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Abstract— One major issue in industrial control applications
is how to handle input constraints due to physical limitations of
the actuators. Such constraints introduce nonlinearities in the
feedback loop, that are commonly tackled through anti-windup
or model predictive control schemes. Since these techniques
might result into poor closed-loop performance when an accu-
rate model of the plant is not available, in this work we present
an off-line strategy to learn a neural anti-windup control
scheme (NAW-NET) from a set of open-loop data collected
from an unknown nonlinear process. The proposed scheme, that
includes a feedback controller and an anti-windup compensator,
is trained to reproduce the desired closed-loop behavior while
simultaneously accounting for actuator limits. The effectiveness
of the approach is illustrated on a simulation example, involving
the control of a Hammerstein-Wiener process with saturated
inputs.

I. INTRODUCTION

Due to the increasing complexity of control systems and
thanks to the ever-growing availability of large sets of data,
classical control techniques are now commonly paired with
data-driven strategies to either compute/update a model of
the plant to be controlled or to directly tune the parameters
of the controller. Indeed, several System Identification (SI)
techniques have been proposed over the years to learn
approximate laws that describe the behavior of otherwise
unknown processes [1]. However, these approaches usually
aim at obtaining models that achieve the best open-loop
simulation accuracy, while control techniques can attain
satisfactory performance even with a crude approximation
of the real plant dynamics. This creates quite a large dis-
crepancy between the target of most identification techniques
and the actual requirements of control design problems,
often creating an undue burden during the modeling phase.
Moreover, the quest for models minimizing the simulation
error usually results in large-dimensional models, which
in turn requires the use of model-reduction techniques for
model-based control synthesis.

As an alternative to the classical two-stage design
paradigm, where a model of the plant is first identified
and then a model-based controller is designed, direct data-
driven control strategies have been proposed. In this case,
data collected from the plant are directly used to synthesize
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a controller, without the involvement of an explicit model
of the system. These methods range from data-driven op-
timal control approaches such as Reinforcement Learning
(RL) [2]–[5] to schemes exploiting the model reference
paradigm, such as the Virtual Reference Feedback Tuning
(VRFT) approach [6], [7]. The latter approaches have the
advantage of being one-shot techniques, in that they do not
require additional data to refine the control law, although
they provide little to no flexibility to ease the integration of
constraint handling methods. Since in practice the authority
of actuators is always limited, the use of these techniques in
industrial applications is restricted to cases in which these
components operate far from their operational bounds. On
the other hand, one should account for such limits when
high control performance is sought.

Traditionally, input saturations are managed either by us-
ing predictive control strategies [8] or by pairing a controller
with an anti-windup compensator, which aims at preserving
performance within actuator bounds and at guaranteeing the
asymptotic recovery of unconstrained behavior after satura-
tion occurs [9]–[11]. As an alternative to classical model-
based strategies, some attempts have been recently made
to incorporate constraint-handling methods within the data-
driven control framework. For example, in [12] a reference
governor is used on top of a direct data-driven controller
for Linear Parameter Varying (LPV) systems [13] to impose
constraint satisfaction. Despite its effectiveness, the above
approach involves distinct design phases, so that one has to
renounce to the advantages of a one-shot learning procedure.
This limitation is overcome in [14], where the reference
governor and a data-driven controller are jointly designed.
However, both approaches still require the solution an opti-
mization problem in real-time for each control step.

Inspired by anti-windup architectures, in this work we
propose a one-shot learning scheme to design a Neural
NETwork for Anti-Windup control (NAW-NET) directly from
data. Although preliminary, the proposed approach already
allows us to retrieve both a controller and an anti-windup
compensator for an unknown nonlinear plant from a set
of input/output data, that can handle actuator constraints
effectively. The learning procedure is fully carried out off-
line. Due to the nonlinear nature of the plant to be con-
trolled, we parameterize the controller and the compensator
through two different Artificial Neural Networks (ANNs),
due to their flexibility and excellent function approximation
properties [15].

The paper is organized as follows. Section II formally
states the control problem of interest. Section III is devoted
to the formulation of the NAW-NET learning task, with
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the structure proposed in this paper for the controller and
the anti-windup compensator are described in Section III-
A. A strategy to handle non-informative data is proposed in
Section III-C. Simulation results are shown in Section IV,
while conclusions and possible directions for future work
are discussed in Section V.

