
Online design of experiments by active learning
for system identification of autoregressive models

Kui Xie and Alberto Bemporad

Abstract—In this paper, we investigate the use of active-
learning (AL) strategies to generate the input excitation signal
at runtime for system identification of linear and nonlinear au-
toregressive models. We adapt various existing AL approaches
for static model regression to the dynamic context, coupling
them with a Kalman filter to update the model recursively, and
also cope with the presence of input and output constraints. The
increased efficiency in terms of sample usage of the proposed
AL approaches with respect to random excitation is evaluated
on a few examples.

Index Terms—Design of experiments, active learning, system
identification, extended Kalman filtering

I. INTRODUCTION
Many system identification approaches exist, both for

linear [1] and nonlinear systems [2], [3]. Very often, these
methods rely on an existing training dataset for estimating
the model parameters that best approximate the system’s
behavior. No matter how good the chosen model class and
advanced the method used to solve the training problem are,
ultimately, the quality of the identified model depends on the
richness of the information in the training dataset. Relying
solely on collecting more data can be costly, may result
in excessive redundancy without substantially increasing the
information content, and make the optimization problem
required to estimate the model parameters more complex, due
to the larger number of loss terms in the objective function
to minimize [4]–[6].

The problem of optimal design of experiments (DoEs) has
been studied for decades, dating back to the 1930s [7]. In the
machine learning literature, the related problem of selecting
the most informative samples to query for the target value
is referred to as active learning (AL) [8], [9]. AL strategies
aim to reduce the number of required training samples by
allowing the training algorithm to select the feature vectors
to query. Several AL methods exist in the literature, mostly
for classification problems [10], but also contributions exist
for regression problems [11]–[17].

The existing AL methods mainly focus on learning static
models to explain the relationship between feature vectors
and targets. These samples can be arbitrarily selected from
a dense set of admissible values, a pre-determined discrete
pool, or a stream of feature-vector samples [8]. However,
actively learning dynamical models is more challenging
because not all the components of the feature vector can be

The authors are with the IMT School for Advanced
Studies Lucca, Piazza San Francesco 19, Lucca, Italy. Email:
{kui.xie,alberto.bemporad}@imtlucca.it

Database

Active Learning

Process

EKF

y

data
collection

active
learning

process

EKF

Fig. 1. Online active learning method for system identification.

changed instantaneously. Research on AL for system identifi-
cation is therefore limited, and it is primarily restricted to spe-
cific classes of models such as Gaussian processes [18], [19],
and neural-network state-space models [20]. Furthermore,
these approaches assume that the state xk is measurable,
while the model is often identified from the input/output data.

In this paper, we extend the AL methods reported in [17]
for the regression of static functions to the dynamic con-
text, focusing on learning black-box parametric models in
input/output form. Specifically, we consider the problem of
identifying autoregressive models, either linear (ARX) or
nonlinear (NARX). To update the model parameters as new
samples are acquired, we rely on a linear or extended Kalman
filter (EKF) [21], [22], depending on how the model is
parameterized. A schematic diagram of the proposed strategy
is shown in Fig. 1.

The proposed recursive approach employs online opti-
mization, based on the data collected so far, to design the
experiment at runtime. As for supervised AL of static models,
the developed DoE strategies ensure that the collected data
are informative and diverse [8], i.e., respectively, are acquired
to minimize modeling errors and explore the state/action
space, trying to avoid repetitions. Based on the AL method
for regression proposed in [17], we use an acquisition method
based on a non-probabilistic measure of the uncertainty
associated with output predictions to sample the system
where uncertainty is expected to be most significant, and
employ inverse-distance weighting (IDW) functions to ensure
the exploration of areas not visited before. Recently, a related
online AL algorithm has been used for improving the sample
efficiency of reinforcement learning (RL) [23] and model
predictive coverage control [24].

In this paper, we consider both one-step-ahead AL formu-

lations, based on the uncertainty associated with the follow-
ing predicted output, and a less myopic multi-step-ahead AL
approach based on the uncertainty related to the predicted
outputs over a finite horizon, also taking into account the
presence of input and output constraints; the latter are treated
as soft to avoid excessive conservativeness, especially at early
stages when the model is very uncertain. Although the online
computation burden of the AL algorithm is limited, especially
when the input can be selected from a discrete set (e.g., as in
the case of pseudo-random binary signal excitation, where the
set has only two elements), we also consider the possibility
of running the AL algorithm offline on a digital twin of the
system, saving the generated input signal, and then going on
the actual process.

