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Abstract— Due to the increasing popularity of cloud-based
architectures, it is of paramount importance to understand how
to benefit from shared information for solving collaborative
estimation problems and exploit the additional computational
resources available. Meanwhile, it is crucial to devise solutions
that allow connected devices to retain private data and to carry
out the desired tasks on their own, when disconnected from the
cloud.

In this paper, we present a cloud-aided iterative solution for
multi-class parameter estimation for a set of mass-produced
devices. The method exploits the similarity between systems
operating under comparable conditions and their connection
to the cloud, while allowing devices to retain and process raw
data privately. The effectiveness of the strategy is assessed on
a numerical example, showing its potential.

I. INTRODUCTION

Because of the widespread percolation of wireless com-
munication of sensor data, mass-produced devices are in-
creasingly connected with each other. At the same time, they
are now also coupled with central repositories, thanks to the
growing popularity of cloud-based platforms [10]. This esca-
lation of connectivity gives users and manufacturers access to
large datasets, that can be used to enhance the performance
of these systems. Specifically, mass-produced devices are
designed and calibrated to be nominally equal and their
physical similarity can be exploited together with shared
information to tackle problems ranging from fault detection
[1] to parameter estimation [9]. When tackling this last class
of problems, research has mainly focused on distributed
solutions, see e.g., [11], [12], [13], [14]. These techniques
rely on communication between neighbor nodes only, so as
to accommodate the low computational power characterizing
Wireless Sensor Networks (WSNs). However, this feature
makes these approaches unsuited whenever communication
between devices is inhibited because of privacy/security rea-
sons. At the same time, it might cause a drop in performance
when consensus among devices is sought.

In these scenarios, cloud-aided solutions become increas-
ingly appealing [6], [7] by allowing consumer devices to
eventually retain private data, while giving them access to
shared information on-demand. The connection to the cloud
further guarantees the availability of dedicated resources with
customizable computational power and memory, that can be
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easily accessed and released. In this light, a cloud-aided
consensus-based approach has been recently presented in
[3], [4]. By relying on the Alternating Direction Method
of Multipliers (ADMM) [2], this strategy is designed to
take advantage of the similarities between devices and their
connection to the cloud. Nonetheless, it relies on the as-
sumption that they all share some parameters, which may
not be satisfied in practice. As a motivating example, assume
that we aim at estimating a set of parameters needed for the
prognostics of automotive components, e.g., fuel pumps [15].
Suppose that we have access to data collected over a fleet
of similar vehicles and we are inferring component aging
as a function of its cumulative workload. As the component
degradation rate may depend on multiple causes, such as
environmental conditions and user behaviors, a common
aging model may not be able to accurately describe all
devices, making solutions based on full consensus on the
wear-rates possibly ineffective when scheduling condition-
based maintenance actions.

A. Contribution

To overcome this limitation, we propose a cloud-aided so-
lution for constrained collaborative least-squares estimation
over multiple classes. Similarly to the approaches in [3],
[4], the proposed scheme is centralized, requiring devices to
broadcast surrogates of their raw data only, while benefiting
from recursive least-squares (RLS) estimators eventually
available locally. Nonetheless, the approach presented here
is tailored to enforce intraclass consensus on the cloud, thus
allowing one to distinguish between devices operating under
different regimes, yet exploiting the connection to the cloud
and the nominal similarity between devices. Indeed, similar
devices subject to comparable working conditions are likley
to age similarly, making it useful to still exploit the similarity
in retrieving the aging model.

The paper is organized as follows. Our setting and goal
are introduced in Section II, while the multi-class estimation
problem is formalized in Section III. The proposed solution
is presented in Section IV and its performance is discussed
in Section V.

