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Abstract— In this paper, we present a direct data-driven ap-
proach to synthesize model reference controllers for constrained
nonlinear dynamical systems. To this aim, we employ a hier-
archical structure composed by a receding-horizon reference
governor and a data-driven low-level controller. Unlike existing
approaches, here we jointly design the two blocks by solving
a single optimization task, exploiting the fact that the inner
controller will never be used alone. The performance of the
proposed method is assessed by means of two simulation exam-
ples, involving the control of two highly nonlinear benchmark
systems.

I. INTRODUCTION

Designing an effective control law without knowing the
physics of the plant has always been a topic of interest
in the control system community. The indirect approach
usually employed in this case is to first identify an open-
loop model of the underlying system via system identifi-
cation procedures [1], validate the learned model, and then
proceed with the design of a model-based controller. While
this strategy is convenient, as it effectively introduces a
decoupling layer between modeling and control design, it
can also cause an undue burden on the system identification
step, since many control techniques do not actually require
a fully-featured model to synthesize an appropriate control
law. Although exceptions exist (see, for instance, [2], [3],
[4] in the context of predictive controllers), this means that
there exists a large misalignment between the target of most
identification techniques, which aim for the best open-loop
simulation accuracy, and the actual requirements of control
design.

This discrepancy has stimulated research into direct data-
driven control techniques [5], [6], that rely on input-output
data to directly synthesize a control law, without first iden-
tifying an open-loop model of the plant. Within this setting,
approaches exist that rely either on the real-time acquisition
of data (like in Reinforcement Learning approaches [7]), or
exploiting in batch mode a previously collected dataset [8].
Among the latter class of approaches, we recall the Virtual
Reference Feedback Tuning (VRFT) method, which has been
applied successfully to control linear and nonlinear dynam-
ical systems [9], [10], [11]. Within the VRFT framework,
the design of the control law is recast into an identification
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problem, where the aim is to reproduce the collected input
sequence via a virtual tracking error specially crafted so
that the attained closed-loop behavior matches the response
of a user-provided reference model. Nonetheless, off-the-
shelf architectures of this kind do not allow taking signal
constraints into account. For this reason, several extensions
have thus been proposed to overcome this limitation. For
instance, in [12] a combined control+antiwindup design
strategy based on artificial neural network is presented;
in [13] a Q-learning approach is used to enhance a baseline
VRFT controller; in [14] a method to deal with constraints
on the sensitivity function is proposed in the context of H∞
control. Nonetheless, to obtain the desired results, all such
methods are no longer one-shot learning procedures as the
VRFT approach and they can deal only with specific kinds
of constraints. A more general approach is presented in [15],
where a reference governor [16] is used on top of a standard
VRFT-based controller to ensure constraints satisfaction and
to boost closed-loop performance. This approach is still a
one-shot data-acquisition procedure, but, at the same time,
it requires a 2 Degrees-Of-Freedom (2 DOF) architecture
that is harder to tune. Furthermore, for the overall scheme
to handle constraints, the VRFT-based controller will never
be used alone, but such a characteristic is not accounted for
in the design phase.

In this work, we overcome these limitations by envisioning
a data-driven receding-horizon control solution that can
guarantee constraints satisfaction. To do so, we resort to ideas
taken from control-oriented system identification, by learning
short-term fixed-horizon models based on Artificial Neural
Networks to obtain a simplified linear time-varying repre-
sentation of the implicit controller. Moreover, we exploit the
fact that the inner controller will be always paired with a
reference governor to avoid the (more complex) search for a
controller that can work alone.

The paper is organized as follows. In Section II we
formally state the problem of learning both the external
receding-horizon reference governor and the inner controller.
Section III is devoted to the presentation of the proposed
controller design approach. Numerical results are reported
in Section IV and some concluding remarks are drawn in
Section V.

II. SETTING AND GOALS

Consider the following discrete-time dynamical system

ΣP =

{
xk+1 = fΣ(xk, uk)
yk = hΣ(xk)

(1)
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with uk ∈ RNU , yk ∈ RNY , and fΣ, hΣ being two unknown
nonlinear functions.

