
Learning nonlinear feedback controllers from data via optimal policy
search and stochastic gradient descent

Laura Ferrarotti∗ and Alberto Bemporad∗

Abstract— This paper proposes a technique for synthesizing
smooth nonlinear controllers by optimal policy search and
stochastic gradient descent. After choosing an appropriate pa-
rameterization of the control law, mini-batch stochastic gradient
descent steps are used to iteratively optimize the parameters
of the control law. The gradients of the expected future closed-
loop performance required for the descent are approximated by
using simple local linear models, as introduced earlier by the
authors for optimal policy search of linear feedback controllers.
In this way, the method does not require a full nonlinear model
of the process. The algorithm can be applied offline, on a
previously collected dataset, or online, while controlling the
plant itself with the most updated policy. We apply the method
in a numerical example in which we solve an output-tracking
problem for a Continuously Stirred Tank Reactor (CSTR)
using a neural-network parameterization with differentiable
activation function of the controller. In the offline setting the
performance of the resulting neural controller is compared to
the one of a linear feedback controller trained on the same
dataset. In the online setting, instead, we show how the learning
procedure can be designed, combining on-policy and off-policy
learning, to increase safety and improve performance.

I. INTRODUCTION

Data-driven control has been recently investigated as a
viable alternative to classic model-based control [1], that
often require rather time-consuming identification procedures
to get an open-loop model of the process [2]. Among
others, data-driven control techniques based on Reinforce-
ment Learning (RL) exploit experience gathered from pro-
cess/environment interactions, see [3]–[6]. Following the RL
taxonomy, the methods can be divided in actor-only, critic-
only, and actor-critic. Critic-only and actor-critic methods
rely on approximations of the value function [7], [8]. Actor-
only methods, also called policy-search methods, instead,
do not require such an approximation, as they work with
a parameterized family of policies and directly optimize the
policy parameters [9]. In particular, policy-search methods
that optimize the parameterized policies following the direc-
tion indicated by the gradient of the cost-function are denoted
as policy-gradient methods (see [10], [11]).

Actor-only methods, critic-only methods, and actor-critic
methods were recently combined with the use of neural
networks (NNs), exploited for their extreme flexibility and
generalization capability. NNs are powerful nonlinear func-
tion approximators, composed by a sequence of layers of
“neurons”, that result in the composition of a linear function,
associated with the weights Wi and bias bi, and a nonlinear

∗ IMT School for Advanced Studies Lucca, P.za San Francesco
19, 55100 Lucca (IT), laura.ferrarotti@imtlucca.it,
alberto.bemporad@imtlucca.it

activation function σ, i.e., fi(x) = σ(Wi x+ bi). The result
of combining NNs with RL is indicated as Deep RL and is
the subject of several recent publications [12]. An important
example is the Deep Q-learning algorithm (DQN) [13], [14],
that adapts the Q-learning algorithm [7] in order to make
effective use of large NNs as function approximators. DQN
saw many attempts of improvement, surveyed and combined
in [15], to obtain an algorithm with improved performance.
Another milestone in the field is represented by the Deep
Deterministic Policy Gradient (DDPG) algorithm [16], an
actor-critic, model-free method based on the deterministic
policy gradient [17], that can operate over continuous action
spaces. Attempts were also made to combine deep policy
learning and deep Q-learning, as in [18], where the Q-values
are estimated from the action preferences of the policy,
and Q-learning updates are applied to the policy. In [19],
instead, a mix of policy gradient and actor-critic updates is
shown to achieve promising results, together with the use
of a parameterized family of policy gradient methods that
interpolate between on-policy and off-policy learning.
In this paper we focus on synthesizing nonlinear smooth
controllers via mini-batch stochastic gradient descent op-
timization of the control policy parameters. The gradients
of a given closed-loop performance index required for the
descent are approximated using simple local linear open-loop
models, so that the method does not require a full model
of the plant from which input/output data are collected.
The approach, here described in its most general setup, was
introduced in [20], where it was tailored for the learning of
linear policies for output-tracking. A heuristic for assisted
input selection during online learning is introduced in this
paper, to cope with the risk of implementing the policy
directly on the plant, without loosing the advantages of
an on-policy approach. A different extension of [20] was
recently proposed in [21] to support piecewise-affine policy
parameterizations, in which both the linear control policies
and the switching law are learned from data. To show the
performance of the approach proposed in this paper for
the synthesis of nonlinear smooth controllers, we provide
a simulation example in which an output-tracking problem
for a Continuously Stirred Tank Reactor (CSTR) is solved
by training a NN-parameterized policy by SGD. The paper
is organized as follows: the optimal policy search problem
is formulated in Section II and an optimal policy search
algorithm is described in Section III. Section IV details
the algorithmic setup for solving nonlinear output tracking
problems, which is used in Section V to show numerical
results. Section VI summarizes and concludes the paper.