Notation: N, R+ and Rn are the sets of natural and
real positive numbers (excluding zero), and real vectors of
dimension n, respectively. Given a vector a ∈ Rn, ai is its i-
th element, ‖a‖2 its Euclidean norm. The cardinality of a set
A is denoted as |A|, while ΠA(a) is the Euclidean projection
of the vector a onto A. Given a matrix A ∈ Rn×m, A′ is
its transpose. The n × n identity matrix is denoted as In,
while the zero vector of dimension n is 0n. For every pair
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a, b ∈ N, the indicator function of the event {a=b} is

1[a=b] =

{
1 if a = b,

0 otherwise.
(1)

Finally, N (µ, σ2) is the Gaussian distribution with mean µ
and standard deviation σ.

II. SETTING AND GOAL

Assume that we collect data from a set of N mass-
produced devices, here referred to nodes. Suppose that we
can access a matrix Xn(t) ∈ Rny×nθ of features and the
corresponding output yn(t) ∈ Rny at each time instant
t ∈ N, for each n ∈ IN = {1, . . . , N}. Assume that
the devices can exchange information with the cloud, while
retaining raw data locally for security/privacy reasons or
due to communication bandwidth limitations. Since mass-
produced devices are designed to be nominally the same,
let them be characterized by structurally identical linear
regressor/output relationships

yn(t) = Xn(t)θo
n(t) + en(t), n = 1, . . . , N, (2)

where en(t) ∈ Rny is a zero-mean white noise independent
of Xn(t), θo

n(t) ∈ Θn ⊆ Rnθ is a local vector of unknown
parameters, subject to sudden changes in their values ac-
cording to the operating condition of the system, and Θn is
assumed to be closed and convex.

Despite the resemblance of their dynamics, assume that
these systems do not always share the same parameters as
they are subject to different conditions of use. Meanwhile,
suppose that the range of possible working conditions can
be clustered into M � N macro-level classes according
to their relative similarity, and that each device can be
uniquely associated to one of these groups at each instant t.
Accordingly, let us assume that there exists a set of constant
M class-dependent parameters ϑm ∈ Rng , with ng ≤ nθ and
m = 1, . . . ,M , that are common to all nodes within each
macro-level group and that are linked to the local parameters
via the following equality:

Pθo
n(t) = ϑsn(t), (3)

where P ∈ Rng×nθ is a known matrix dictating the intraclass
similarities, while sn(t) ∈ {1, . . . ,M} is an integer variable
dictating the group the n-th device belongs to at time t, i.e.,

sn(t) = m ⇐⇒ n ∈ Cm(t), m ∈ {1, . . . ,M}, (4)

with Cm(t) being the time-varying set comprising the devices
associated with the m-th cluster at time t.

Our goal is to use the available data to iteratively estimate
the local parameter vector θo

n(t) in a memory-effective and
computationally efficient way, while exploiting the simi-
larities between devices belonging to the same class and
eventually using priors on the set Θn.

III. PROBLEM FORMULATION

The one-to-one correspondence dictated by (4) implies that
M∑
m=1

1[sn(t)=m] = 1, ∀t, ∀n ∈ IN . (5)

Accordingly, the cloud-aided estimation problem to be solved
at each time instant t can be formally cast as the following
multi-model constrained least-squares problem:

min
{θn,Stn}

N
n=1

{ϑm}Mm=1

1

2

N∑
n=1

t∑
τ=1

λt−τn ‖yn(τ)−Xn(τ)θn‖22 (6a)

s.t. θn ∈ Θn, ∀n ∈ IN , (6b)
M∑
m=1

1[sn(τ)=m](Pθn−ϑm)=0, ∀n ∈ IN , (6c)

where Stn = {sn(τ)}tτ=1, the constraint in (6c) holds
for all instants τ ∈ It = {1, . . . , t}, so as to enforce
intraclass consensus, and θn denotes the estimate of the local
parameters based on the data collected up to time t. The
forgetting factor λn ∈ (0, 1] used in the local cost

fn(θn; t) =
1

2

t∑
τ=1

λt−τn ‖yn(τ)−Xn(τ)θn‖22, (7)

allows us to eventually trust recent data more [8].
Towards tackling problem (6) by performing simple re-