The paper is structured as follows. In Section II, we will
present the proposed algorithm for NARX models. Numerical
experiments on linear and nonlinear autoregressive systems
will be reported in Section III. Lastly, we will draw conclu-
sions in Section IV.

II. ONLINE ACTIVE LEARNING OF NARX
MODELS

Let us consider the problem of identifying a strictly-causal
Nonlinear AutoRegressive eXogenous Model (NARX):

ŷk = f(xk−1, θ) (1a)
xk−1 = [y′k−1 . . . y′k−na

u′
k−1 . . . u′

k−nb
]′ (1b)

where ŷk ∈ Rny , uk ∈ Rnu , na ≥ 0, nb ≥ 0,
θ ∈ Rnθ is the vector of parameters to learn, and k =
−max{na, nb},−max{na, nb}+1, . . . , 0, 1, . . . is the sam-
ple index. For example, f could be a linear model, f(x, θ) =
θ′x, or a small-scale neural network with weight/bias terms
collected in the vector θ. Our goal is to actively generate
control inputs uk at runtime, k = 0, 1, . . . , N − 1, to
efficiently learn the parameter vector θ, solving the posed
system identification problem in a sample-efficient manner.

From now on, we assume that all the input and output
signals have been properly scaled. For instance, if lower
and upper bounds umin, umax, ymin, ymax on the possible
values of the signals are known, we can scale these signals
to the interval [−1, 1] using the scaling function σ : R → R,
σ(α) = 2

αmax−αmin

(
α− αmax+αmin

2

)
, where αmax and αmin

are the maximum and minimum values of the signal.
In the sequel, we will denote by θk the model parameter

vector obtained by training the model with the outputs
collected up to time k and inputs up to time k−1. We assume
that, as in most practical applications, the input uk is subject
to constraints uk ∈ U , where U represents the set of valid
inputs. For instance, U = {u ∈ Rnu : umin ≤ u ≤ umax}
or, in alternative, a finite set U = {u1, . . . , uM}, such as
U = {−1, 1} in the case of pseudorandom binary sequence
excitation.

A. One-step-ahead active learning

Assume that at each time k we have an acquisition
function a : Rnx → R given to solve a problem of AL
for regression [8] (as shown later, in general a changes with

k). Ideally, given a new measurement yk, we would like to
choose xk = argmaxx a(x). However, at time k, the only
component in xk that can be freely chosen is the current
input uk, given that all the remaining components involve
measured outputs and past inputs. Hence, we restrict the
acquisition problem to

uk = argmax
u∈U

a(xk(u)) (2a)

xk(u) ≜ [y′k . . . y′k−na+1 u′ u′
k−1 . . . u′

k−nb+1]
′ (2b)

where xk : Rnu → Rnx defines the feature vector corre-
sponding to a given input selection. Note that when the input
uk is chosen from a finite set U = {u1, . . . , uM}, prob-
lem (2a) can be easily solved by enumeration, analogously to
pool-based active learning algorithms [8]. The new collected
sample (uk, yk+1) can be immediately used to update the
process model θk+1. In this paper, we use an EKF to update
the model parameters or simply a linear Kalman filter in case
f(xk−1, θ) = θ′f̄(xk−1). Generally, the acquisition function
a(x) optimized in (2a) depends on θk and all past feature-
vector/target samples (xk−1, yk) collected so far.

In [17], the active learning method for regression called
ideal was proposed, utilizing inverse distance weighting
(IDW) functions. The acquisition function consists of two
nonnegative terms: a(x) = s2(x) + δz(x), where the IDW
variance function, s2(x) =

∑k
j=0 vj(x)∥yj − f(x, θk)∥22,

serves as a proxy for the variance of the output y predicted
by the model at x, the function z : Rnx → R is an IDW
exploration function, the function vj : Rnx → R is an IDW
weight function, and δ ≥ 0 is a tradeoff coefficient between
exploitation (of the model θk to estimate model uncertainty)
and pure exploration (since z(x) = 0 at each xj sampled so
far, ∀j = 0, . . . , k).