Suppose that a set ZN = {(u1, y1), . . . , (uN , yN )} com-
prising N input/output pairs acquired from ΣP is available.

Our first aim is to exploit the available dataset ZN to
learn a controller Cθ, a-priori parameterized by a vector θ
of parameters, so that the reference-to-output behavior of
the resulting closed-loop system corresponds to the input-
output behavior of a given reference model M. The latter is
described by the possibly nonlinear mapping fM

yMk+1 = fM(yMk , . . . , yMk−M , rk, rk−M ) (2)

with yMk ∈ RNY and rk ∈ RNY . Our second and concurrent
goal is to design an outer loop with a model predictive
reference governor, so to boost performance and handle
signal constraints [16].

To accomplish the first learning task, according to the
VRFT framework let us define as virtual reference the
sequence {r?k}, r?k ∈ RNY , that would reproduce {yk} if fed
to M, namely the minimizer of the optimization problem

{r?k} = arg min
{rk}

N∑
k=M

LR(yMk , yk)

subject to Equation (2)

(3)

where LR : RNY ×RNY → R is an appropriate loss function.
We stress that many approaches have been devised to solve
problem (3), and that explicit exact recursive expressions for
{r?k} have been found for various classes of reference models
M for LR(·, ·) = ‖yMk − yk‖22 , see e.g., [10].

Once {r?k} has been computed, one way to synthesize the
controller Cθ that achieves closed-loop performance closest
to the one of M is to look for the controller that best fits
{uk} when fed by the virtual tracking error e?k , r

?
k − yk:

min
Cθ∈H

N∑
k=M

LC(ûk, uk)

subject to ûk+1 = Cθ(uk, . . . , uk−M , e
?
k+1, . . . , e

?
k−M )

(4)
where LC : RNU × RNU → R is again an appropriate loss
function. The above model-free VRFT technique was first
introduced in [9] in the linear time-invariant setting, and then
successfully employed to design controller for various classes
of nonlinear systems (see e.g., [10]).

Albeit appealing due to its simple nature, solving a one-
step-ahead prediction-error minimization problem like the
one in (4) can be problematic. Indeed, we cannot guarantee
that the resulting control law may be suited to be repeatedly
iterated over time, although accurate over a short horizon.
Various approaches have been devised to overcome this issue,
but they usually result into a tangible increase of the com-
putational complexity of the overall learning scheme [17].
While this is unavoidable if the aim is to synthesize a stand-
alone controller Cθ, we will show here that this is not the
case if our goal is to use Cθ within a reference governor
scheme, like the one of [15].

Indeed, as described in [15], a reference governor for an
already existing VRFT controller consists of solving at each
sampling step k the following optimization problem:

min
Rk

LRG(Yk, Uk, Rk, Ȳ )

subject to Yk = FM(x̄k, Rk)

 Fixed horizon
closed loop
reference dynamics

Uk = C(x̄k, Ek)

{
Fixed horizon VRFT
controller dynamics

Rk = [rk, . . . , rk+T ]′ ∈ R
Uk = [uk, . . . , uk+T ]′ ∈ U
Yk = [yk+1, . . . , yk+T ]′ ∈ Y
Ek = [rk − yk, . . . , rk+T − yk+T ]′

(5)
where Ȳ ∈ RNY T is the reference to be tracked, T is the
chosen prediction horizon, LRG is a suitable loss function,
and x̄k is a feedback information vector, which encompasses
the internal states of both the controller and the underlying
system. By looking at the optimization problem in (5), it
is clear that the performance of the governor is linked to
the prediction capabilities of FM and the capability of C to
make the internal loop behave as closely as possible to FM

itself within the chosen prediction horizon. This means that
if we do not want to use the internal controller alone, we can
directly learn the mapping C from x̄k and Rk to Uk, rather
than solving (4).

Remark 1: Without loss of generality, LRG may also de-
pend on Yk and Uk to further shape the overall characteristics
of the closed loop.

