At) <1, 0<¢t<
tw}]. If to = t, the proof is immediate. Suppose t; < t,.
If to > 0 define wo := w(to), do := A(te), yo := y(to),
else, recalling (14), define wo, Xo,yo := @, A, § respectively.
Assume now that the reference governor keeps A(t) = 1
Vt > to. Without loss of generality consider to = 0.

Because of the closed-loop asymptotic stability,

‘lim () = (I = ®p) T GV (Dwo = Tu,

and hence Ve > 0 3t > 2y, such that V& > ¢, {|z(t) —zw,|| < e
Define éz(t) := z(t) — zw, and by(t) := Hbz(t). Being

te > tw > to, A(t.) = 1. This implies that VA €
z(t) € X(ra(-[te)), ie. c(k + t]te) g C for some k
We show that this can be contradicted for some X > Ar,
where Ap := max{eigenvalues of ®r}. Temporarily assume
that the reference governor can choose A arbitrarily close to
1. Because ra(k + telte) = A¥ [wo + by(t)] + (1 — A )w
then v(k + tfte) = V(Dwo + [V(1) = XV (N))(w — wo) +
AF+H1y(2)6y(t.). Denoting with o(k,z(0),0,u(k)) the value
of z(k) resulting at time k by applying the input sequence
{u(5)}, 7=0,1,...,k, we have

o,
2

z(k+tjt) = ok z(t),0,0) + o(k,0,0,V(1)wo) +
+e(k,0,0,[V(1) = X*'V(A)(w — wo)) +
+e(k,0,0, A1V (2)by(t.))

=t p1(k) + p2(k) + pa(k) + (k)
where
pi(k) = @%z(t)
po(k) = (I—@F)zu,
wa(k) = =LK (zw ~ Two)
ea(k) = AOFI — ®L) (AT — &) TGV (N)Sy(t)
with :
LK) = 0% 4+ AT — 85I+ (1 - (AT - @Fr) 15(N)
= A0+ PO K)
POLE) = AMQ =)A= 3F)7M5(N) +
+[1 = A5(A)]@% — A(1 = N)(AT — Bp) 5 (V) D%
s) = Y
o(A) = V)

then it is easy to verify that
c(k + te|te) = C(A k) + R(A, k)bz(te) + CP(X k) (Twe — Zw)
where

C(\ k)
R(\ k)

A 50w, + [1 - A 8(A)]cw

Co% + VI)AC(AFT -

®%)(AI - ®7)"'G + D|H

Notice that C(), k) is a convex average of elements in C, and

hence C(A, k) € C. Moreover limx_ o ¢I>f..-(zw,, —zy) =0,
which implies that exists a constant ¢; such that

185 (2w — 2w)ll < $1llzws — zull VE >0 (14)

Then )
IPOE)(Zwe — zu)l £ [1 = A8(A)]41l|zws — Tull +
+A(1 = DT (AT - 2%)

A = @F) ™ (Zwo — 7wl

< )]z wo — 3ol
where
L) = [1=28(A)]é1 + A1 = A)B(A)(1 + ¢1)d2
¢2 = sup a[(\]—&p)7"]

Ag[o0,1)

Because lim,_,;- £(A) = 0, then I\ 4z < 1 such that

)
L Amaz) < == 15
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where

Xsi=  sup |z — zull
wg ,w€EW;
(Xs < 0o by the assumption that W; is bounded). Chosen
(]

€:

 2lCligs + (ICI(X + ¢1):0GI + IDDIA]

for A = Apas then c(k+tc|te) € CVEk > 0. We can now assume
that the reference governor selects A € [0, Amaz] {1} 0

B(A)

B(A
| <

Lemma 2 YAmar € [0,1) 3ppmaz < 1 such that
Kmaz v € [0) Ama:c]'
Proof. See [1], lemma 5.1, p. 151

Theorem 1 Consider the plant (3) controlled by (11) with
Amaz as in (15). Assume that C is conver and bounded,
z(0) and r(-| — 1) are as in (14), and the desired trajectory
{w(t)}20 C Ws is such that w(t) = w Vt > t,,. Then
i. imy oo z(t) = 2w
ii. 37 > 0 such that \(t) =0 V¢ > T
i, () ECVL>0
Proof. By Lemma 1, 3t; > t, such that A(t1) < 1.