cursive operations on board of each device, we rewrite it as

min
{θn,zn,Stn}

N
n=1

{ϑm}Mm=1

N∑
n=1

[fn(θn; t) + gn(zn)] (8a)

s.t. θn = zn, ∀n ∈ IN , (8b)
M∑
m=1

1[sn(τ)=m](Pθn−ϑm)=0, ∀n ∈ IN , (8c)

where fn : Rnθ → R is defined as in (7), and each
optimization variable θn in (6) has been split into two parts
via the introduction of the auxiliary variables zn, for n ∈ IN .
Along with the augmentation of the cost with

gn(zn) =

{
0 if zn ∈ Θn,

+∞ otherwise,
n = 1, . . . , N, (8d)

the reformulation makes the objective of problem in (8)
separable over this splitting, paving the way for a solution
decoupling the fitting problem from the constraints in (6b).

IV. A RECURSIVE APPROACH FOR COLLABORATIVE
MULTI-CLASS ESTIMATION

Solving (8) entails the estimation of (i) the local parameter
θn and the auxiliary variable zn for each node n ∈ IN ,
(ii) the class-dependent global variables ϑm, with m =
1, . . . ,M , and (iii) the sequence Stn = {sn(τ)}tτ=1 of inte-
gers dictating the active mode at each step up to t. To retrieve
all these unknowns and limit the computational burden on
the devices, we propose to alternate between an ADMM-
based scheme to solve (8) with respect to {θn, zn}n=1 and
{ϑm}Mm=1, for a fixed sequence Stn, and a greedy approach
used to find the latest class to which each device belongs to,
for fixed local and global parameters.

Denote by Fn(θn, zn; t) = fn(θn; t)+gn(zn) the local loss
function, for all n ∈ IN . Let rn,1 and rn,2(τ) be the residuals
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for the equality constraints in (8b) and (8c) respectively, i.e.,

rn,1 = θn − zn, (9a)

rn,2(τ) =

M∑
m=1

1[sn(τ)=m](Pθn − ϑm), ∀τ ∈ It, (9b)

for n = 1, . . . , N .
Both stages of our approach rely on the augmented La-

grangian associated with (8), which is given by

Lt =

N∑
n=1

Ln
(
θn, zn, δn,1, ϑ,Stn,∆t

n,2

)
, (10a)

where ∆t
n,2 = {δn,2(τ)}tτ=1 and Ln is

Ln =Fn(θn, zn; t) + δ′n,1rn,1 +
ρ1

2
‖rn,1‖22

+

t∑
τ=1

[
δ′n,2(τ)rn,2(τ) +

ρ2

2
‖rn,2(τ)‖22

]
, (10b)

the intraclass consensus residual in (9b) has been recast as

rn,2(τ) = Pθn − ϑsn(τ), ∀τ ∈ It, (11)

and δn,1 ∈ Rnθ and {δn,2(τ) ∈ Rng}tτ=1 are the Lagrange
multipliers associated to (8c) and (8b), respectively. Clearly,
the augmented Lagrangian in (10) is separable across the
devices, allowing us to process individual (eventually private)
data on board of each system or in resources specifically
allocated on the cloud, as detailed next.
A. Parameter estimation

At time t, suppose that the sequence Stn is fixed for all
n ∈ IN . Denote by ϑ = {ϑm}Mm=1 the unknown class-
dependent parameters. For each node n ∈ IN and each class
m ∈ {1, . . . ,M}, the estimates {θ̂n(t)}Nn=1 and ϑ̂ of the
local and the class-dependent parameters can be retrieved by
carrying out the following ADMM steps:

θ̂(i+1)
n (t)=argmin

θn
Ln(θn, z

(i)
n , δ

(i)
n,1, ϑ

(i),Stn,∆
t,(i)
n,2 ), (12a)

z(i+1)
n =argmin

zn
Ln(θ̂(i+1)

n (t), zn, δ
(i)
n,1, ϑ

(i),Stn,∆
t,(i)
n,2 ),

(12b)