III. DATA-DRIVEN DESIGN OF REFERENCE GOVERNORS

Based on the above intuition, consider the problem of
fitting a fixed horizon VRFT controller like C introduced
in (5). At time k and over the horizon T , the value of the
signals ûk+n, n = 0, . . . , T , are only a function of the virtual
tracking error e?k, . . . , e

?
k+n and the initial state xk, i.e., there

exists a set of maps fn so that

ûk+n = fn(xk, e
?
k, . . . , e

?
k+n) for n = 0, . . . , T (6)

for each T ∈ N. Without loss of generality, we can set
xk = [uk−1, . . . , uk−M , e

?
k−1, . . . , e

?
k−M+1] and define the

map HT : RNx×NY (T+1) → RNU (T+1) compactly as

ÛT ,

 ûk
...

ûk+T

 = HT (xk, E
T
k ) (7)

where ETk , [e?k, . . . , e
?
k+T ]′.

Compared to learning a recursive law Cθ as in (4),
retrieving HT in (7) from data is more convenient as (i)
it completely circumvents the problem of using a fitting
procedure able to minimize the simulation error of Cθ, and
(ii) it allows us to resort to standard prediction error ap-
proaches. However, this kind of map is still quite problematic
for the additional design of a reference governor, due to its
nonlinear behavior with respect to the decision variable Ek.
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A first solution to overcome this issue would be to resort
to nonlinear optimal control schemes, but this would be
computationally expensive as it would require the evaluation
of the Jacobian of the involved map at least once for each
step k.

Nonetheless, in a large number of applications the expres-
siveness of nonlinear schemes like the one in (7) may as well
be not necessary, especially when one aims at obtaining ac-
curate controllers for short-term predictions only. To exploit
this fact, we fit a map in which the predicted control action
is nonlinearly dependent only on the information vector xk
(that comes from feedback), and possibly on some reference
trajectory ĒTk = [ēk, . . . , ēk+T ]

′ (which will likewise not be
a decision variable), whereas it is linearly dependent on the
control variables ∆ETk

.
= ETk − ĒTk . This is equivalent to fit

a partial first-order Taylor approximation of the map in (7).
Indeed, by assuming HT to be at least C1 in the neigh-

borhood of a given trajectory, it holds that

HT (xk, ek, . . . , ek+T ) ≈ HT (x̄k, ēk, . . . , ēk+T )+

∂HT

∂xk
(x̄k, ēk, . . . , ēk+T )∆xk+

T∑
j=0

∂HT

∂ek+j
(x̄k, ēk, . . . , ēk+T )∆ek+j .

(8)

Since identifying ∂HT
∂xk

∆xk is not necessary as xk is not
a decision variable for the governor, our goal becomes to
design a controller by fitting a predictor of the form

ÛT = GT (xk, Ē
T
k ) + FT (xk, Ē

T
k )∆ETk . (9)

The above architecture mandates the introduction of Ēk.
A possible approach to bypass this requirement is to exploit
the fact that holding an explicit relationship to a time-
dependent reference trajectory can still be more expressive
then necessary in short-term predictions [18]. In this light,
one can remove the dependence on Ēk from (9) by assuming
Ēk = 0, so as to obtain a controller parameterized as a
predictor of the form:

ÛT = GT (xk) + FT (xk)ETk . (10)

While the affine form in (10) is quite convenient also from
a computational point of view, it severely limits the expres-
siveness of the predictor as a whole, which is particularly
concerning as this architecture cannot be used to represent
any nonlinear input characteristic that is dependent on the
input itself.

To overcome this issue, we drop the dependency from ĒT
only in GT , while maintaining it in FT . This allows us to
choose the real input sequence ETk as reference trajectory
and to set ĒTk = ETk , following the rationale of classical
linearization-based control, according to which the most
accurate linearization point is the one corresponding to the
then-applied input trajectory. Once the resulting controller is
deployed, the quantity Ēk is instead chosen as the shifted
optimal sequence computed at the previous time step. This
finally results in trying to learn a controller of the form

ÛT = GT (xk) + FT (xk, E
T
k )ETk (11)

which is still an approximation of a first-order Taylor ex-
pansion of HT , but it does not require the design of Ēk.
At the same time, this structure is sensibly more expressive
than the one in (10) as it can better represents systems with
non-affine input characteristics.