Besides ideal, we will consider also the alternative in-
cremental AL methods reviewed in [17, Section 3.4]: the
greedy method GSx [25, Algorithm 1], the greedy method
iGS [15, Algorithm 3], and the query-by-committee method
QBC [13], [26].

B. Initialization

As typically done in most AL algorithms, we start by using
passive learning to gather Ni initial pairs of input/output
samples, Ni ≥ 0. The simplest way is to use random
sampling, i.e., generate u0, . . . , uNi−1 randomly, or use the
K-means algorithm, cf. [17, Section 3.1].

C. Constraints

To attempt satisfying also output constraints, we add a
penalty in (2a) on the expected violation of output con-
straints. For instance, the satisfaction of output constraints

ymin ≤ y ≤ ymax (3)

can be encouraged by introducing the penalty term

p(x) = ρ

ny∑
i=1

{max{ŷk+1,i(x, θk)− ymax,i, 0}2

+max{ymin,i − ŷk+1,i(x, θk), 0}2}
(4)

where ŷk+1 = f(x, θk) is the next output predicted by the
current model with parameter vector θk, and ρ is a penalty
parameter, ρ ≥ 0. Then, we solve the following problem

uk = argmax
u∈U

a(xk(u))− p(xk(u)). (5)

A drawback of the formulation (5) with the penalty
term (4) is that it does not account for the model uncer-
tainty, which might be quite large during the early phase of
sampling. To address this issue, we consider the confidence
interval proposed in [27] for IDW functions, which is defined
as ŷk+1(x, θk)±καs(x), where s(x) is the square root of the
IDW variance function s2(x) and the scaling factor κα is set
as the upper α sample quantile of |CVi|/s−(i−1)(xi−1), i =
0, . . . , k, where α is a constant, typically set to 90%,
CVi = yi− ŷi(xi−1, θk) is the cross-validation error at xi−1,
s2−i(xi) =

∑k
j=0, j ̸=i vj(i)(xi)(yj−ŷi+1(xi, θk)), vj(i)(xi) =

wj(xi)/
∑k

l=0, l ̸=i wl(xi), and wl(x) is the weighting func-
tion. To prevent over-shrinking the constraint set in (5), we
impose a limit on the quantity καs(x) ≤ β(ymax − ymin),
where, in this case, we set β = 1

3 . Finally, in (5) we take
into account uncertainty by replacing p(x) with

p(x) = ρ

ny∑
i=1

{max{ŷk+1,i(x, θk)− ymax,i + καs(x), 0}2

+max{ymin,i − ŷk+1,i(x, θk) + καs(x), 0}2}. (6)

D. Alternative active-learning methods

We review three different AL methods for regression, alter-
native to ideal, slightly adapted here to generate input signals
for system identification. We exclude the iRDM method [16]
as it cannot be used for recursive model learning.

1) Greedy method GSx: The non-model-based method
GSx [25, Algorithm 1] selects the next sample xk by
maximizing the minimum distance from existing samples. In
analogy with (5), we extend GSx based on the acquisition
problem uk = argmaxu∈U dx(xk(u)) − p(xk(u)), where
dx(x) = minki=0 ∥x − xi∥22 is the minimum distance from
existing (scaled) samples.

2) Greedy method iGS: Given the predictor f(xk(u), θk)
trained on the available samples, the greedy sampling
technique iGS [15, Algorithm 3] can be used to select
the next input uk by solving the acquisition problem
uk = argmaxu∈U dx(xk(u))dy(xk(u)) − p(xk(u)), where
dx(x) is the same as in the GSx method and dy(x) =
minki=0 ∥ŷk+1(x, θk)− yi∥22 is the predicted minimum dis-
tance in the output space from existing output samples.