This implies w(t — k(t)) = w Vt > t;. Define &2 :=t; + Np.
Distinguish between two situations:
CASE 1: A(t) < 1 (and hence k() =0) Vt > t2.
CASE 2: 3t3 > t; such that A(#3) = 1.

CASE 1. Tmagine that the plant (3), has been driven to
z(t2) by the control law

{9

starting at z(—o0) = z and applying a suitable sequence

Fz(t) + v(t)

V(1)) (16)

v _fw ,t<tz—n, n=dimz
WO=\ w hon<i<t-1

For t < t2 no reference governor is supposed to be active,
allowing c(t) to be free. Clearly z(t) = z, YVt < t; — n. Let
@(t) = w(t) = w Vt > ;. Moreover, consider the plant

i(t + l) = ‘I)F:E(l) + G’f)(i)
) i(t) = V(w 17
Z(—o0) = zu

Clearly #(t) = zw Vt € Z. Define £(t) := z(t) — (1),

@(t) := w(t) —w, t € Z. Vector Z(t) can be seen as the
state of the variable-structure plant

it+1) = @ri(t)+ Gi(t)
o) = { V(1)d(1) A<t (18)
- V@)HZ(t) + dn(t) ,t2>t2

where, being k(2) = 0, @1 (t) := [V(1) = V(¥)]@(t) V(1) =
A(t)V(A(2)). Notice that @1 (t) = 0fort <tz —n,t > t2, and
so w1 () € £2. Equations (18) can be rewritten as

{

where #,7 denote their respective sequences, and Gz is an
operator defined as follows:

(I-d®r) 'dGo =: G1%
Ga2f + 1un

< B

. 0
[Gzz](t)={ V@EW)HEE) t> b

Notice that G; and G; are both stable. Moreover

N

- R o212
1G2Ga | Yoo _oo[G2G17]2 (1)
GG = Sup ——— =SUpA/— =iz
G il §#0 I3l 540 15117
Yoee,[G2G1IP(2)
= sup{\/——o5—————
G#£0 I3][2

IA

-1 B(d) ~
sup | esllmas HET O
F#0 IlﬁH’

\/ Se., V(U = d®r) dGT (1)
+ sup
T#0

t
il
d) ~
Il g(d)”“
< Emaz SUPp i
szo 191l
B(e'*)
_<_ I‘maz [I(Bg‘q)r(] E(e’“’) S I‘maz < l
. - jw
being |V(t)| < Mmaz by Lemma 2, and %(—:7;% < 1 by the

spectral factorization equation. By the small gain theorem,
i € £,. Hence z(t) is bounded and lim;: . Z(t) = Zw.

(ii). Consider now a prediction made with r(-[t) = w. Then
c(k + tlt) = Cr®%z(t) + Cr Y} %GV (1)w + DV (1w =
Cr®%(z(t) — zu] + cw. By (i), 3T > 0 such that V¢ > T

)

— Ty ——— 19
o) - 24l < FETa (19)
Hence ||c(k + t]t) — cw|| < § and c(k +¢[t) € C Yk > 0. Then,
r(-|t) = w is admissible Vt > T, i.e. A(t) =0Vt > T.

CASE 2. Taking into account the modified PRM algorithm
described after (10), A(t) is fixed to 1 for ¢ > 3 until a time
step T which will be defined later. Substitute to with ¢3—11in
the proof of Lemma 1 and repeat the same reasoning, showing
by this way that ||z(t) — zuw|| — 0. Hence, exists a time
T > t3 such that (19) holds. The set Xy := X(ro(|t) = w)
is invariant, i.e. z(t) € Yu = z(t +1) € Xy. In fact, when
(t + ijt) = w, z(t + i[t) and z(t + 1) are identical. Then, for
t > T A(t) can be kept to 0 without violating the constraints.
(iif). Immediate, by PRM’s definition. o

Remark 1. To be able to estabilish time ¢; and t2, we
have assumed t, to be known by the reference governor.
Actually one can ignore t,, a priori and estimate it on-line.
For example one can define t, = t — 10 when w(t) =
w(t—1) = ... = w(t — 10). No problem occours if after this
w(t) changes. It is sufficient to wait again for the ultimate ¢,
to come.