We point out that, compared to a standard sensitivity-based
approach, evaluating FT (xk, E

T
k ) comes at no additional

cost, making the computational requirements of the resulting
controller comparable to a classical Linear Time Varying
(LTV) solution.

Under the assumption that a data-driven controller de-
signed to match the reference model M is feasible for ΣP ,
then in closed loop it holds that yMk+1 ≈ yk+1. This also
means that ek+i ≈ eMk+i = rk+i − yMk+i. This approximation
can be exploited to design the external reference governor.

Suppose that a fixed term predictor (11) has been trained
to reproduce uk and that the reference model fM can be ex-
panded into the same predictive form considered previously,
namely

ŶM =

 yMk+1
...

yMk+T+1

 = GM(xMk ) + FMT (xMk , R̄Tk )RTk

(12)
with

RTk = [rk, . . . , rk+T ]′,

xMk = [rk−1, . . . , rk−M+1, y
M
k , . . . , yMk−M+1]

for some choice of R̄Tk . Then, the data-driven reference
governor can be parameterized at each control step by
solving

min
RTk

LRG(ŶM, UT , R
T
k , Ȳ )

subject to ŶM = GM(xMk ) + FMT (xMk , R̄Tk )RTk
UT = GT (xk) + FT (xk, Ē

T
k )ETk

ETk = [rk − yk, rk+1 − yMk+1, . . . ,
rk+T − yMk+T ]′

ĒTk = [r̄k − yk, r̄k+1 − ȳMk+1, . . . ,
r̄k+T − ȳMk+T ]′

UT ∈ X , ŶM ∈ Y.
(13)

where ȲM = GM(xMk ) + FMT (xMk , R̄Tk )R̄Tk is the output
of the reference model computed for R̄Tk .

If X ,Y are polytopes and LRG is either linear or quadratic,
Problem (13) can be then reliably solved within real-time
constraints [19], [20]. Note that, compared to the initial
design problem in Equation (5), we have now separated x̄k
into two distinct quantities, namely the information coming
from feedback xk and xMk , which depend on the reference
model that approximately represents the inner closed-loop.
We further highlight that while the fixed horizon predictor
for ÛT algebraically depends on rk, the predictions ŶM are
obtained by using a strictly proper law. Indeed, we cannot
expect the closed-loop system to be “delay-free” and, at the
same time, we want to exploit the most recent feedback
information to compute the current control action. This also
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Fig. 1: Illustrative scheme of the empolyed ANN structure,
adapted from [21].

ensures that the controller is not subject to mismatches, at
least on the first step of the prediction horizon.

Remark 2: The presented architecture does not include an
integral action and it is naturally prone to experience offset
when tracking constant references. From a practical point
of view, this offset can be seen as a constant disturbance
q ∈ RNy that affects the output of the system. A way to
overcome this issue would then be to recursively estimate
the magnitude of such a disturbance and compensate the
reference model accordingly. Indeed, for a classical single-
output case, a recursive estimator for q can be designed as

q̂k = q̂k−1 − α(ŷMk − yk), (14)

where ŷMk is the predicted evolution of the closed-loop
system at time k− 1, yk is the feedback information at time
k and α ∈ R. The estimate q̂k can then be integrated in a
reference governor scheme, which will now aim to solve

min
RTk

LRG(ŶM, UT , R
T
k , Ȳ )

subject to ŶM = GM(xMk ) + FMT (xMk , R̄Tk )RTk + q̂k1
as in Equation (13)

(15)
where 1 ∈ RT = [1, . . . , 1]′. Similar correction will likewise
be applied to ȲM. �

A. ANNs for controller parameterization

As already noted in [21], directly fitting a set of discrete
maps like the ones in Equations (6) can be quite an inefficient
process, since no information from the predictions of the
earlier terms along the horizon is necessarily re-used to
predict the later ones. At best, this would make the training
procedure more difficult to carry out. More likely, it will
require the use of more powerful regression techniques to
achieve the desired fitting performance, especially if we
use approximators like Artificial Neural Networks (ANNs),
that naturally benefit from the stacking of nonlinear lay-
ers/components.