3) Query-by-Committee method QBC: The Query-by-
Committee (QBC) method for regression [13], [26] utilizes
KQBC different predictors θjk, j = 1, . . . ,KQBC . In AL
of static models, predictors are typically obtained by boot-
strapping the acquired dataset. In contrast, as we acquire
the samples online, we create KQBC different models by
running KQBC (extended) Kalman filters in parallel and,
at each time step, only update KQBC − 1 models after
acquiring the new sample yk. This adaptation of QBC
aims to select the input uk that maximizes the variance

Algorithm 1 Online design of experiments for system iden-
tification of autoregressive models using active learning and
inverse-distance based exploration (ideal-sysid).

Input: Set U of admissible inputs, number Ni of passively-
sampled inputs, length N of the experiment to design, ex-
ploration hyperparameter δ ≥ 0, number L ≥ 1 of prediction
steps, possible upper and lower bounds ymax, ymin, penalty
parameter ρ ≥ 0 on output constraint violations.

1. Generate Ni samples u0, . . . , uNi−1 by passive learning
(e.g., random sampling)

2. Excite the system and collect y0, . . . , yNi−1;
3. Estimate θNi−1;
4. For k = Ni, . . . , N do:
4.1. measure yk;
4.2. update θk by (extended) Kalman filtering;
4.3. If k < N , get uk by solving problem (7), with penalty

p as in (4) or (6) to handle possible output constraints;
5. End.

Output: Estimated parameter vector θN ; input excitation
u0, . . . , uN−1.

of the estimated output prediction ŷk+1(xk(u), θ
j
k): uk =

argmaxu∈U
∑KQBC

j=1

∥∥∥∥ŷk+1(x, θ
j
k)−

∑KQBC
h=1 ŷk+1(x,θ

h
k)

KQBC

∥∥∥∥2
2

− p(x),with x = xk(u).

E. Multi-step prediction

So far we have been concerned only with the one-step-
ahead prediction ŷk+1 and, consequently, with the acquisition
of the new control input uk. To circumvent such a possible
myopic view, we can take a predictive approach and extend
the formulation to optimize a finite sequence of future inputs
Uk = [u′

k u′
k+1 . . . u′

k+L−1]
′, where L ≥ 1 is the desired

prediction horizon. In this case, the predicted regressor vector
x̂k+j entering the acquisition function a contains either
outputs ŷk+h predicted by model θk (h ≥ 1) or measured
outputs yk+h (h ≤ 0), and either current and future inputs
uk+h = uh (h ≥ 0) or past inputs uk+h (for h < 0). We will
denote the predicted regressor as x̂k+j ≜ xk+j(U) to recall
that it depends on the first j+1 inputs in U . Moreover, since
future measured outputs yk+j+1 are not available, replacing
them by surrogates ŷk+j+1 = f(x̂k+j , θk) cause the IDW
variance s2(x̂k+j) = 0, and thus a(x̂k+j) = z(x̂k+j),
∀j > 0. Therefore, the multi-step-ahead active learning
problem can be formulated as follows:

Uk = arg max
U∈UL

s2(xk(U))+δ

L−1∑
j=0

z(xk+j(U))−p(xk+j(U))

(7)
where UL ≜ U × . . . × U . Note that (7) coincides with (5)
when L = 1, as xk(U) = xk(u).

Based on the receding-horizon mechanism used in model
predictive control, after solving (7), only the current input uk

is applied to excite the process, while the remaining moves
uk+j are discarded, for all j = 1, . . . , L − 1. Then, after

acquiring the new measurement yk+1 and updating the model
to get the new parameter vector θk+1, problem (7) is solved
again to get Uk+1, and so on.

The overall algorithm for online input design for system
identification based on the ideal active learning approach,
denoted by ideal-sysid, is summarized in Algorithm 1.

F. Numerical complexity

In analyzing the complexity of Algorithm 1, we assume
that the model parameter vector θ is estimated by EKF,
whose complexity is O(n2

θ) per step. Therefore, the recursive
training has a complexity of O(n2

θN), plus the cost of
evaluating (1) and, if the model f in (1) is not linear
with respect to θ, its Jacobian with respect to θ (N times)
for the EKF updates. In the QBC case, (KQBC − 1)N ,
more EKF-related computations are required, assuming that
the different EKFs are run in parallel also during the
random-sampling phase. In the case of pool-based sampling
(U = {u1, . . . , uM}), the complexity of solving problem (7)
requires (N − Ni + 1)ML evaluations of the acquisition
function a(x), or (N −Ni + 1)M evaluations for L = 1.