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7446-4/20/$31.00 ©2020 IEEE 4961

Notation: Let Rn be the set of real vectors of dimension
n. For each vector x belonging to Rn, xi is the i-th element
of the vector. Given a matrix A ∈ Rn×m we denote its
transpose by A′. We denote by I the identity matrix and by
ei its i-th column. Given a matrix Q ∈ Rn×n, ‖x‖2Q= x′Qx.
With rem(x, y) we indicate the reminder of the division of
x by y.

II. OPTIMAL POLICY SEARCH

Let st ∈ Rns be a Markovian signal collecting the varia-
bles that describe the dynamics of the strictly causal plant
P to be controlled and its interactions with the environment.
The components of st include the state vector xt of P and
may also include states required by the control policy, for
example the integral of tracking errors. In this paper we focus
on input/output models, that is xt is a collection of a finite
number of past samples of the input ut and output yt of the
plant, although the approach could be immediately extended
to state-space models. The temporal evolution of st can be
described by the (unknown) model

st+1 = f(st, pt, ut, dt), (1)

which captures the dependence of st on the decision variable
(action) ut ∈ Rnu , on unmeasured disturbances dt ∈ Rnd ,
and on a vector pt ∈ Rnp of non-Markovian exogenous
signals, such as measured disturbances, time-varying para-
meters, and reference signals to track.

The cost of applying an action ut to P while in (st, pt)
is quantified by the stage cost ρ(st, pt, ut), where ρ :
Rns+np+nu → R. Given the values p0, d0, p1, d1, . . . and
the initial condition s0, the cost of applying a sequence of
control actions u0, u1, . . . over an infinite horizon can be
obtained by summing up the stage costs along the trajectory
produced by (1)

J∞(s0, {p`, d`, u`}
∞

`=0) =

∞∑
`=0

ρ(s`, p`, u`). (2)

Our aim is to design an optimal nonlinear feedback controller
generating the command inputs u0, u1, . . . to the plant P so
to minimize the closed-loop performance index (2), for every
possible sequence {p`, d` | ` = 0, 1, . . .} and initial condition
s0, without an explicit knowledge of model f in (1).

We represent the controller as a deterministic policy π :
Rns+np → Rnu that associates to each st and pt an action
ut = π(st, pt). To evaluate the performance of a policy π,
we derive from (2) the cost

J(π) = E[J∞(S0, {P`, D`, π(S`, P`)}
∞

`=0)], (3)

where the expectation of J∞ is taken with respect to the
random variables S0 and P`, D`, ` = 0, 1, . . ., representing
all the possible initial states of the trajectory and values of
the signals p`, d` at step `, respectively.

Based on (3), the optimal feedback controller corresponds
to the policy π∗ such that

π∗ = arg min
π∈F(Rns+np ,Rnu)

J(π) (4)

where F(Rns+np ,Rnu) is the set of functions of ns + np
real variables taking values in Rnu . Equation (4) represents
a general abstract optimal policy search (OPS) problem.

Problem (4) is computationally and theoretically difficult
to tackle, due to F(Rns+np ,Rnu) being completely generic.
For this reason, we restrict the shape of the controller we
want to synthesize by parameterizing the policy with a
vector H ∈ Rh of parameters to select, and denote the
resulting policy by πH(st, pt). The optimization problem (4)
is therefore transformed into

H∗ = arg min
H∈Rh

J(πH). (5)

We consider nonlinear policy parameterizations, that is
πH(st, pt) = g(st, pt, H), where g is a nonlinear function,
differentiable with respect to H for every (st, pt) in Rns+np .
Problem (5) still involves the optimization of the expected
value of an infinite horizon cost. We therefore approximate it
with a finite trajectory cost of length L. The resulting cost of
πH , given s0, {p` | ` = 0, . . . , L} and {d` | ` = 0, . . . , L−1}
is