ϑ̂(i+1)=argmin
ϑ

∑
n

Ln(θ̂(i+1)
n (t), z(i+1)

n , δ
(i)
n,1, ϑ,Stn,∆

t,(i)
n,2 ),

(12c)

δ
(i+1)
n,1 = δ

(i)
n,1 + ρ1(θ̂(i+1)

n (t)− z(i+1)
n ), (12d)

δ
(i+1)
n,2 (τ)=δ

(i)
n,2(τ)+ρ2(P θ̂(i+1)

n (t)− ϑ(i+1)
sn(τ)), ∀τ ∈It, (12e)

where i ∈ N indicates the current iteration, and the min-
imization problems in (12a)-(12b) must be solved for all
devices n ∈ IN , along with the updates in (12d)-(12e). These
iterations have to be carried out until a stopping criterion is
met, e.g., a maximum number imax of iterations is exceeded.

1) Auxiliary variables update: Let us focus on the update
in (12b) and denote by r(i+1)

n,1 = θ̂
(i+1)
n (t)− znthe residual in

(9a) for the updated estimate θ̂(i+1)
n (t). Due to the features

of (10b), the n-th auxiliary variable is updated as

z(i+1)
n = argmin

zn
gn(zn)+(δ

(i)
n,1)′r

(i+1)
n,1 +

ρ1

2
‖r(i+1)
n,1 ‖22. (13)

By manipulating the cost in (13) it can be proven [2] that the
optimal auxiliary variable corresponds to the projection of
θ̂

(i+1)
n (t) + 1

ρ1
δ

(i)
n,1 onto the closed convex set Θn. Therefore,

Step (12b) translates into

z(i+1)
n = ΠΩn

(
θ̂(i+1)
n (t) +

1

ρ1
δ

(i)
n,1

)
, ∀n ∈ IN . (14)

2) Class-dependent parameters update: Let r(i+1)
n,2 (τ) be

the intraclass consensus residual in (11) computed with the
updated local parameters, i.e., r(i+1)

n,2 (τ) = P θ̂
(i+1)
n − ϑsn(τ),

for all τ ∈ It. Based on the definition of the augmented
Lagrangian in (10), the parameters ϑ(i+1) = {ϑ(i+1)

m }Mm=1 are
retrieved by solving the minimization problem,

min
ϑ

N∑
n=1

t∑
τ=1

[
(δ

(i+1)
n,2 (τ))′r

(i+1)
n,2 (τ)+

ρ2

2
‖ri+1
n,2(τ)‖22

]
. (15)

Let Sτm = {n ∈ IN : sn(τ) = m} be the set of devices
associated to the m-th mode at time τ according to the
fixed sequence Stn, for m ∈ {1, . . . ,M}. The objective
characterizing (15) can be equivalently recast as
M∑
m=1

t∑
τ=1

∑
n∈Sτm

[
(δ

(i+1)
n,2 (τ))′r

(i+1)
n,2 (τ)+

ρ2

2
‖r(i+1)
n,2 (τ)‖22

]
, (16)

showing that problem (15) can be split across the classes.
Therefore, the estimate of each class-dependent parameter at
time t, i.e., {θ̂m(t)}Mm=1, can be obtained as

min
ϑm

t∑
τ=1

∑
n∈Sτm

[
(δ

(i+1)
n,2 (τ))′r

(i+1)
n,2 (τ)+

ρ2

2
‖r(i+1)
n,2 (τ)‖22

]
. (17)

The cost in (17) can be further split across time, thus
allowing a recursive expression to update the class-dependent
parameters in closed-form:

ϑ̂(i+1)
m (τ)=

1

|Sτm|
∑
n∈Sτm

[
P θ̂(i+1)

n (t)+
δ

(i)
n,2(τ)

ρ2

]
, ∀τ ∈ It. (18)

3) Local parameter update: The structure of the loss
function in (7) allows us to find the analytical solution to the
minimization problem in (12a). The latter can be compactly
cast as follows:

θ̂(i+1)
n (t) = φn(t)

(
Yn(t) + ξ(i)

n (t)
)
, (19)

with

Yn(t) =

t∑
τ=1

λt−τn X ′n(τ)yn(τ), (20a)

ξ(i)
n (t)=ρ1z

(i)
n − δ

(i)
n,1+

t∑
τ=1

P ′
[
ρ2ϑ

(i)
sn(τ)− δ

(i)
n,2(τ)

]
, (20b)

φn(t) = (Xn(t) + tρ2P
′P + ρ1Inθ )

−1
, (20c)

and

Xn(t) =

t∑
τ=1

λt−τn X ′n(t)Xn(t). (20d)

Based on these definitions, the local estimate in (19) can be
recast as the sum of two terms, namely

θ̂rlsn (t) = φn(t)Yn(t), (21a)

θ̂admm,(i+1)
n (t) = φn(t)ξ(i)

n (t), (21b)
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where the partial estimate in (21a) depends on the data avail-
able locally, while the one in (21b) is iteration-dependent and
it can be readily computed by relying on the outcomes of
the previous ADMM run.

Let us focus on the partial estimate θ̂rlsn (t) in (21a) and
consider again Yn(t) in (20a) and Xn(t) in (20d). The latter
quantities can be updated as:

Yn(t) = X ′n(t)yn(t) + λnYn(t− 1), (22a)
Xn(t) = X ′n(t)Xn(t) + λnXn(t− 1). (22b)

By leveraging the properties in (22) and by introducing

θ̂rlsn (t− 1) = φn(t− 1)Yn(t− 1), (23a)

φn(t− 1) = (Xn(t−1) + (t−1)ρ2P
′P + ρ1Inθ )

−1, (23b)

manipulations similar to the one performed in [3] allow us
to obtain a recursive update for the estimate in (21a), i.e.,

θ̂rlsn (t) = θ̂rlsn (t− 1) +Kn(t)εn(t|t− 1), (24a)

where

εn(t|t− 1) = ỹn(t)− X̃n(t)θ̂rlsn (t− 1), (24b)

Kn(t)=φn(t−1)X̃ ′n(t)(λnInX̃+X̃n(t)φn(t−1)X̃ ′n(t))−1,
(24c)

φn(t) = λ−1
n (Inθ −Kn(t)X̃n(t))φn(t− 1), (24d)

and the extended regressor X̃n(t) ∈ RnX̃×nθ , with nX̃ =
ny + nθ + ng , and output ỹn(t) are respectively given by

X̃n(t)=

 Xn(t)√
[t− (t− 1)λn]ρ2P√

(1− λn)ρ1Inθ

, ỹn(t)=

yn(t)
0ng
0nθ

. (24e)

The separation induced by the use of the ADMM-based
scheme leads to update formulas that resemble the ones
of standard recursive least squares, modified to handle the
forgetting factor and the constraint-dependent terms in (20c).

B. Class estimation

Assume now that the parameters {θn}Nn=1 and {ϑm}Mm=1

are fixed, along with the Lagrange multipliers δn,1 and
{δn,2(τ)}tτ=1, for n ∈ IN . By considering once again the
augmented Lagrangian in (10), the class can be estimated
over time by solving the following problem,

min
{Stn}n∈IN

N∑
n=1

t∑
τ=1

[
δ′n,2(τ)rn,2(τ)+

ρ2

2
‖rn,2(τ)‖22

]
, (25)

where the residual rn,2(τ) is defined as in (11) and we have
neglected all terms of Lt in (10) that are independent of the
class. Note that, whenever ρ2 is sufficiently large to let the
quadratic term dominate over the linear one, the problem
in (25) shares the same cost function as K-means [5] with
centroids dictated by the class-dependent parameters.