II. SETTING AND GOAL

Let P be a discrete-time nonlinear Single-Input Single-
Output (SISO) plant, whose dynamics is

P :

{
xk+1 = f(xk, uk),

yok = h(xk),
(1)

where uk ∈ R, xk ∈ Rnx and yok ∈ R are the commanded
input, the state and the noiseless output of the plant at the
instant k ∈ N, respectively, and f : Rnx × R → Rnx ,
h : Rnx → R are unknown maps in the input and the state
of P . Suppose that the system is Bounded-Input Bounded-
Output (BIBO) stable and that the actuator has a limited
range, so that the actual input received by the plant is

ũk = g(uk) =


u if uk < u,

uk if uk ∈ [u, ū],

ū if uk > ū,

(2)

with u, ū ∈ R being the known limits of the actuator.
Accordingly, the dynamics (1) can be recast as

P :

{
xk+1 = f̃(xk, ũk),

yok = h(xk).
(3)

where f̃(x, u) = f(x, g(u)). Since no prior knowledge is
available on P , other than the actuator bounds, and output
sensors are noisy, we assume that open-loop experiments are
carried out by feeding a sequence of inputs uk to the plant
and record

yk = yok + vk

for k = 1, . . . , N , where vk ∈ R is measurement noise.
Given the open-loop data collection ZN = {uk, yk}Nk=1,
our aim is to design a nonlinear feedback controller Cθ
belonging to a pre-defined class Cθ so that: (i) some de-
sired reference-to-output tracking performance is attained,
if allowed by the control authority limitations; (ii) a safe
behavior of the controlled system is ensured even if the
actuator saturates. Throughout the rest of the paper, we
focus on an input-output parametrization Cθ of the controller,
described as

Cθ : νk+1 = Cθ(νk, . . . , νk−Q, ek+1, . . . , ek−Q), (4)

where ek = rk−yk is the tracking error attained at time k and
Q > 0 is the order of the controller, which is fixed a priori
by the designer. Following the direct data-driven control
philosophy, we design the controller without identifying a
model of P first. As a design specification, we consider a
model reference architecture, so that the desired closed-loop
performance is characterized through an a priori selected

Cθ

Hϕ

P
rk + ek νk +

ak

-
uk ũk yk

-

Fig. 1. The proposed direct data-driven anti-windup control scheme.

reference model M. Namely, given the set point rk ∈ R,
the output we aim at attaining in closed-loop is described as

M : yMk+1 = fM(yMk , . . . , yMk−M , rk, . . . , rk−M ), (5)

where M > 0 is the order of the closed-loop reference
modelM. To use the additional knowledge on the saturation
bound, we further resort to a control architecture inspired by
standard anti-windup schemes [9]. Accordingly, we introduce
an anti-windup block Hϕ ∈ Hϕ that embeds the known
saturation, defined as

Hϕ : ak+1 =Hϕ(νk+1, νk, . . . , νk−H , ek+1, . . . , ek−H),
(6)

whose output is subtracted to the one generated by the
controller Cθ, so that the overall control architecture can be
represented as in Figure 1.

In this work, without loss of generality, we assume that
both the controller Cθ and the anti-windup compensator are
parameterized via two distinct Artificial Neural Networks
(ANNs) and that they share the same order H = Q. We stress
that the knowledge of the saturation is embedded within
the chosen parametrization of Cθ and Hϕ, as explained in
Section III-A.

Remark 1: To guarantee a clear distinction between Cθ
and Hϕ, one can slightly modify the structure of the com-
pensator as follows:

H̃ϕ : ak+1 =Hϕ(νk+1, νk, . . . , νk−H),

so that the anti-windup action depends only on the collection
of corrected and past outputs of Cθ. This leads to a structure
more similar to the one adopted in standard anti-windup
schemes [9]. On the other hand, it reduces the generality
in the structure of the compensator. �

III. NAW-NETS: TRAINING AND PRACTICAL HINTS

To avoid modeling the plant P , we rely only on the open-
loop dataset ZN and exploit the rationale of the Virtual
Reference approach, originally described in [6]. Therefore,
we construct a virtual closed-loop using the open-loop data
collection, such that the reference-to-output relationship is
exactly M, as shown in Figure 2.