JL(H, s0, {p`}L`=0, {d`}L−1`=0) =

=

L−1∑
`=0

ρ(s`, p`, πH(s`, p`)) + ρL(sL, pL).
(6)

Then, the considered approximate OPS problem is

H∗ = arg min
H∈Rh

E[JL(H, S0, {P`}L`=0, {D`}L−1`=0)], (7)

where the expected value is taken with respect to the
random variables S0, {P`}L`=0, {D`}L−1`=0 .
Stochastic optimization methods can be employed to
optimize an expected value. In this paper we use
the mini-batch Stochastic Gradient Descent (SGD)
algorithm [22]. The application of mini-batch SGD to
problem (7) requires at every step t computing the
gradients ∇JL(Ht−1, s

i
0, {p

j
`}L`=0, {dk` }L−1`=0) for each

(si0, {p
j
`}L`=0, {dk` }L−1`=0) in the current mini-batch of data.

Function JL, though, depends on (1), and so does its
gradient. Since in our setup the dynamics (1) are unknown,
for each evaluation of ∇JL(Ht−1, s

i
0, {p

j
`}L`=0, {dk` }L−1`=0)

we replace (1) with a local linear model that approximates
the behaviour of the system in a neighborhood of the initial
point si0, as in [20]. We indicate the gradient computed using
the local linear model as ∇ĴL(Ht−1, s

i
0, {p

j
`}L`=0, {dk` }L−1`=0).

III. OPTIMAL POLICY SEARCH ALGORITHM

In this section we generalize the optimal policy search
algorithm introduced in [20] to nonlinear policies. This
algorithm employs mini-batch SGD iterations to attempt
solving (7), given the initial value H−1 of the parameters.

We consider two possible settings: an offline setting, in
which πH is synthesized from open-loop data previously
collected from the plant, and an online setting, in which
new data are collected from the plant during the iterative
policy synthesis, and employed in further SGD iterations.
In both settings, the t-th iteration requires one to approxi-
mate the gradients {∇JL(Ht−1, s

i
0, {p

j
`}L`=0, {dk` }L−1`=0)}i,j,k.

4962

Being JL dependent on the unknown dynamics (1), a set
of local linear models {Θi}i, each of them fitted in a
neighborhood of the associated sampled initial state si0, is
employed. This local linear model is obtained recursively,
as described in Section III-A. The sampling procedure of
the mini-batches is summarized in Section III-B and the
gradient approximation and policy update method is detailed
in Section III-C. A summary of the overall proposed method
is given in Algorithm 1.

Algorithm 1 Optimal nonlinear policy search
Input: Initial policy parameterization H−1, number Nlearn

of learning steps.
Online setting: Initial state s0 and exogenous signal p0,
history X = ∅ of P , initial local linear model Θ0

Offline setting: state trajectory XN = {x0, .., xN−1} and
associated local linear models Θ = {Θ0, ..,ΘN−1}

Output: Policy parameter vector HSGD.

1: for t = 0, . . . , Nlearn − 1 do
2: online setting: build xt as in (11)

X ← X ∪ {xt};
ut ← πHt(st, pt);
apply ut to the plant;
collect yt+1;
Update Θt+1 from Θt (see Sec. III-A)
Θ← Θ ∪ {Θt+1};

3: for h = 1, 2, ..., Nb do
4: sample wh = (si0, {p

j
`}L`=0, {dk` }L−1`=0) ;

5: retrieve model coefficients Θi associated with si0;
6: calculate ∇H ĴL(Ht−1, wh);
7: end for
8:

D(Ht−1)← 1

Nb

Nb∑
h=0

∇H ĴL(Ht−1, wh); (8)

9: Policy update:

Ht = Ht−1 − αtD(Ht−1); (9)

10: online setting: build st+1 and measure pt+1;
11: end for
12: HSGD ← HNlearn−1;
13: end.