A possible way to leverage the knowledge obtained from
the approximators employed in shorter-term predictions is to
use their outputs ûk as additional input for the regressor

involved in the prediction of uk+n, n = 1, . . . , T . In
particular, when training the controller within our two-degree
of freedom structure, we obtain

ûk+n = fn(xk) + gn(xk, Ē
n
k )

[
Enk

ûk+n−1

]
= f̃n(xk) + g̃n(xk, Ē

n
k )Enk

(16)

for some choice of Ēnk . This process can be repeated all
over the horizon and might also include, when applicable,
additional terms other than the one immediately preceding
the n-th term. We stress that the number of past linear terms
is a hyper-parameter of the approach, that can be tuned
to trade-off between the accuracy of the predictor and the
sparsity pattern of the resulting constraint structure.

The problem of learning in parallel a set of maps like (11)
can be then recast into solving the following optimization
problem:

min
f0, . . . , fT

g0, . . . , gT

N−T∑
k=M

Ltrain(Ôk, Ok)

subject to
(17)

Ôk =

 ûk
...

ûk+T

Ok =

 uk
...

uk+T


ûk = f0(xk) + g0(xk, ēk)e?k
ûk+i = fi(xk)+

gi

xk,


ēk
...

ēk+i

ûk+i−1





e?k
...

e?k+i

ûk+i−1


for i = 1, . . . , T

where Ltrain : R((T+1)×NU )×((T+1)×NU ) → R is a suitable
loss function. In this work we select Ltrain as the Mean
Absolute Error (MAE) [22].

The peculiar structure of the considered training problem
restricts the pool of the functional approximators that can
be used to represent the maps fi and gi. Instead of de-
veloping application-specific solutions, here we exploit the
nature of ANNs as directed acyclic computational graphs
to build the structure of the constraints in (17) into the
topology of the network itself. Choosing neural networks
is also convenient due their flexibility to be trained with
any differentiable loss function, their theoretical universal
approximation power [23], and the availability of well main-
tained frameworks [24] that can aid the design. This approach
also allows us to reduce the whole learning procedure to a
standard regression problem, while retaining the capability
to easily access the outputs of fi, gi as intermediate results
of the single sub-components of the network, whose overall
scheme is reported in Figure 1.

We stress that the topology of the involved ANNs closely
follows the structure highlighted in (16). In particular, all
the components fi are grouped in a single discrete sub-
network, while each gi is a standalone object. In this work

4958



we restrict our analysis to a densely connected feed-forward
topology for each subnetwork, meaning that each sub-ANN
is comprised by a stack of nonlinear hidden layers connected
to a final linear output layer with appropriate output shape.

IV. SIMULATION CASE STUDIES

In this section, we present the preliminary results obtained
by employing the proposed technique on two nonlinear
benchmarks, i.e., a discrete-time approximation of the well-
known nonlinear two-tanks system1

Σtank =



x1,k+1 = x1,k − k1
√
x1,k + k2vk

x2,k+1 = x2,k + k3
√
x1,k − k4

√
x2,k

vk =

 1.5 if uk ≥ 1.0
−0.5 if uk ≤ −1.0

uk + 0.5 otherwise
yk = x2,k

(18)

where xi,t denotes the i-th component of xt ∈ R2 and
k1 = 0.5, k2 = 0.4, k3 = 0.2, k4 = 0.3, and the following
Hammerstein-Wiener model

ΣHW =



xk+1 =

[
0.7555 0.25
−0.1991 0

]
xk+[

−0.5
0

]
vk

vk =


1 if uk ≥ 1.0
−1 if uk ≤ −1.0

sign(uk)
√
|uk| otherwise

wk = [0.6993 − 0.4427]xk
yk = wk + 5 sin(wk)

(19)
Note that both models exhibit a saturation-like nonlinearity
on the input.