The objective function in (25) can be split across the nodes
and time, allowing us to retrieve the class of each device
iteratively as follows:

ŝn(τ) = arg min
sn(τ)

δ′n,2(τ)rn,2(τ) +
ρ2

2
‖rn,2(τ)‖22, (26)

for all n ∈ IN and instants τ ∈ It. Here we propose to
greedily evaluate the cost in (26) for all possible clusters
m ∈ {1, . . . ,M}, and then pick the class corresponding to
the minimal loss.

C. Communication scheme

The simple, recursive operations in (24) solely rely on
data available at the device level. Moreover, they require few
variables to be stored on board of the nodes, i.e., θ̂rlsn (t− 1)
and φn(t − 1). It is thus natural to perform these updates
on board of each device, prior to the iterations of the actual
ADMM scheme. By computing a partial estimate of the local
parameters, each node can privately retain raw data while
only sharing their surrogates, i.e., θ̂rlsn (t) and φn(t), with
the cloud. Moreover, if the connection with the cloud is lost,
an estimate of the local parameters would be available at the
device level. All remaining operations depend on the ADMM
run counter and they have to be performed by all devices.
Thus, they can be performed either by the central processing
unit or by exploiting resources allocated to each device on
the cloud, including the update of {sn(t)}n∈IN . To benefit
from the estimated class-dependent parameters retrieved on
the cloud, we introduce the additional local estimate

θ̃n(t) = θ̂rlsn (t) + P ′(ϑ̂sn(t−1)(t− 1)− P θ̂rlsn (t− 1)), (27)

correcting the estimate available locally with the previous
parameter (broadcast to the node by the cloud).

D. Practical hints

The ADMM-based scheme in (12) requires updating the
estimates of the class-dependent parameters by exploiting
information collected up to time t, as shown in (17).
Analogously, the Lagrangian multipliers associated to each
intraclass similarity constraint must be updated as in (12e)
over the whole time horizon. These operations are performed
on the cloud, but they make the scheme not recursive. Since
we aim at devising an iterative approach, we propose to
approximate the steps in (12c) and (12e) by exploiting their
separability over time. Therefore, at time t, we approximately
compute the estimates {ϑ̂m(t)}Mm=1 as in (17) and update
{δn,2(t)}Nn=1 only, while fixing {δn,2(τ)}t−1

τ=1 to their values
obtained at previous time instants.

In Algorithm 1 we summarize a possible implementation
of the method at time t, where the parameters at time t
are estimated by fixing sn(t) = ŝn(t − 1). Note that the
proposed implementation involves the introduction of an
additional penalty ρ3 > 0, which replaces ρ2 when the mode
is updated as in (26). This change enables us to enforce the
quadratic term in (26) to dominate over the linear one, while
not jeopardizing constraint satisfaction. Algorithm 1 further
requires the initialization of the class-dependent estimates,
the auxiliary variables and the Lagrange multipliers. Since
{θ̂rlsn (t)}n∈IN are updated prior to the ADMM runs, they
can be exploited to initialize these parameters. In particular,
z

(0)
n can be chosen as the projection of θ̂rlsn (t) onto Θn, for

all n ∈ IN , while ϑ̂(0)
m can be initialized as the sample mean

of {P θ̂rlsn }n:ŝn(t−1)=m for all m = 1, . . . ,M .
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Algorithm 1 ADMM-RLS for multi-class estimation

Local inputs:{Xn(t), yn(t)}, {θ̂rlsn (t − 1), φn(t − 1)},
ϑ̂ŝn(t−1)(t− 1); λn ∈ (0, 1]; ρ1, ρ2, ρ3 ∈ R+.
Cloud inputs: ϑ̂(0)(t), {δ(0)

n,i}2i=1, z(0)
n , n ∈ IN ; ρ1, ρ2, ρ3.

Node-level computations
1. each node n ∈ IN does
1.1. update θ̂rlsn (t) and φn(t) as in (24);
1.2. discard {θ̂rlsn (t−1), φn(t−1)};
1.3. memorize {θ̂rlsn (t), φn(t)};
1.4. compute θ̃n(t) as in (27);
1.5. transmit θ̂rlsn (t) and φn(t) to the cloud;
Cloud-level computations
1. iterate for i = 1, . . .