Starting from the available input and output measurements,
we compute what would have been the virtual reference r̃k
and the virtual error signal ẽk = r̃k − yk of such a fictitious
closed-loop, by noticing that the former corresponds to the
signal that would produce the measured output yk when
feeding the reference model M, i.e.,

yk+1 = fM(yk, . . . , yk−M , r̃k, . . . , r̃k−M ).
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Fig. 2. The Virtual Reference rationale of [6] used within our setting.
The thick line denotes the real plant on which the experiment has been
performed, while the dashed lines illustrate the “virtual” remainder of the
loop.

The computation of r̃k requires the inversion of M, which
can be explicitly obtained for relatively simple classes of
reference models, such as linear transfer functions with
asymptotically stable zeros [12]. In case of more complex
reference models M, more generally the fictitious reference
can be obtained by solving the fitting problem

min
{r̃k}Nk=M

1

N−M

N∑
k=M

`M (ŷMk , yk)

s.t. ŷMk+1 =fM(yk, . . . , yk−M , r̃k, . . . , r̃k−M ),

(7)

where `M : R×R→ R is a properly defined loss function. In
the example reported in this paper we will focus on a linear
reference model M, for which solving (7) is not required.

Once the fictitious reference sequence {r̃k}Nk=M is com-
puted, the latter can be used to design the desired blocks (see
equations (4) and (6), respectively), by trying to match the
measured input sequence {uk}Nk=1 with the predicted input
from the controller Cθ and the anti-windup compensator Hϕ,
while weighting unfeasible control actions according to the
limits dictated by the known actuator bounds. Formally, we
solve the following learning problem

min
Cθ∈Cθ
Hϕ∈Hϕ

J (ν̂k(θ), uk, âk(ϕ)),

s.t. ν̂k+1(θ)=Cθ(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q),

âk+1(ϕ)=Hϕ(ν̂k+1, uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q),

k = 1, . . . , N −Q,
(8)

where

J (ν̂(θ), u, â(ϕ)) =

1

N−Q

N∑
k=Q

`C(ν̂k(θ), uk)+γ`S(ν̂k(θ)−âk(ϕ)),
(9)

and γ > 0 is a hyper-parameter to be tuned that trades
off between fitting the input samples and violate saturation
limits. Note that the order of the controller Q dictates the
number of samples that are discarded in the learning phase.

We adopt the Mean Absolute Error (MAE) loss figure

`C(ν̂k(θ), uk) = ‖ν̂k(θ)− uk‖1,

to weight the fitting error on the input (other losses could be
used too), while the error due to unfeasible control actions

is accounted for by defining `S as follows:

`S(ûk(θ, ϕ)) = ‖ûk(θ, ϕ)− g(ûk(θ, ϕ))‖1,

with ûk(θ, ϕ) = ν̂k(θ)− âk(ϕ), for k = Q, . . . , N .
Remark 2: The learning problem in (8), along with the

proposed anti-windup control scheme, can be readily adapted
to a 1-DOF architecture, by setting âk = 0, ∀k, so that the
learning problem becomes

min
Cθ∈Cθ

1

N−Q

N∑
k=Q

`C(ν̂k(θ), uk)+γ`S(ν̂k(θ))

s.t. ν̂k+1(θ)=Cθ(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q),

k = 1, . . . , N −Q.

Although not explicitly exploiting an anti-windup block, this
optimization problem still allows one to train a controller that
accounts for saturation limits, thanks to the structure of Cθ
(see Section III-A).

Remark 3: Since the solution of problem (8) allows us to
concurrently train the controller and the anti-windup block,
a possible strategy for the selection of γ is described next.
By solving problem (8) multiple times iteratively, one can
initially choose γ low to promote better fitting performance.
The value of γ can then be gradually increased so to enforce
satisfaction of the actuator bounds.