III. NUMERICAL EXPERIMENTS

We test Algorithm 1 (ideal-sysid) for the identification of
linear and nonlinear autoregressive models, and compare it
to passive learning and variants of Algorithm 1 obtained by
replacing ideal with one of the alternative AL methods re-
viewed in Section II-D. We use random sampling to generate
the initial Ni samples for all AL methods. The model param-
eter vector θk ∈ Rnθ is recursively estimated by (extended)
Kalman filtering with covariance matrices Pk ∈ Rnθ×nθ ,
Q ∈ Rnθ×nθ and R ∈ Rny×ny , as described in [22]. We set
P0 = 1

10−3N Inθ
, Q = 0, and R = 10−2Iny . We only report

results based on one-step prediction due to space limitations.
To quantify the overall quality of prediction on the training
and test datasets, we measure the root-mean-square error
(RMSE), RMSE =

√
1

Nmax

∑Nmax

k=1 (yk − ŷk(xk−1, θk))2,
where Nmax is the total number of samples in the set
(Nmax = N for the training set and Nmax = Ntest for the test
set). All computations were performed in MATLAB R2023b.

A. Linear ARX example

Firstly, we test the proposed AL approaches for learning
a linear ARX model with na = 3, nb = 3, nu = 1, and
ny = 1. We generate noisy synthetic data by simulating the
following system

yk = θa,1yk−1 + θa,2yk−2 + θa,3yk−3

+ θb,1uk−1 + θb,2uk−2 + θb,3uk−3 + αηk
(8)

from zero initial condition, where θa = [9
10 − 3

10
1
3]

′, θb = [13
− 1

5
1
15]

′, ηk ∼ N (0, 1), and α = 0.005. The overall vector
of model parameters is therefore θ = [θ′a θ′b]

′, that we wish
to reconstruct. We use pool-based sampling by letting U =
{−1,−1 + 1

M , . . . ,−1 + 2M−1
M , 1} with M = 20.

The prediction model is the linear model f(xk−1, θk) =
θ′kxk−1, where the parameter vector θk is updated recursively
by a linear Kalman filter after measuring each new sample yk.

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

ou
tp

ut
 v

al
ue

s

y
actual

y
estimated

0 5 10 15 20 25 30

simulated samples

0.0

1.0

2.0

es
tim

at
io

n
er

ro
rs #10-2

Fig. 2. ideal-sysid applied to system (8). Upper plot: measurements yk
(red squares) and predictions ŷk = θ′Nxk−1 (purple squares). Lower plot:
average estimation errors and vertical lines denote mean absolute deviation
(L = 1).

20 30 40 50 60 70 80 90 100

queried samples

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1)

passive
/ = 0

/ = 10-2

/ = 10-1

/ = 1

/ = 101

/ = 102
75 80 85 90 95 100

9.0

9.5

10.0

#10-3

Fig. 3. Effects of the exploration parameter δ in ideal-sysid and comparison
with passive learning. Vertical lines denote mean absolute deviation (L = 1).

We set the ideal-sysid parameters δ = 1, Ni = 16, N = 100,
ρ = 0 (no output constraints), L = 1, and apply Algorithm 1.
We also generate a test dataset by running (8) from zero
initial condition for Ntest = 30 steps. Fig. 2 compares the
one-step-ahead estimates ŷk = θ′Nxk−1 with respect to the
measured outputs yk on test data after running Algorithm 1
for N steps (upper plot) and the lower plot shows the average
estimation errors over 200 runs with the same test dataset.
To adequately evaluate results, we enlarge the test set size
and set Ntest = 300 in all remaining experiments.

Fig. 3 shows how the median RMSE over 200 runs
decreases with the number of acquired samples N for dif-
ferent values of δ in the ideal-sysid method, with a limited
sensitivity with respect to the hyper-parameter δ. With δ ≪ 1,
pure exploitation performs better at the early stage, while
only limited exploration occurs later. We will set δ = 1
in the remaining tests. The figure clearly shows that ideal-
sysid outperforms passive learning (random sampling of
uk ∈ U , in this case): the RMSE decreases faster with the
number of samples acquired.