A. Local model

To evaluate the gradient ∇H ĴL in (8) without knowing
the dynamics (1), we use the local linear model

yt+1 = Θt+1

[
xt
ut

]
+ dt (10)

where

xt = [y′t . . . y
′
t−no+1 u

′
t−1 . . . u′t−ni+1]′, (11)

and Θt ∈ Rny×(nx+nu) is estimated recursively, nx =
nony+(ni−1)nu. We use Kalman filtering (KF) for updating
Θt, assuming that Θt+1 = Θt+ξt where ξt is Gaussian white
noise with covariance Qk and dt in (10) is a Gaussian white
noise with covariance matrix Rk.

B. Sampling procedure

At time instant t, the iterative optimization pro-
cedure starts with sampling a mini-batch {wh =
(si0, {p

j
`}L`=0, {dk` }L−1`=0)}Nb

h=1 of initial states, exogenous sig-
nals, and disturbances. We adopt the sampling procedure
suggested in [20], summarized next.

We first sample the initial state si0: this vector is composed
by a vector xi0 representing the initial state of the plant P ,
and possibly by additional states that one wants to include
in the control policy, denoted by vector zi0. The state history
of P is collected in the set X . In the online setting at time
instant t, the history X is the set of all the states xt visited
by the plant up to t. In the offline setting, instead, X contains
N states obtained from a previous open-loop data collection
session.

To obtain the values si0, we sample a set of N0 states from
the history X and perturb them by a (small) random noise
vn from a given set V to explore the neighborhood of the
trajectory collected in X . Combining it with Nz realizations
zm0 of the chosen additional states, randomly sampled from
a given set Z, we form a set of Ns = N0Nz initial states

si0 = sn,m0 =

[
xn0 + vn
zm0

]
, (12)

for n = 1, . . . , N0 and m = 1, . . . , Nz .
The exogenous signals {pj`}L`=0 are randomly generated

from [pmin, pmax]L+1 for j = 1, . . . , Np. Analogously, the
disturbance trajectories {dk` }L−1`=0 are randomly generated for
k = 1, . . . , Nd, from a given interval [−dmax, dmax]L. All
the possible combinations of the sampled states, exogenous
signals, and disturbances are built; each of them becomes
an element wh = wi,j,k = (si0, {p

j
`}L`=0, {dk` }L−1`=0) of the

mini-batch of cardinality Nb = NsNpNd.

C. Policy update and online implementation

The direction used to update Ht at step t is given
by (8). To evaluate ∇H ĴL(Ht−1, wh), the local model
Θi associated with the initial state si0 specified in wh =
(si0, {p

j
`}L`=0, {dk` }L−1`=0) for each h is used. The policy update

performed by the mini-batch SGD algorithm with learning
rate αt using direction (8) is given by (9).

In the online setting, the current policy is also applied
to P by setting ut = πHt(st, pt). Alternatively, a safer
but possibly suboptimal policy πb (called behavioral policy)
could be employed to drive the system for data collection,
while πHt

is optimized (see [23], [24]).

IV. OPS FOR OUTPUT TRACKING

In Section III, the optimal policy search algorithm has
been described in its most general form. To illustrate its
performance, we apply it to an output-tracking task. To learn
a nonlinear policy that makes the output yt of the plant
P track a reference signal rt from input/output data, we
consider st = [x′t, q′t]′, pt = rt, where the state st
is composed by xt as in (11) and by the integral term qt,

4963

Algorithm 2 Input selection during online learning with
assisted control of the plant

1: on-policy(t)← False;
2: if t > T2
3: on-policy(t)← True;
4: else
5: if t ≥ T1
6: if rem(t,M) = 0
7: uH ← πHt(st, rt);
8: ypred = Θt [xt

uH
];

9: err = ‖ypred − rt‖∞;
10: if err ≤ ε
11: on-policy(t)← True;
12: else
13: on-policy(t)← on-policy(t− 1)
14: if on-policy(t)
15: ut ← πHt

(st, rt);
16: else
17: ut ← πb(st, rt);

qt = qt−1 + (yt − rt). To achieve the output-tracking task
we consider the following stage cost and terminal cost

ρ(st, rt, ut) = ‖yt − rt‖2Qy
+‖∆ut‖2R, (13a)

ρL(sL, rL) = ‖yL − rL‖2Qy
, (13b)

where yt is a component of xt, and therefore of st, and
∆ut = ut − ut−1 is the input increment. Here we assume
ni ≥ 2, so ut−1 is contained in xt, as defined in (11), and
in st. In case ni = 1, it is nonetheless possible to add ut−1
as additional state in st. For offset-free tracking of constant
set-points in steady-state we add the penalty ‖qt‖2Qq

in (13).
By treating the reference as an exogenous signal, the Np
reference trajectories {rj`}

L−1
`=0 are sampled such that rj` =

rj , with rj randomly taken from the interval [rmin, rmax] of
references of interest.