Remark 4: Alternatively to the cost in (9), one can also
minimize the following objective:

J (û(θ, ϕ), ũ)=
1

N−Q

N∑
k=Q

`C(ûk(θ, ϕ), ũk)+γ`S(ûk(θ, ϕ)),

with ûk(θ, ϕ) = ν̂k(θ)− âk(ϕ). In this case, Cθ and Hϕ are
designed so that the input to P corresponds to the saturated
control actions {ũk}Nk=1. We stress that `S has still to be
included in the cost if one wants the compensator to act only
when the control action νk exceeds the saturation bounds, as
in standard anti-windup schemes.

A. NAW-NET parameterization

It is clear that the chosen parameterizations for the maps
Cθ ∈ Cθ and Hϕ ∈ Hϕ are crucial to achieve good
control performance, namely to attain the desired closed-loop
behaviorM while capitalizing on the whole operating range
of the actuators. Among possible alternatives for both the
controller and the anti-windup block parameterizations, in
this work we use Artificial Neural Networks (ANNs) [16] for
their well-known effectiveness as maps approximators and
the availability of well-maintained tools for easily training
them.

Specifically, the controller is parameterized as the in-
put/output law

νk+1 = NN θ(ICk )′ICk , (10)

where ICk ∈ RnI is the feature vector fed to the parametric
part of the controller, namely the ANN NN θ : RNI →
R, whose internal structure is schematically represented in
Figure 3. The feature vector ICk is extracted via a map
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Fig. 3. The selected controller structure.

µC : R2Q+1 → RnI on the measured inputs and tracking
errors, namely

ICk = µC(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q), (11)

through which we embed in our controller any available
prior knowledge on P . Since in our setting the only prior
information on the plant resides in the known saturation
function g in (2), we select µC as

µC(uk, . . . , uk−Q, ẽk+1, . . . , ẽk−Q) =

=
[
uk, · · ·, uk−Q, g(uk), · · ·, g(uk−Q), ek+1, · · ·, ek−Q

]
,

(12)
so to also include the projections g(uk−j) on the admissible
input range of past control samples uk−j as additional
regressive terms, j = 0, . . . , Q. We remark that, in principle,
µC can be learned from data along with NN θ. However, this
may require a much larger amount of training data and would
result in a more complex architecture, eventually making the
approach too demanding for simple embedded applications.
From a practical stand point, Cθ is implemented through a
feed-forward neural network fed by ICk . Nonetheless, the
network is used to predict a set of intermediate coefficients
that produce the control action once they are multiplied by
ICk .

The chosen structure of Cθ allows us to trade-off between
the expressiveness of the parameterization and the ease of
inspection of the learned controller. Moreover, if a linear
time invariant (LTI) parameterization is sufficient, it is fairly
simple to downgrade the neural controller to an LTI one,
by exploiting parameter shrinkage strategies on the non-bias
weights of the network in the training phase [17]. Indeed, if
after training these weights they all result zero, this implies
that the network itself can be replaced by its (constant)
output.

Differently from the controller, for the anti-windup block
we resort to a standard input-output feed-forward structure,
with the ANN parameterizing Hϕ directly mapping its input
into the corrective action ak. This choice is due to the fact
that the anti-windup block is nonlinear, thus making more
complex architectures like the one chosen for Cθ quite useful,
at the price of a more complex optimization problem to be
solved during the training phase. For the compensator to
share similar characteristics to standard anti-windup blocks,
we do still exploit a preliminary feature extraction map
µH = µC .

B. Improving NAW-NET performance via Truncated BPTT

Despite its appealing simple structure, a design problem
based on one-step-ahead predictions like the one defined

in (8) might result in a data-driven control scheme that, albeit
good over short horizons, may not be suited to be repeatedly
iterated over time. A possible approach to overcome this
limitation is to exploit Back Propagation Through Time
(BPTT) in the learning scheme, which has already been used
for direct control applications in [15], [18]. This approach
allows one to evaluate the controller+anti-windup block
simulation accuracy, by concatenating predictions at two
successive sampling steps. However, it concurrently involves
the optimization of loss functions that are computationally
expensive to evaluate and hard to minimize [19].