Next, we compare the performance of ideal-sysid when
the AL method ideal is replaced by GSx, iGS, or QBC in
Algorithm 1. The median RMSE and its mean absolute
deviation over 200 runs are depicted in Fig. 4 (upper plot).
ideal-sysid outperforms GSx, iGS, and passive learning, and
is comparable to QBC. For all the considered AL methods,
the RMSE values are identical for k ≤ Ni − 1, indicating
that they share the same initial randomly generated samples,

20 30 40 50 60 70 80 90 100

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1, no constraints)

passive

GSx

iGS

QBC

ideal

85 90 95 100

0.90

0.95

1.00

#10-2

20 30 40 50 60 70 80 90 100

queried samples

1.0

1.5

2.0

2.5

3.0
#10-2 RMSE - ARX (L=1, with constraints)

passive
GSx
iGS
QBC
ideal

Fig. 4. AL problem (8) predicted with an ARX model, median RMSE
without: no constraints (upper plot) and with constraints (9) (lower plot).
Constraints are ignored during passive sampling. Vertical lines denote mean
absolute deviation (L = 1, ρ = 106).

resulting in the same parameters learned by the Kalman filter.
The initial samples are also used to initialize the Kalman
filters employed by QBC to estimate different models θjk ∈
Rnθ with corresponding covariance matrices P j

k ∈ Rnθ×nθ ,
j = 1, . . . ,KQBC , as described in Section II-D3.

To excite the system to learn the parameters under the
output constraints

−0.25 ≤ yk ≤ 0.25 (9)

we set ρ = 106 in Algorithm 1 and repeat the online input
design procedure. The obtained RMSE results are presented
in Fig. 4 (lower plot). It is evident that ideal-sysid consis-
tently outperforms GSx and iGS, and performs better than
QBC after 72 samples are collected. The good performance
of the passive method is because output constraints are
ignored and violated. Instead, as illustrated by Fig. 5 (upper
plot, purple dots), introducing the constraint-violation penalty
p defined in (4) is quite effective in preventing the outputs
from exceeding the bounds in (9).

Note that as model accuracy improves, the number of con-
straint violations (red dots) also decreases. The initial Ni = 6
samples (grey dots) are generated using passive learning. The
figure also shows the output samples (yellow dots) obtained
without imposing a constraint violation penalty (ρ = 0).

Fig. 5 (lower plot) illustrates the output samples (purple
dots) generated by ideal-sysid under the scenario where
the constraints are tightened, as defined in (6) along with
the adjusted constraint values (orange dashed lines) and
predictions ŷk (green dots).

To evaluate the robustness of the AL methods against
mismatches between the chosen model class and the system,
we consider data generated by the NARX system

yk = θ′xk−1 + ay3k−1 + by2k−2 + αηk (10)

queried samples

ou
tp

ut
 v

al
ue

s

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

Fig. 5. Initial samples (grey dots). Upper plot: actual system outputs without
penalties (ρ = 0, yellow dots) and with constraint violation penalties in (4)
(ρ = 106, purple dots and red dots, violating the constraints). Lower plot:
actual system outputs (purple dots) with shrunk constraints (orange dashed
lines in (6), ρ = 106) and predictions (green dots). (ideal-sysid, L = 1).

20 30 40 50 60 70 80 90 100

3.0

3.5

4.0

#10-2 RMSE - NARX (L=1, no constraints)

passive GSx iGS QBC ideal

20 30 40 50 60 70 80 90 100

queried samples

3.0

3.5

4.0

#10-2 RMSE - NARX (L=1, with constraints)

passive GSx iGS QBC ideal

Fig. 6. AL problem (10) predicted with an ARX model, median RMSE
without (upper plot) and with constraints (9) (lower plot). Vertical lines
denote mean absolute deviation.

where θ, α and ηk are the same as in the ARX example (8),
a = −0.1, and b = 0.1. We still apply the original ARX
model, ŷk = θ′kxk−1, to predict the output yk of the nonlinear
system (10) and use a linear Kalman filter to estimate
θk. Fig. 6 (upper plot) shows that, without constraints,
ideal-sysid is superior to passive, iGS, and QBC, and is
comparable to GSx; in the constrained case (lower plot),
except for passive that can collect more informative samples
by violating the constraints, ideal-sysid still provides the
best performance. The suboptimal performance of QBC and
iGS might be due to the persistence of the estimated model
uncertainty due to the inherent model bias.