The online implementation of the optimal policy search
algorithm can benefit from the use of a behavioral policy πb,
as expressed by the steps summarized in Algorithm 2, that
substitutes the computation of ut in Step 2 of Algorithm 1. In
Algorithm 2, πb is used in a first phase of off-policy learning,
for t ∈ {0, . . . , T1 − 1}, to generate the input to the plant,
to track the reference rt, and to collect input/output data
for the ongoing optimization of Ht. After T1 steps, online
learning with assisted control of the plant is performed, for
t ∈ {T1, . . . , T2}: every M ≥ 1 steps, the input ut =
πHt

(st, rt) is generated from the current policy πHt
. Then,

the result of applying ut to the plant is predicted using
the last updated local model Θt. If the predicted output is
sufficiently close to the desired set-point value rt, we assign
the control of the plant for the next M iterations to πHt

while
it is being optimized. Otherwise the task is performed by the
behavioral policy πb for M steps. After T2 steps, learning
is performed completely in on-policy setting, the policy πHt

being employed at every successive iteration.

Fig. 1. Neural network architecture. In our case Ni = 9, N1 = 10 and
the activation function σ is the swish function

V. NUMERICAL RESULTS

We consider the classical Continuous Stirred Tank Reactor
(CSTR) benchmark problem [25]. We denote as CA and T
the concentration of reactant A and the temperature inside
the tank, respectively. The signal Tc is the temperature of
the cooling jacket. The signals are discretized with sampling
time Ts = 6 s. The control objective is to optimally make CtA
track a desired set point rt by manipulating the temperature
T tc of the cooling jacket. Our goal is to satisfy the control
objective by learning and employing a nonlinear control
policy, synthesized as described in Section III, treating the
plant as a “black box”, producing input/output data. The
nonlinear parameterization of the control policy is ut =
ut−1 + N (st, rt), where N is a neural network with two
fully connected layers generating ∆ut. The first layer has
Ni = 9 neurons with nonlinear differentiable swish activa-
tion function σ(x) = x

1+e−x , the second layer is linear with
N1 = 10 neurons. The neural network used in this example
is described in Figure 1.

The RMSProp algorithm [26], a fast version of SGD,
is used for the learning, with β1 = 0.9 and a decreasing
sequence of learning rates. We consider the scaled signals

yCt =
C̄tA − cm
cM − cm

, yTt =
T̄t − tm
tM − tm

, ut =
T tc − um
uM − um

,

as input/output data, where [cm, cM] = [0, 10], [tm, tM] =
[300, 400], [um, uM] = [240, 360]. The quantities C̄tA and
T̄t represent the noisy measurements of CtA and Tt, consider-
ing a Gaussian white noise with standard deviation 0.01 units
for both signals. The stage-cost (13) is used, with weights

Qy =

[
1 0
0 0

]
, R = 0.1, Qq =

[
0.009 0

0 0

]
.

Model (10) is taken as a local linear model, without consid-
ering the disturbance (dt = 0).

A. Offline learning

The algorithm is run in offline mode on a dataset of
N = 29990 samples, for Nlearn = 10000 iterations. Table I

4964

Ct
A

Time t

Fig. 2. Tracking task performed in validation by the nonlinear neural policy
(black line) and the linear policy (blue line) on a piecewise constant task
expressed by the reference signal rt (red dashed line).

TABLE I
POLICY SEARCH OFFLINE PARAMETERS

ny nu ni no Qk Rk L
2 1 2 3 I 0.1 10

N0 Np Nz rmin rmax Z V
50 20 20 1.5 9.5 [0, 10] [0, 0.1]

contains the policy search parameters used in this example.
Using the same dataset, parameters, and number of iter-

ations, we train a linear policy πK(st, rt) = Ksst + Krrt
using the Adam algorithm [27], another fast version of SGD,
with β1 = 0.9, β2 = 0.999 and α = 0.001.