To avoid over-complicating the learning scheme, while
retaining some of the desirable features of a BPTT architec-
ture, in this work we resort to the so-called truncated BPTT
approach [20]. Accordingly, predictions are propagated for
a limited number of steps F � N , with F > 0 being an
additional tuning parameter of the approach. Let υk+h be
defined as

υk+h =

{
uk+h if h ≤ 0,

ν̂k+h otherwise,
(13a)

and

J̃ (ν̂(θ), u, â(ϕ)) =

1

N−Q

N∑
k=Q

F∑
j=1

`C(ν̂k(θ), uk)+γ`S(ν̂k(θ)−âk(ϕ)).

(13b)
The design problem in (8) is thus recast as:

min
Cθ∈Cθ
Hϕ∈Hϕ

J̃ (ν̂(θ), u, â(ϕ))

s.t. ν̂k+j(θ)=Cθ(υk+j , . . . , υk−Q+j , ẽk+j , . . . , ẽk−Q+j),

âk+j(ϕ)=Hϕ(ν̂k+j , υk+j−1, . . . , υk−Q+j ,

ẽk+1, . . . , ẽk−Q),

j = 1, . . . , F, k = 1, . . . , N −Q− F,
(13c)

It is clear that the quality of the control scheme obtained
via the solution of the optimization problem in (13c) heavily
depends on the choice of the length of the prediction horizon
F . We stress that F should be chosen so as to compromise of
the available computing capabilities, the simulation accuracy
of the learned controller, and the ability of the optimization
solver to reach a good quality solution of (13).

C. Data augmentation

Suppose that the dataset available to design the
controller+anti-windup compensator is given, so that one
cannot arbitrarily select the inputs that excite the plant. In
this case, it might be possible that the data contain pairs of
saturated inputs and corresponding outputs only. This might
be good for the identification of P in (3). However, having a
training set that only consists of input/output sequences that
already belong to the feasible region, namely uk ∈ [u, ū] ∀k,
the controller and constraint enforcement module obtained
by solving (13c) are likely to lead to poor closed-loop
performance, since the available dataset is not informative
enough for the considered learning task. An effective and
rather general strategy to handle this problem is to augment

3338



0 100 200 300 400 500

-1.5

-1

-0.5

0

0.5

1

1.5

(a) Reference (blue) vs desired (dashed red) and attained (black) closed-
loop response

0 100 200 300 400 500
-2

-1

0

1

2

(b) Control Input

Fig. 4. [Left panel] Desired and achieved closed-loop response when tracking the set point in (16). The reference signal and the desired output are almost
always overlapped. [Right panel] Control input (black) and linear operating region of the actuator (yellow area).

the original dataset with artificial samples that violate the
saturation bounds. The generation of these data is quite a
delicate task, which could also deteriorate the quality of the
original dataset with samples that the actual plant could never
generate.

To bypass these limitations, by accounting for the fact
that the saturation bounds act on the input only, we rely
on the following heuristic. We augment the dataset ZN ,
by superimposing a suitably defined white noise sequence
on available inputs. A possible choice for the latter is an
additive noise sequence with Gaussian distribution, so that
the available dataset becomes Z̃n = {uk,ρ(uk), yk}Nk=1, with
ρ : R→ R being the following stochastic map:

ρ(uk) = uk + wk, wk ∼ N (0, σ2), (14)

and where the variance σ2 ∈ R is a new parameter to be
tuned. We stress that the artificially generated inputs are used
solely to train the anti-windup module and that the quality
of the results obtained by exploiting this approach strongly
depends on the characteristics of the chosen noise sequence.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed data-driven
scheme, we consider the problem of controlling the following
two-dimensional Hammerstein-Wiener plant:
xk+1 =

[
0.755 0.250

−0.199 0

]
xk+

[
−0.5

0

]
sign(ũk)

√
|ũk|,

zk =
[
0.699 −0.443

]
xk,

yok = zk + 5 sin (zk),

where ũk is generated according to (2), with u = −1 and
ū = 1. In order to attain the closed-loop behavior described
by the reference model