B. NARX neural network example

Finally, we demonstrate the effectiveness of the proposed
AL approach for actively learning a NARX neural network
model yk = WT

2,k

(
σ
(
WT

1,kxk−1 + b1,k

))
+ b2,k, where

40 60 80 100 120 140 160 180 200

5.0

10.0

15.0

20.0
#10-2 RMSE - NARX-Net (L=1, no constraints)

passive GSx iGS QBC ideal

40 60 80 100 120 140 160 180 200

queried samples

5.0

10.0

15.0

#10-2 RMSE - NARX-Net (L=1, with constraints)

passive GSx iGS QBC ideal

Fig. 7. AL problem (11) predicted with a NARX model, median RMSE
without (upper plot) and with constraints (9) imposed in all methods but
passive sampling (lower plot). Vertical lines denote mean absolute deviation.

na = 2, nb = 2, nu = 1, ny = 1 and σ(x) = 1
1+e−x ,

from noisy synthetic data generated by a system

yk = WT
2

(
σ
(
WT

1 xk−1 + b1
))

+ b2 + αηk, (11)

with xk−1 = [yk−1, yk−2, uk−1, uk−2]
T , parameters

W1 =

−0.55 0.58 −1.50 0.16
0.17 −0.85 0.87 −1.9
−0.19 0.80 −0.24 −0.67

T

b1 =

 −1.8
−1.0
−0.41

W2 =

[
1.4 −1.3 −0.29

]T
b2 = 1.2,

ηk and α are the same in (8). The overall vector of model

parameters is θk =
[
vec(WT

1,k)
T bT1,k vec(WT

2,k)
T bT2,k

]T
to be estimated by EKF. Fig. 7 shows that ideal-sysid is
superior to GSx, iGS, and QBC in both cases. Note again
in the lower plot that the RMSE of passive is the lowest in
the constrained case, due to its ability to get more informative
data by violating the output constraints

IV. CONCLUSIONS

This paper has introduced different active learning methods
for online experiment design tailored to the identification
of autoregressive models. The proposed technique ideal-
sysid stands out as promising due to its consistent be-
havior across different scenarios, including both linear and
nonlinear models, as well as those with or without soft
output constraints. Future work will focus on extending the
proposed approach to identifying linear and nonlinear state-
space models from input/output data, which poses additional
challenges due to the presence of hidden states.

REFERENCES

[1] L. Ljung, System Identification : Theory for the User. Prentice Hall,
2 ed., 1999.

[2] L. Ljung, C. Andersson, K. Tiels, and T. Schön, “Deep learning and
system identification,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 1175–
1181, 2020.

[3] G. Pillonetto, A. Aravkin, D. Gedon, L. Ljung, A. Ribeiro, and
T. Schön, “Deep networks for system identification: a survey,” arXiv
preprint 2301.12832, 2023.

[4] I. M. Y. Mareels and M. Gevers, “Persistency of excitation criteria for
linear, multivariable, time-varying systems,” Mathematics of Control,
Signals and Systems, vol. 1, no. 3, pp. 203–226, 1988.

[5] T.-C. Lee, Y. Tan, and D. Nešić, “Stability and persistent excitation in
signal sets,” IEEE Transactions on Automatic Control, vol. 60, no. 5,
pp. 1188–1203, 2015.

[6] C. R. Rojas, J. S. Welsh, G. C. Goodwin, and A. Feuer, “Robust
optimal experiment design for system identification,” Automatica,
vol. 43, no. 6, pp. 993–1008, 2007.

[7] R. Fisher, The Design of Experiments. Edinburgh: Oliver & Boyd,
1935.

[8] B. Settles, Active Learning. Synthesis lectures on artificial intelligence
and machine learning, Morgan & Claypool, 2012.

[9] P. Kumar and A. Gupta, “Active learning query strategies for clas-
sification, regression, and clustering: a survey,” Journal of Computer
Science and Technology, vol. 35, no. 4, pp. 913–945, 2020.