Both the nonlinear and the linear controller learning proce-
dures are performed starting from random initial parameters
H−1 and (K−1s ,K−1r), sampled from a Gaussian random
variable with zero mean and standard deviation 0.0001. The
closed-loop performance of the resulting policies Hlearn and
(Ks,Kr) is compared in validation, while performing a
piecewise tracking task of Nvalid = 3000 steps. The results
are shown in Figure 2. Considering the sum of the stage
costs ρ(st, rt, ut) defined as in (13) over Nvalid steps as
performance index, the cost obtained using the linear policy
is 4.319 while, using the neural network is 0.647. As it
is visible from the plots and the costs, the neural network
is more efficient than the linear parameterization in dealing
with the nonlinearity of the plant.

B. Online learning

We use now the parameters Hlearn learnt offline to warm-
start a new learning phase of Nlearn = 15000 steps, in
which the optimization of the neural network obtained of-
fline is refined online, while controlling the plant, i.e., we
take H−1 = Hlearn. In this case we sample the initial
values qi0 ∼ N (0, σ2

q) of the integral action as well as
the perturbations on the states vn ∼ N (0, σ2

x). Table II
contains the parameters tuned for the online learning. The
procedure described in Algorithm 2 is followed to control
the plant online and collect new data, using M = 10

TABLE II
POLICY SEARCH ONLINE PARAMETERS

ny nu ni no Qk Rk L
2 1 2 3 I 0.1 10

N0 Np Nz rmin rmax σq σx
32 20 1 4 9.5 5 0.01

TABLE III
ONLINE LEARNING, PERFORMANCE INDEX

cost 0 ≤ t ≤ T2 cost T2 < t ≤ Nlearn

πHt 47.768 34.359
πb 23.922 60.033

and ε = 0.3. The policy trained offline is employed as
behavioral policy, i.e., πb = πHlearn

. The tracking of a
reference signal rt is performed at time-instant t by the
current policy πHt

, with the assistance of the behavioral
policy for the first 5000 iterations, and independently for
the remaining steps (T1 = 0, T2 = 5000). The top plot
of Figure 3 shows the reference rt and the concentration
values obtained by controlling the plant with the described
algorithm. The gradual improvement of πHt in tracking is
visible throughout the online learning, as well as the final
improvement with respect to the performance obtained by
using πb = πHlearn

on the same tracking task, presented in
the bottom plot. The costs of the online task are shown in
Table III. The first column contains the cost cumulated during
steps 0 ≤ t ≤ T2, corresponding to the assisted control
phase for πHt

, while the second column shows the cost
corresponding to the remaining steps T2 < t ≤ Nlearn, where
πHt

is applied. In both intervals we consider the sum of the
stage costs ρ(st, rt, ut) defined as in (13) as performance
index. We see that controlling the plant using the assisted
control procedure is more expensive than simply using πb but
it pays off in the sense of learning, permitting one to refine
the initial policy and obtain a sensibly better performance in
the long run.

VI. CONCLUSIONS

We have shown that the proposed optimal policy-search
algorithm is effective for learning nonlinear smooth feedback
control laws from data. Although we have used neural
networks to define the structure of the policy, the approach
is applicable to any other differentiable nonlinear architec-
tures. Thanks to using simple stochastic gradient descent
iterations, the identification of a full nonlinear model of the
process dynamics is avoided, as simple local linear models,
recursively identified with forgetting factor, are enough to
compute the gradients required at every step of the descent.
The reported example shows that the method is able to learn
nontrivial nonlinear policies, such as neural networks, both
in offline and online setting. In the online case the method
permits one to delegate the exploration of the state space to
the reference signal used during the learning phase, making
the design of the experiment required to collect data rela-
tively easy. Moreover, the combination of on-policy and off-
policy learning permits on one hand to base the parameters
optimization on data belonging to the trajectory induced by
the current policy of the agent, and on the other hand to
mitigate the risk of implementing the policy directly on the
plant, particularly during the initial phases of the learning.
Current research is devoted to extending the approach in
several directions, including the extension of the method
to handle constraints, and the study of new frameworks
that can enforce stability and/or safety. Additionally, the

4965

T2

rt, CA controlled by πHt assisted by πb

Ct
A

rt, CA controlled by πb

Ct
A

Time t
Fig. 3. Online tracking task. In both plots the task is expressed by the online reference signal rt (red dashed line). The top plot presents the tracking
performed by the policy πHt with assistance of the behavioral policy πb = πHlearn

, following the scheme proposed in Algorithm 2 (with T1 = 0,
T2 = 5000, M = 10 and ε = 0.3). In the bottom plot, instead, πb = πHlearn

is implemented at every instant on the plant.

training of nonlinear parameterizations in a collaborative
learning framework using the presented approach is under
investigation.