M : yMk+1 = −0.1yMk + 0.3yMk−1 + 0.8rk−1,

we learn a controller and an anti-windup compensator of
order Q = 4 by using a set ZN of N = 10000 samples.
These are generated by exciting the system with a sequence
uk obtained by superimposing a normally distributed white

noise sequence with a periodic step signal with variable
amplitude and period equal to 7. The output is corrupted by a
white noise sequence {vk}Nk=1 with zero-mean Gaussian dis-
tribution and variance equal to 0.2, and the resulting signal is
normalized using the empirical mean and standard deviation
computed on the available data before starting the learning
procedure. All the involved ANNs are chosen as compact
networks featuring 4 nonlinear hidden layers of 15 neurons
each and a final output layer of proper dimensions. We resort
to the well-known Rectified Linear Unit (ReLU) maps [21]
as the activation function of the neurons. The implementation
of all the networks is carried out in Keras [22] with F = 5. In
the learning phase, we initially set γ = 0 in (13c). Once this
optimization procedure converges, we retrain both Cθ and
Hϕ by imposing γ = 6 and using the weights resulting from
the previous phase as initial guesses for the new instance of
the learning scheme. All the computations were carried out
using a laptop equipped with a 2.8-GHz Intel Core i7 with
16 GB of RAM.

Figure 4 shows the response of the designed scheme
when we consider a reference sequence {rk}Ñk=1 of length
Ñ = 500, where rk is the piecewise-constant signal

rk =

{
−1, if 100(i−1)+1 ≤ k ≤ 100 · i,
1, otherwise,

(16)

for i = 1, 3, 5, . . ., and the output is corrupted by a noise
with the same distribution of that acting on the training set.
It is clear that the output obtained in closed-loop tracks the
desired response and that the control input feeding the plant
rarely exceeds the saturation bounds. Since our aim is to
track the set point as similarly as possible to the reference
modelM, while devising control inputs that exceeds as little
as possible the saturation limits, we quantitatively assess
the performance of the scheme by introducing the following
indexes:

RMSEM =

√√√√ 1

Ñ

Ñ∑
k=1

(yk − yMk )2, (17a)
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TABLE I
PERFORMANCE INDEXES OBTAINED WITH DIFFERENT CONTROLLERS

unbounded actuator controller without controller+anti-windup
(ideal case) anti-windup action (γ = 0) compensator (2-DOF, γ = 6)

RMSEM 0.154 0.110 0.098
OB% [%] - 4.8 2.0

TABLE II
INDEXES OBTAINED WHEN USING LESS INFORMATIVE TRAINING DATA

wk = 0, ∀k in (14) σ2 = 0.4 in (14)
RMSEM 0.092 0.097
OB% [%] 1.4 0.4

OB% =
#{k ∈ [1, Ñ ] : uk /∈ [u, ū]}

Ñ
· 100%, (17b)

with RMSEM and OB%1 respectively indicating how well
the desired closed-loop behavior is tracked and how many
times the actuator bounds are exceeded. The obtained results
are reported in Table I, along with the ones retrieved by
considering the ideal case of unbounded actuators and a
scheme designed by neglecting input saturation, i.e., by
setting γ = 0 in (13b) and not introducing the saturated
inputs as regressive terms. It is clear that the achieved
performances are comparable when considering the tracking
capabilities of the different configurations, with the proposed
2-DOF architecture allowing us to reduce the number of
times the actuator bounds are exceeded and slightly improve
tracking performance.

We finally test the proposed approach in the presence of
less informative data, by assuming that only saturated inputs
are available to learn the controller with anti-windup. In
this case, we compare the performance attained when the
proposed 2-DOF architecture is designed with and without
the additional data augmentation presented in Section III-
C. The obtained quality indexes are reported in Table II,
showing that the exploited strategy still allows us to obtain
comparable closed-loop performance in terms of tracking,
while resulting in a control input that exceeds the saturation
bounds even less than the one obtained by learning the
controller+anti-windup block with unsaturated inputs.

V. CONCLUSIONS

In this paper we have presented a preliminary data-driven
design method of neural controllers with anti-windup, by
relying on a model-reference architecture approach. The
proposed learning strategy only requires the knowledge of
the actuator limits, and does not involve the identification of a
full open-loop model of the plant to be controlled. As shown
by the promising initial numerical results, the approach
allows us to attain satisfactory performance in terms of
reference tracking, in spite of bounded actuators. Future
research will be devoted to study data-driven strategies for
the selection of proper reference models and to assess the
performance of the approach in more challenging scenarios.

1Given a set A, #A indicates its cardinality.
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