1.1. for all n ∈ IN
1.1.1. compute θ̂admm,(i+1)

n (t) as in (21b);
1.1.2. set θ̂(i+1)

n (t)← θ̂rlsn (t) + θ̂
admm,(i+1)
n (t);

1.1.3. compute z(i+1)
n as in (14);

1.2. for m = 1, . . . ,M

1.2.1. update ϑ̂(i+1)
m (t) as in (18);

1.3. for all n ∈ IN
1.3.1. compute δ(i+1)

n,1 and δ(i+1)
n,2 (t) as in (12d) and (12e);

2. until a stopping criterion is satisfied;
3. for all n ∈ IN
3.1. update ŝn(t) as in , with ρ2 ← ρ3;

4. transmit ϑ̂ŝn(t)(t) to the n-th node, n ∈ IN .

Local outputs: φn(t), θ̂rlsn (t) and θ̃n(t).
Cloud outputs: {θ̂n(t), ŝn(t)}Nn=1; {ϑ̂m(t)}Mm=1.

TABLE I
PARAMETERS AND INITIAL CONDITIONS FOR ALGORITHM 1

φn(0) λn ρ1 ρ2 ρ3 δ
(0)
n,1 δ

(0)
n,2

0.1I2 0.995 0.1 10−5 1 10−8I5 10−8I5

0 1000 2000 3000 4000 5000
0.5

1

1.5

2

2.5

(a) ϑ1 vs ϑ̂1(t)

0 1000 2000 3000 4000 5000
-1

-0.5

0

0.5

1

(b) ϑ2 vs ϑ̂2(t)

Fig. 1. Class-dependent estimates (blue) vs true values (black) over time.

V. NUMERICAL EXAMPLE

Consider N = 100 dynamical systems described by the
following ARX model:

0 1000 2000 3000 4000 5000
-1

0

1

2

3

(a) θon,1 (black), θ̂rlsn (t) (dashed blue), θ̃n(t) (red)

0 1000 2000 3000 4000 5000
0

1

2

3

(b) sn(t) (dashed black) and ŝn(t) (blue)

Fig. 2. Node #3: true vs estimated local parameters and modes over time.

yn(t) = θo
n,1yn(t− 1) + θo

n,2un(t− 1) + en(t), (28a)

where θo
n,2 ∼ N (0.4, 4·10−4) is purely local, while the value

of θo
n,1 is dictated by the following class-based rule:

θo
n,2 = ϑsn(t) =

{
0.8 if sn(t) = 1,

0.5 if sn(t) = 2.
(28b)

According to the dynamics in (28a), the feature vector in
(24) is constructed as Xn(t) =

[
yn(t− 1) un(t− 1)

]′
.

Throughout an estimation horizon of T = 5000, the class of
each node changes only once at a randomly chosen instant
within [100, T ). All local input sequences comprise a set of
uniformly distributed inputs in the interval [2, 3] generated
at random, while en∼N (0, Rn) is characterized by a device-
dependent variance Rn ∈ [1, 4]. The effect of noise is
quantified through the Signal-to-Noise Ratio (SNR), yielding
SNRn ∈ [4.5, 14.3] dB for all n ∈ IN .

At each instant t, a new instance of Algorithm 1 is run by
using the parameters reported in Table I, and stopped once
imax = 20 iterations have been performed. We also rely on
the following priors:

0.45 ≤ ϑi ≤ 0.85, i = 1, 2, (29a)
0.3 ≤ θn,2 ≤ 0.5, ∀n ∈ IN . (29b)