REFERENCES

[1] Z.-S. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, p. 335, 06 2013.

[2] S. Formentin, K. Heusden, and A. Karimi, “A comparison of model-
based and data-driven controller tuning,” International Journal of
Adaptive Control and Signal Processing, vol. 28, 10 2014.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT Press, Cambridge, MA, 1998.

[4] B. Recht, “A Tour of Reinforcement Learning: The View from Contin-
uous Control,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, pp. 253–279, May 2019.

[5] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis,
“Optimal and autonomous control using Reinforcement Learning:
a survey,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 29, pp. 2042–2062, Jun 2018.

[6] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, Belmont, Massachusetts, 1996.

[7] C. J. C. H. Watkins and P. Dyan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[8] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
Journal of Optimal Control, vol. 42, pp. 1143–1166, 2003.

[9] M. P. Desienroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2, no. 1-
2, pp. 1–142, 2011.

[10] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist Reinforcement Learning,” Machine Learning, vol. 8,
pp. 229–256, May 1992.

[11] J. Peters and S. Schaal, “Reinforcement Learning of motor skills with
policy gradients,” Neural Networks, vol. 21, pp. 682–697, May 2008.

[12] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “A brief survey of deep reinforcement learning,” CoRR,
vol. abs/1708.05866, 2017.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing ATARI with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through

deep reinforcement learning,” Nature, vol. 518, pp. 529–533, Feb.
2015.

[15] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” CoRR,
vol. abs/1710.02298, 2017.

[16] T. P. Lillicrap, J. H. Jonathan, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015.

[17] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of
the 31st International Conference on Machine Learning, vol. 32 of
Proceedings of Machine Learning Research, (Bejing, China), pp. 387–
395, 22–24 Jun 2014.

[18] B. O’Donoghue, R. Munos, K. Kavukcuoglu, and V. Mnih,
“PGQ: combining policy gradient and Q-learning,” CoRR,
vol. abs/1611.01626, 2016.

[19] S. S. Gu, T. Lillicrap, R. E. Turner, Z. Ghahramani, B. Schölkopf,
and S. Levine, “Interpolated policy gradient: Merging on-policy and
off-policy gradient estimation for deep reinforcement learning,” in
Advances in Neural Information Processing Systems 30, pp. 3846–
3855, 2017.

[20] L. Ferrarotti and A. Bemporad, “Synthesis of optimal feedback con-
trollers from data via stochastic gradient descent,” in Proceedings of
the 18th European Control Conference (ECC), pp. 2486–2491, June
2019.

[21] L. Ferrarotti and A. Bemporad, “Learning optimal switching feed-
back controllers from data,” in Proceedings of the 21st IFAC World
Congress, 2020, to appear.

[22] H. Robbins and S. Monoro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400–407, 1951.

[23] L. Busoniu, T. de Bruin, D. Toli, J. Kober, and I. Palunko, “Re-
inforcement Learning for Control: performance, stability, and deep
approximators,” Annual Reviews in Control, Oct 2018.

[24] J. Garcı́a and F. Fernández, “A comprehensive survey on Safe Rein-
forcement Learning,” Journal of Machine Learning Research, vol. 16,
no. 42, pp. 1437–1480, 2015.

[25] D. Seborg, T. F. Edgar, and D. A. Mellichamp, Process Dynamics and
Control, 2nd ed. Wiley, 2004.

[26] T. Tieleman and G. Hinton, “Lecture 6.5—RMSProp: Divide the
gradient by a running average of its recent magnitude.” COURSERA:
Neural Networks for Machine Learning, 2012.

[27] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proc. International Conference on Learning Representation,
(San Diego, CA, USA), May 7-9 2015.

4966