[10] C. Aggarwal, X. Kong, Q. Gu, J. Han, and P. Yu, “Active learning: A
survey,” in Data Classification: Algorithms and Applications (C. Ag-
garwal, ed.), ch. 22, pp. 572–605, Chapman and Hall/CRC Press, 2014.

[11] D. MacKay, “Information-based objective functions for active data
selection,” Neural Computation, vol. 4, no. 4, pp. 590–604, 1992.

[12] D. Cohn, Z. Ghahramani, and M. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol. 4,
pp. 129–145, 1996.

[13] R. Burbidge, J. Rowland, and R. King, “Active learning for regression
based on query by committee,” in Int. Conf. on Intelligent Data
Engineering and Automated Learning, pp. 209–218, 2007.

[14] W. Cai, Y. Zhang, and J. Zhou, “Maximizing expected model change
for active learning in regression,” in Proceedings - IEEE International
Conference on Data Mining, ICDM, pp. 51–60, 2013.

[15] D. Wu, C.-T. Lin, and J. Huang, “Active learning for regression using
greedy sampling,” Information Sciences, vol. 474, pp. 90–105, 2019.

[16] Z. Liu, X. Jiang, H. Luo, W. Fang, J. Liu, and D. Wu, “Pool-
based unsupervised active learning for regression using iterative
representativeness-diversity maximization (iRDM),” Pattern Recogni-
tion Letters, vol. 142, pp. 11–19, 2021.

[17] A. Bemporad, “Active learning for regression by inverse distance
weighting,” Information Sciences, vol. 626, pp. 275–292, May 2023.
Code availble at http://cse.lab.imtlucca.it/∼bemporad/ideal.

[18] S. Tang, K. Fujimoto, and I. Maruta, “Actively learning Gaussian
process dynamical systems through global and local explorations,”
IEEE Access, vol. 10, pp. 24215–24231, 2022.

[19] H. S. A. Yu, C. Zimmer, and D. Nguyen-Tuong, “Batch active learn-
ing in gaussian process regression using derivatives,” arXiv preprint
arXiv:2408.01861, 2024.

[20] E. Lundby, A. Rasheed, I. Halvorsen, D. Reinhardt, S. Gros, and
J. Gravdahl, “Deep active learning for nonlinear system identification,”
arXiv preprint arXiv:2302.12667, 2023.

[21] L. Ljung, “Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems,” IEEE Transactions on
Automatic Control, vol. 24, no. 1, pp. 36–50, 1979.

[22] A. Bemporad, “Recurrent neural network training with convex loss
and regularization functions by extended Kalman filtering,” IEEE
Transactions on Automatic Control, vol. 68, no. 9, pp. 5661–5668,
2023.

[23] K. Seel, A. Bemporad, S. Gros, and J. Gravdahl, “Variance-based ex-
ploration for learning model predictive control,” IEEE Access, vol. 11,
pp. 60724–60736, 2023.

[24] R. Rickenbach, J. Köhler, A. Scampicchio, M. N. Zeilinger, and
A. Carron, “Active learning-based model predictive coverage control,”
IEEE Transactions on Automatic Control, pp. 1–16, 2024.

[25] H. Yu and S. Kim, “Passive sampling for regression,” in IEEE Int.
Conf. on Data Mining, pp. 1151–1156, 2010.

[26] T. RayChaudhuri and L. Hamey, “Minimisation of data collection
by active learning,” in Proc. Int. Conf. on Neural Networks, vol. 3,
pp. 1338–1341, 1995.

[27] V. R. Joseph and L. Kang, “Regression-based inverse distance
weighting with applications to computer experiments,” Technometrics,
vol. 53, no. 3, pp. 254–265, 2011.

http://cse.lab.imtlucca.it/~bemporad/ideal

	INTRODUCTION
	ONLINE ACTIVE LEARNING OF NARX MODELS
	One-step-ahead active learning
	Initialization
	Constraints
	Alternative active-learning methods
	Greedy method GSx
	Greedy method iGS
	Query-by-Committee method QBC

	Multi-step prediction
	Numerical complexity

	NUMERICAL EXPERIMENTS
	Linear ARX example
	NARX neural network example

	CONCLUSIONS
	References