The initial class ŝn(0) is chosen at random. According to its
value, we randomly initialize the local estimates as θ̂n(0) ∼
N ([ ϑŝn(0) θ

o
n,2 ] , I2), while the remaining initial estimates are

selected according to Section IV-D.
Figure 1 shows that, after an initial transient, both esti-

mates converge to the actual values that can be taken by θo
n,1

according to (28b), despite the approximations discussed in
Section IV-D. This result could only be achieved when the
local estimates and the reconstructed operating conditions of
the devices are sufficiently accurate throughout the horizon.
The comparison between the purely data-driven and the
corrected estimated in Figure 2 highlights that {θ̃n(t)}n=1

are less subject to oscillations due to the noisy nature of
the data. Therefore, the information broadcast back from the
cloud helps improving the estimates obtained by processing
local data only. Meanwhile, a delay in the estimation of the
actual active mode might lead to a corresponding slower
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TABLE II
SENSITIVITY ANALYSIS: AVERAGE Ltrue

n,%
(30) vs ρ3 .

ρ3 = 10−2 ρ3 = 10−1 ρ3 ≥ 1
mean(Ltrue

n,%
) [%] 8.9 5.7 5.5

0 1000 2000 3000 4000 5000

0

0.5

1

1.5

(a) |ϑ̂1(t)− ϑ1| for ρ2 = 10−5

0 1000 2000 3000 4000 5000

0

0.5

1

1.5

(b) |ϑ̂1(t)− ϑ1| for ρ2 = 10−3

0 1000 2000 3000 4000 5000

0

0.5

1

1.5

(c) |ϑ̂1(t)− ϑ1| for ρ2 = 10−1

Fig. 3. Sensitivity analysis: absolute estimation error vs ρ2. Increasing ρ2
leads to a deterioration of the estimator performance. The same behavior
characterizes the absolute error on ϑ2.

TABLE III
SENSITIVITY ANALYSIS: AVERAGE Ltrue

n,%
(30) vs ρ2

ρ2 = 10−5 ρ2 = 10−3 ρ2 = 10−1

mean(Ltrue
n,%

) [%] 5.5 8.7 25.5

correction, which does not impact the quality of the retrieved
class-dependent parameters. The quality of the reconstructed
mode sequence is instead measured as:

Ltruen,% =

(
1

T

T∑
t=1

1[sn(t) 6=ŝn(t)]

)
· 100, (30)

which is computed using the true sequences as ground-truth.
The average number of misclassified steps Ltruen,% over the
nodes is equal to 5 %. This indicates that the retrieved mode
sequences are accurate overall, with initial errors related to
the random initializations and delays due to slow transitions
of the local estimates towards the true parameter.

a) Sensitivity analysis: The performance of the pro-
posed approach is now assessed for different choices of
ρ1, ρ2, ρ3 ∈ R+, by changing one parameter at a time and
keeping the others as in Table I.

As ρ1 is associated with the value constraints in (6b),
we look at the average number of constraint violations.
By selecting ρ1 between 10−5 and 10−1 we have always
obtained that the range constraints in (29) are violated around
3% of the times. Since ρ3 directly influences the quality
of the reconstructed class sequences, the performance of
Algorithm 1 for different values of this penalty is evaluated

via the average Ltruen,% reported in Table II. It can be seen
that the higher ρ3 is, the smaller is the number of spurious
switches in the class estimate. As ρ2 weights violations
of the intraclass consensus constraints, different choices
are expected to primarily affect the quality of the global
estimates and, indirectly, the accuracy of the reconstructed
class sequences. The absolute error on the global parameters
for different ρ2 are reported in Figure 3. We can conclude
that the larger ρ2 is, the less the global parameters of different
classes are distinguishable, as the consensus constraint is
enforced too strongly. As expected, this has a negative effect
on the quality of the estimated classes (see Table III).

VI. CONCLUSIONS

We presented an ADMM-based recursive approach to
estimate a set of parameters in a collaborative fashion. The
method is tailored to scenarios in which data are acquired
from N mass-produced devices, that can be clustered into
M macro-level groups according to their operating regime.

In the future, the convergence of the approach will be
formally studied and the effect of asynchronous and unideal
communications will be explored in depth.
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