Remark 2. A more effective rule for Case 2 can be
constructed. Keeping A(t) = 1 for ¢ > i3 means to use
7(-|ts —1) as reference. It is very probable that A(t3) & Amaz,
which makes the converge of z(t) very slow. Then it is more
convenient to wait for a time #4 such that A(ts +1) would be
greater that A(t4) and keep A(t) =1 for t > 4.
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Fig. 2. LQ with preview when PRM is active (solid line) and
in absence of constraints (dashed line).

] A (k)
08 - - -
06
0.4
0.2
0
0 20 40 60 80 100 120 140 160
time (samples)
Fig. 3. LQ with preview + PRM in the presence of
constraints.

4. Simulation results
Ezample 1. Consider the linear discrete-time plant

(1 —1.9517d + 0.9517d%)y(t) = (—0.0488d + 0.0488d° )u(t)
(20

obtained by sampling every T, = 0.005s and zero-order
holding the input of the continuous-time unstable plant

1+ 10s

A+ 0.1s)(1 105" (21)

y(r) =

for which a square-wave is chosen as desired trajectory w(-).
Fig. 2 shows the behaviour of the LQ-with-preview regulated
system without constraints (r(-) = w(-)) and with PRM
activated in order to fulfil the constraint

lu(®)] <3 (22)
Because of open-loop instability the transfer function from
w(t) to u(t) is non-minimum phase. This explains the large
unpleasant overshoots of the input.

The reference governor chooses a non-zero A(t), i.e.
transforms w(-) into r(-|t), only during transients, when
constraints would be violated. Moreover, in order to yield
the shortest settling-time, it always selects the smallest value
for A(t) compatible with the prescribed constraints.
FEzample 2. Consider the two-axis DC motor-driven computer
numerical controlled (CNC) machine described in [5], where
each axis is controlled by a conventional (1-DOF) lead-lag
controller. This receives a zero-order held reference with a
sampling period T, = 0.01s by the governor. The task is

CNC tool path on x-y plane

; N\
//

N

start ppsition
-1 08 -08 -04 02 O

02 04 08 08 1

Fig. 4. CNC tool path on x-y plane.

% x-axis motor velocity (rad/s)

10

0

-10

1 2 3 4 5 6 7 8 ]
time (s)

y-axis motor velocity (rad/s)

1 2 3 4 5 6 7 8 9
time (s)

Fig. 5. Motor velocities (rad/s).

the positioning of the CNC tool in specified points of the x-y
plane. The sequence of these points is not known a priori.
Each axis is subject to the motor velocity constraint

|wm(2)] < 12.57 rad/s

Fig. 4 shows the actual path described by the CNC tool on
the x-y plane. Fig. 5 and Fig. 6 depict respectively the motor
velocities and the values selected for vector A. Finally Fig. 7
shows how the desired x-axis trajectory w:(t) is filtered by
the governor in the actual reference r. (). In this example
a small prediction of M = 2 steps suffices. The reference
governor makes its choices with a discretized model of the
closed-loop transfer functions. .

5. Conclusions.

On-line predictive reference managing schemes can be ef-
fective tools for solving feedback control problems in the pres-
ence of input and state-related constraints. These schemes
can be embodied in any feedback control system, provided
that model-based predictions of the constrained vector can
be carried out within two subsequent sampling times. The
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time(s)

Fig. 6. Vector A: x-component (solid-line) and y-component
(dashed line).

1 desired trajectory w(X} and actual reference r(t}
” T
08
\
06 |--f
/ \
04
Il \\
0.2
\
0
[} 1 2 3 4 5 (] 7 8 9

time(s)
Fig. 7. Desired trajectory and actual filtered reference

specific underlying control law analyzed in this paper consists
of an optimal LQ controller with preview where constraints
can be input saturations, input increment saturations, output
over/undershoot limitations, etc..

An open problem is how to robustify control systems
with PRM when only a coarse plant model is available. Ro-
bustness could be increased by employing more stringent con-
straints, with margins of error dependent on the uncertain-
ties. The tradeoff between robustness and performance de-
serves appropriate investigation.
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