As reference model M for Σtank we considered the
following Linear Time-Invariant (LTI) model

Mtank(z) =
0.4z−2

1− 0.6z−1

where z−1 is the delay operator. For ΣHW we instead use
the reference model

MHW(z) =
0.65z−1

1− 0.35z−1
.

We stress that both the reference models are linear so
that in closing the loop we aim at compensating the plant
nonlinearity, while fully exploiting its operating regime. We
remark that the reference model is a hyper-parameter of the
VRFT framework and its optimal choice is linked to the
nature of the target process. We refer the interested reader
to [2], [25] for further reading on the topic.

For both these benchmark systems, we collected a training
dataset ZN of 20000 samples, generated by exciting the
system with a sequence of variable-amplitude step signals
of period 7 steps, with amplitudes drawn from a Gaussian
distribution with zero mean and standard deviation σ = 1
and then clipped to be within the interval [−1, 1]. After the
experiment, the output signal was empirically normalized

1Possible tank overflows are here neglected.
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Fig. 2: Closed-loop performance (Σtank).
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Fig. 3: Closed-loop performance (ΣHW).

using the empirical mean and standard deviation computed
from the dataset, before being used for training. After the
normalization, all the signals were superimposed with a
Gaussian white noise drawn from a distribution with zero
mean and standard deviation σw = 0.02.

With these data, we trained a fixed-horizon predictor with
T = 6, in which every sub-network is composed of 4
Rectified Linear Units (ReLU) [26] hidden layers with 20
neurons followed by a final linear output layer. The state
size was set to M = 7. The implementation was carried out
using Keras [27]. A Lasso [28] penalization was also added
to all neurons to regularize the resulting models.

The reference governor was tuned by setting

LRG = ‖ŶM − Ȳ ‖22
and by imposing a constraint on the input, namely that |uk| ≤
1, ∀k.

The reference trajectory at time k is set by shifting the
optimal sequence computed at the previous step k − 1. We
also assumed that a preview of the future references was
available and further embedded in our structure, together
with the recursive disturbance compensator in (14), with gain
α set to 0.1.
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Figure 2 shows the closed-loop performance obtained on
Σtank by the proposed approach when tracking a square
wave superimposed with a sine-sweep reference signal. We
can see how the proposed approach, while not being that
effective during the initial steps of the transient, is well
equipped to properly track also high-frequency reference
signals. Similar considerations can be drawn for the closed-
loop performance associated to the system ΣHW shown in
Figure 3. We can see how the proposed approach achieves
satisfactory performance, showing good capabilities to deal
with the strong nonlinearity of the input characteristic of
the system when uk crosses 0. In both Figures 2 and 3
we also appreciate how the disturbance observer does not
cause any windup issue, that would severely affect closed-
loop performance.

Remark 3 (Computational insights): As a whole, the em-
ployed predictor has ≈ 104 parameters. The training proce-
dure was carried out in a few minutes using an Intel Core
i5-6200U CPU laptop with 16GB of RAM. The controller,
which relied on a general-purpose solver [29], required
around 10−2 seconds to compute the control action at each
time step. Considering the general-purpose nature of the
employed libraries, computational requirements can probably
be significantly reduced by using more specialized solvers,
such as the one in [30], and performance-oriented learning
frameworks. �

V. CONCLUSIONS

We presented a novel approach to directly synthesize
nonlinear constrained controllers within the model-reference
framework. To this end, we exploited a hierarchical structure,
with a model-reference inner controller paired with an ex-
ternal reference governor. In designing the neural reference
governor, we exploit results from control-oriented system
identification to directly learn short-term fixed horizon ANN-
based predictors of the virtual internal control law from
data. The resulting scheme has shown good performance
on two nonlinear benchmarks, ensuring good closed-loop
reference tracking performance, and suggesting that it can
be competitive with more traditional control design scheme.

These results, albeit preliminary, jointly with the modest
computational resources required by the approach, suggest
its possible use in embedded fast-sampling applications,
which will be the focus of future works together with an
in detail comparison with control-aware system-identification
and constrained data-driven control schemes.
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